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Abstract

A general one dimensional deterministic infinite horizon singular
optimal control problem with unbounded control set is considered in
this paper. Using the dynamic programming approach we prove that
the value function is convex, and C1 along the free boundary. Also, we
find the free boundary in terms of the parameters of the problem.
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Resumen

En este art́ıculo se considera un problema general de control ópti-
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unidimensional y determińıstico. Usando el enfoque de la programación
dinámica probamos que la función valor es convexa y C1 a lo largo de
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los parámetros del problema.
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1 Introduction

This paper refers to a class of infinite horizon singular optimal control prob-
lems which are optimal control problems with a set of control values which is
unbounded and where the control appear linearly in the dynamics and in the
running cost. We consider the scalar control system

ẋ = f(x) + u, x(0) = x ∈ R, (1)

where f is a differentiable function with bounded derivatives and the control
u(·) is a measurable function of time in the family

U = L∞([0,∞),R).

The optimal control problem consists of minimizing over all controls u(·) ∈ U
the infinite horizon discounted cost functional

vu(x) =
∫ ∞

0

e−t[L(x(t)) + |u(t)|]dt, (2)

with a positive function L specified as in section 2. The value function for
this optimal control problem is a function of the initial state x defined as the
infimum of the costs, that is ,

v(x) = inf{vu(x) : u(·) ∈ U}, (3)

and the optimal control u∗(·), if it exists, is the argument that minimizes the
cost functional.

Note that the more general problem with

ẋ = f(x) + αu, x(0) = x ∈ R,

and cost functional

vu(x) =
∫ ∞

0

e−t[L(x(t)) + ρ|u(t)|]dt,

with ρ > 0, α ∈ R, can be reduced to (1), (2), by rescaling f and L.
The dynamic programing equation, also called the Hamilton-Jacobi-Bellman
(HJB) equation, for a deterministic optimal control problem is in general
a first order nonlinear partial differential equation (PDE) that provides an
approach to solving optimal control problems. It is well known, see [7], that if
the value function is smooth enough, then it is a classical solution of the HJB
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equation. But also using a weaker notion of solution, called viscosity solution,
introduced by Crandall and Lions [3], the dynamic programming method can
be pursued when the value function is not smooth enough. In fact, the HJB
equation is a necessary condition that the value function must satisfy. The
dynamic programming equation for the above deterministic optimal control
problem is of the form

max
[
F 1(x, v(x), v′(x)), F 2(x, v(x), v′(x))

]
= 0, −∞ < x < ∞,

for suitable continuous functions F 1, F 2. The subset B of R where both

F 1(x, v(x), v′(x)) = F 2(x, v(x), v′(x)) = 0,

is called the free boundary. Our control problem is homogeneous of degree
1 in the control, thus we expect the optimal control to be extreme or to be
singular. Moreover, since our running cost is nonnegative we expect optimal
controls to equal zero, plus or minus infinity, or to be singular. By the control
being plus or minus infinity we mean that it is an impulse. The free boundary
(where the optimal control is in some cases singular)separates the null region
(where the optimal control is zero) and the jump region (where the optimal
control is impulsive). Nonsmoothness of the value function often occurs only
along the free boundary B. The property of smooth fit is said to hold for a
particular optimal control problem if the value function is smooth enough, C1

in our case, along the free boundary B so that it solves the HJB equation in
the classical sense. The dynamic programming equation gives rise to a free
boundary problem since the crucial step in solving it is to locate the subset
B where there is a switch between the conditions

F 1(x, v(x), v′(x)) ≤ 0, F 2(x, v(x), v′(x)) = 0,

and
F 1(x, v(x), v′(x)) = 0, F 2(x, v(x), v′(x)) ≤ 0.

Ferreyra and Hijab [5] studied the optimal control problem (1), (2), (3), as-
suming linearity of the function f and convexity of the function L, with con-
trols taking values in [0,∞). This enables them to present a complete analysis
of the solution of the control problem. They used the dynamic programming
method and proved that the free boundary is just a single point giving its
location in terms of the parameters of the problem. Also, they found that
smoothness of v depends on the parameters of the problem. We consider the
optimal control problem (1), (2), (3), with the same assumptions on f and L
as in [5], but allowing the controls to take values in the whole real line. We
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use the dynamic programming method to prove that the free boundary is a
pair of points in R, locating them in terms of the parameters of the problem.
We determine the optimal control on each one of the regions separated by
the free boundary. We also see that C2-fit is a property that depends on the
parameters of the problem.

2 The Main Results

Let’s consider the optimal control problem (1), (2), (3) with the following
assumptions,

(i) L is C2 and L(x) ≥ 0,

(ii) |L′(x)| ≤ C1(1 + L(x)),

(iii) 0 < µ ≤ L′′(x) ≤ C2(1 + L(x)),

(iv) f(x) is linear and f ′(x) < 0,

(v) the control u(·) is a measurable function, u(·) ∈ L∞([0,∞),R).

For clarity we set f(x) = βx, with β < 0.

Theorem 1. The value function v for the control problem is a classical C1-
solution of the Hamilton-Jacobi-Bellman equation

max [v(x)− βxv′(x)− L(x), |v′(x)| − 1] = 0, −∞ < x < ∞. (4)

Moreover, there exist α−, α+ ∈ R such that

−v′(x)− 1 = 0, ∀x ∈ J− = (−∞, α−],
v(x)− βxv′(x)− L(x) = 0, ∀x ∈ N = [α−, α+],

v′(x)− 1 = 0, ∀x ∈ J+ = [α+,+∞).

The value function v is never C2 on R but

v ∈ C2(R \ {α−, α+}), and

v ∈ C2at α− ⇐⇒ 0 < α−, and

v ∈ C2at α+ ⇐⇒ α+ < 0.

The quantities α− and α+ can be computed in terms of the parameters of the
problem.
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Theorem 2. (i) ∀x ∈ R \ [α−, α+], the optimal control is impulsive.

(ii) If α− ≤ 0 ≤ α+, then ∀x ∈ [α−, α+] the zero control is optimal.

(iii) Case 0 < α− < α+ .
At x = α−, the optimal control is singular, with value

u∗(t) ≡ −βα−, ∀t ≥ 0

For each x ∈ [α−, α+], the optimal control is

u∗(t) =

{
0, 0 ≤ t < T,

−βα−, t ≥ T,

where T > 0 is such that the corresponding solution x∗(t), 0 ≤ t ≤ T,
satisfies,

x∗(t) = xeβT = α−.

(iv) Case α− < α+ < 0 .
This case is similar to the previous one where 0 < α− < α+.
At x = α+, the optimal control is singular, with value

u∗(t) ≡ −βα+, ∀t ≥ 0

For each x ∈ [α−, α+], the optimal control is

u∗(t) =

{
0, 0 ≤ t < T,

−βα+, t ≥ T,

where T > 0 is such that the corresponding solution x∗(t), 0 ≤ t ≤ T,
satisfies,

x∗(t) = xeβT = α+.

3 Convexity and Differentiability of the Value
Function

Lemma 3. The value function v is convex, C1, and a classical solution of
the Hamilton-Jacobi-Bellman (HJB) equation (4). Moreover, v′′ exists almost
everywhere and

(i) 0 ≤ v(x) ≤ L∗(x),
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(ii) |v′(x)| ≤ C1(1 + L∗(x)),

(iii) 0 ≤ v′′(x) ≤ C2(1 + L∗(x)) for almost every x,

where L∗(x) denotes the maximum value of the function L over the line seg-
ment joinning x and the origin.

Proof.
Note that since L is convex we have

L∗(x) =: max{L(y) : 0 ≤ y ≤ x} = max(L(x), L(0)).

It is clear that v(x) ≥ 0, ∀x ∈ R. Let’s show that v is convex. Let x0
0, x

1
0 ∈ R,

and s ∈ [0, 1]. Given ε > 0, there exist u0, u1 ∈ U such that

vu0(x0
0) ≤ v(x0

0) + ε and vu1(x1
0) ≤ v(x1

0) + ε.

Let u = (1 − s)u0 + su1. It is clear that u is a measurable function, hence
u ∈ U .
Let x0 = (1−s)x0

0 +sx1
0. Let xi(t) be the solution of ẋ = f(x)+u, with initial

value x(0) = xi
0, i = 1, 2. Then, x(t) = (1− s)x0(t) + sx1(t) is the solution of

ẋ = βx + u, with initial value x(0) = (1− s)x0
0 + sx1

0 = x0. In fact, since f is
a linear function

d

dt
[x(t)] = β(x(t)) + u.

By definition of v, convexity of L and using the triangle inequality, we have

v[(1− s)x0
0 + sx1

0] ≤ (1− s)v(x0
0) + sv(x1

0) + ε.

Since ε was arbitrary, this implies v is convex.
To conclude the proof of (i) note that when u(·) ≡ 0 , x(t) lies on the line
segment joining x to 0 because β < 0. This implies

v(x) ≤ v0(x) ≤
∫ ∞

0

e−tL∗(x)dt = L∗(x).

Then we need only to consider controls u(·) in (3) satisfying vu(x) ≤ L∗(x).
Now, using ∇ to mean first derivative with respect to x,

|5vu(x)| ≤
∫ ∞

0

e−t|5L(x(t))|dt ≤
∫ ∞

0

e−t[C1(1+L(x(t)))]dt ≤ C1[1+L∗(x)].

Similarly,

| 52 vu(x)| ≤
∫ ∞

0

e−t| 52 f(x(t))|dt ≤ C2[1 + f∗(x)].
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Since the right hand side of this last inequality is bounded on every compact
interval, we conclude that for each a, b ∈ R, a < b there exists a k(a, b) > 0,
independent of u, such that k(a, b)x2 − vu(x) is convex on [a,b]. Taking the
supremum over all u it follows that k(a, b)x2 − v(x) is convex on [a, b]. Thus,
v is semiconcave. Since v is also convex, then v is C1 and v′′ exists almost
everywhere.

Finally, the estimates on v′ and v′′ follow from the above estimates for
5vu,52vu. Then, reasoning as in Fleming-Soner [8, VIII], [5], [6], and [4],
the value function v is a viscosity solution of the HJB equation, hence v is
classical solution of the dynamic programming equation

max [v(x)− βxv′(x)− L(x) , H(v′(x))] = 0, −∞ < x < ∞,

where
H(p) = sup

|u|=1

(−pu− |u|) = sup
|u|=1

(−pu− 1) = |p| − 1.

Therefore,

max [v(x)− βxv′(x)− L(x) , |v′| − 1] = 0, −∞ < x < ∞.

4 The Cost of Using the Control Zero

In the next lemma we consider the cost of the control u(·) ≡ 0 which we define
as ω(x) = v0(x).

Lemma 4. The function ω is in C2(R) , it is strictly convex and satisfies

(i) 0 ≤ ω(x) ≤ L∗(x),

(ii) |ω′(x)| ≤ C1(1 + L∗(x)),

(iii) 0 < µ ≤ ω′′(x) ≤ C2(1 + L∗(x)),

(iv) ω(x)− βxω′(x)− L(x) = 0, −∞ < x < ∞.

Proof of (i).
By definition ω(x) = v0(x) =

∫∞
0

e−tL(x(t))dt, with x(t) = xeβt. Then by
differentiating under the integral sign it follows that ω is in C2(R), and 0 ≤
ω(x) ≤ L∗(x).
Proof of (ii).
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Let z ∈ R and let x(t) be the solution of (1) for the control u(·) ≡ 0, with
initial data x(0) = z. Then

|ω′(z)| ≤
∫ ∞

0

e−t

∣∣∣∣L′(x(t))
dx(t)
dz

∣∣∣∣ dt,

where x(t) = zeβt, hence dx(t)
dz = eβt.

Thus, using the bounds on L′, we get

|ω′(z)| ≤
∫ ∞

0

e(β−1)tC1[1 + L∗(z)]dt = C̃1[1 + L∗(z)].

Proof of (iii)
Similarly,

ω′′(z) =
∫ ∞

0

e−tL′′(zeβt)eβteβtdt =
∫ ∞

0

e(2β−1)tL′′(zeβt)dt.

Using the bounds on L′′, 0 < µ ≤ ω′′(z) ≤ C2(1 + L∗(z)).
Proof of (iv).
Let x ∈ R. Then, integrating by parts

ω(x)− βxω′(x)− L(x) =
∫ ∞

0

e−tL(xeβt)dt− βx

∫ ∞

0

e−tL′(xeβt)eβtdt− L(x)

= 0.

5 The Free Boundary B = {α−, α+}
In this section we find the free boundary of our control problem (1), (2), (3),
(4) which is a pair of points α−, α+ ∈ R. We will prove that α−, α+ are finite
in Lemmas 8, 9.

Lemma 5. There exist α−, α+ with −∞ ≤ α− < α+ ≤ ∞, such that

−v′(x)− 1 = 0, ∀x ∈ J− = (−∞, α−],
v(x)− βxv′(x)− L(x) = 0, ∀x ∈ N = [α−, α+],

v′(x)− 1 = 0, ∀x ∈ J+ = [α+,+∞).

Proof.
By the Lemma 4 (iii) and by hypothesis the functions ω′, L′ : R −→ R are
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respectively increasing and onto R. Thus, we can define a− , a+, b− and
b+ by

ω′(a−) = −1 and ω′(a+) = 1. (5)

L′(b−) = β − 1 and L′(b+) = 1− β. (6)

We set

A+ = {x : v′(x)− 1 < 0} and A− = {x : −v′(x)− 1 < 0}.
A+ and A− are not empty because v is bounded below and because v
satisfies the HJB equation (4). Then we define

α+ = sup A+ > −∞ and α− = inf A− < +∞.

Since the function v′ is increasing, by the HJB equation (4)

v′(x) = −1, ∀x ≤ α−, and v′(x) = 1, ∀x ≥ α+.

Since v′ is increasing and continuous, then α− < α+ and

−1 < v′(x) < 1, ∀x ∈ (α−, α+).

Thus, by the HJB equation (4), and since |v′(x)| − 1 < 0, ∀x ∈ (α−, α+)

v(x)− βxv′(x)− L(x) = 0; ∀x ∈ (α−, α+). (7)

Notice that if α−, α+ are finite then

−v′(x)− 1 = 0, ∀x ∈ J− = (−∞, α−],
v(x)− βxv′(x)− L(x) = 0, ∀x ∈ N = [α−, α+],

v′(x)− 1 = 0, ∀x ∈ J+ = [α+, +∞).

In particular,

v(α−) = L(α−)− β(α−), and v′(α−) = −1, (8)

and
v(α+) = L(α+) + β(α+), and v′(α+) = 1. (9)

Moreover, the value function verifies,

∀x ∈ J− = (−∞, α−], v(x) = −x + (1− β)α− + L(α−), (10)

∀x ∈ J+ = [α+, +∞), v(x) = x + (β − 1)α+ + L(α+). (11)
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6 The Control Zero on (α−, α+)

Proposition 6. We consider the optimal control problem (1), (2), (3). Let
x ∈ (α−, α+). Let x(t) be the solution of ẋ = βx, x(0) = x, for the
control u(·) ≡ 0. Let’s suppose that there exists T > 0 such that x(t) ∈
(α−, α+), ∀t ∈ [0, T ). Then

v(x) = e−T v(x(T )) +
∫ T

0

e−tL(x(t))dt. (12)

Proof.
Let x ∈ (α−, α+), let x(t) be the solution of ẋ = βx, x(0) = x, for the
control u(·) ≡ 0, and let T > 0 be such that x(t) ∈ (α−, α+), ∀t ∈ [0, T ).
Therefore, differentiating the function t −→ e−tv(x(t)), and using equation
(7)

d

dt
[e−tv(x(t))] = −e−t[v(x(t))− βx(t)v′(x(t))] = −e−tL(x(t)), ∀t ≥ 0.

Now, integrating, over the interval [0, T ], we get equation (12) .

Proposition 7. We consider the optimal control problem (1), (2), (3).
(i) Suppose α− ≤ 0 ≤ α+, then on (α−, α+) the control u(·) ≡ 0 is

optimal. Hence v = ω on (α−, α+), where ω is the cost of the control u(·) ≡ 0
studied in Lemma 4.

(ii) Suppose 0 < α− < α+, then the control u∗(t) ≡ −βα−, ∀t ≥ 0, is
optimal at α−

(iii)Suppose α− < α+ < 0, then the control u∗(t) ≡ −βα+, ∀t ≥ 0, is
optimal at α+

Proof of (i).
Let x ∈ (α−, α+) and let x(t) be the solution of ẋ = βx, x(0) = x, for the
control u(·) ≡ 0. Since 0 ∈ (α−, α+) and β < 0, then x(t) ∈ (α−, α+), ∀t ≥
0. Hence, by Proposition 6 the equation (12) holds for all T > 0. That is,

v(x) = e−T v(x(T )) +
∫ T

0

e−tL(x(t))dt, ∀T > 0.

Letting T −→∞, yields

v(x) =
∫ ∞

0

e−tL(x(t)) dt = v0(x) = ω(x).
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Proof of (ii).
According to (7) and inserting x = α− yields v(α−) = L(α−)− βα−. On the
other hand, note that x(t) = α− is the solution of ẋ = β(x−α−), x(0) = α−.
Therefore,

vu∗(α−) =
∫ ∞

0

e−t[L(α−) + (−βα−)] dt = L(α−)− bα−.

Thus, u∗(t) ≡ −bα−, ∀t ≥ 0 is optimal at α−.
Proof of (iii).
According to (7) and inserting x = α+ yields v(α+) = L(α+) + βα+. On the
other hand, note that x(t) ≡ α+ is the solution of

ẋ = β(x− α+), x(0) = α+.

Therefore,

vu∗(α+) =
∫ ∞

0

e−t[L(α+) + βα+] dt = L(α−) + βα+.

Thus, u∗(t) ≡ −βα+, ∀t ≥ 0 is optimal at α+.

7 α−, α+ Are Finite

Lemma 8. α− is finite.

Proof.
We know that −∞ ≤ α− < α+ ≤ +∞ , let’s suppose that α− = −∞.

Case (i) α+ ≥ 0.
Then α− ≤ 0 ≤ α+. Therefore, by Proposition 7 the control u(·) ≡ 0 is

optimal in (α−, α+) and v(x) = v0(x) = ω(x), ∀x ∈ (α−, α+). Then,

v′(x) = ω′(x); ∀x ∈ (α−, α+).

In particular, by continuity of v′ and ω′, and by (5), v′(a−) = ω′(a−) = −1.
This means that a− ≤ α− = −∞. This is a contradiction, since a− ∈ R.
Case (ii) α+ < 0.
Let x ∈ (α−, α+). Let x(t) be the solution of ẋ = βx, x(0) = x, for the
control u(·) ≡ 0. Since ẋ(t) > βα+, there exists T > 0 such that

x(T ) = α+, and x(t) ∈ (α−, α+), ∀t ∈ [0, T ).
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Therefore, by Proposition 6 the equation (12) holds. So,

v(x) = e−T v(α+) +
∫ T

0

e−tL(x(t))dt.

To compute v′(x) and v′′(x) we need to express T as a function of x. But
xeβT = α+. Solving for T and replacing above we get

v(x) = (
α+

x
)−

1
β v(α+) +

∫ ϕ(x)

0

e−tL(xeβt)dt, with ϕ(x) =
1
β

log(
α+

x
).

Therefore,

v′(x) = v(α+)(− 1
β

)(
α+

x
)−

1
β−1(−α+

x2
) +

∫ ϕ(x)

0

e−tL′(xeβt)eβtdt

+ e−ϕ(x)L(xeβϕ(x))ϕ′(x)

= (
α+

x
)

β−1
β +

∫ ϕ(x)

0

e(β−1)tL′(xeβt)dt.

Now, let’s compute the second derivative at x

v′′(x) =
β − 1

β
(
α+

x
)−

1
β (−α+

x2
) +

∫ ϕ(x)

0

e−tL′′(xeβt)e2βtdt

+ e−ϕ(x)L′(xeβϕ(x))eβϕ(x)ϕ′(x)

=
[
− 1

βx
(
α+

x
)

β−1
β (β − 1 + L′(α+))

]
+

∫ ϕ(x)

0

e−tL′′(xeβt)e2βtdt.

Let

ψ(x) = − 1
βx

(
α+

x
)

β−1
β (β − 1 + L′(α+)).

It is clear that ψ(x) −→ 0 and (α+

x )
2β−1

β −→ 0 as x −→ 0. Then, given ε > 0

there exists K < 0 such that for x < K we have 0 < (α+

x )
2β−1

β < 1 and

v′′(x) >

∫ ϕ(x)

0

e−tµe2βtdt− ε = µ[
1

2β − 1
(e(2β−1)T − 1)]− ε

= µ[
1

2β − 1
((

α+

x
)

2β−1
β − 1)]− ε > µ[

1
2β − 1

(−1)]− ε.

Thus, taking ε > 0 small, and the corresponding K < 0

v′′(x) ≥ γ > 0;∀x ∈ (−∞,K).
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Now, integrating over the interval [x,K], for −∞ < x < K yields

v′(K)− v′(x) ≥ γ(K − x). Thus, v′(x) ≤ γ(x−K) + v′(K).

Therefore,
v′(x) −→ −∞, as x −→ −∞.

This is a contradiction since the function v′ can never be less than −1. Case
(i) and (ii) imply α− 6= −∞. Thus −∞ < α− < +∞.

Lemma 9. α+ is finite.

Proof.
We know that −∞ ≤ α− < α+ ≤ ∞. Let’s suppose that α+ = +∞.
Case (i) α− ≤ 0.
Then α− ≤ 0 ≤ α+ . Therefore, by Proposition 7 the control u(·) ≡ 0 is opti-
mal and v(x) = v0(x) = ω(x), for x ∈ (α−, α+). Then, v′(x) = ω′(x), ∀x ∈
(α−, α+). In particular, by continuity of v′ , ω′ and by (5) v′(α+) = 1 =
ω′(α+). This means that a+ ≥ α+ = +∞. This is a contradiction, since
a+ ∈ R.
Case (ii) α− > 0.
Let x ∈ (α−, α+) and let x(t) be the solution of ẋ = βx, x(0) = x,
for the control u(·) ≡ 0. Then, there exists T > 0 such that x(T ) =
α−, and x(t) ∈ (α−, α+), ∀t ∈ [0, T ). Therefore, by Proposition 6
the equation (12) holds for T > 0. To compute v′(x) and v′′(x) we need to
express T as a function of x. But xeβT = α+. Solving for T and replacing in
equation (12) we get

v(x) = (
α−

x
)−

1
β v(α−) +

∫ ϕ(x)

0

e−tL(xeβt)dt.

Therefore,

v′(x) = v(α−)(− 1
β

)(
α−

x
)−

1
β−1(−α−

x2
) +

∫ ϕ(x)

0

e−tL′(xeβt)eβtdt

+ e−ϕ(x)L(xeβϕ(x))ϕ′(x)

= −βα−(
α−

x
)−

1
β

1
βx

+
∫ ϕ(x)

0

e(β−1)tL′(xeβt)dt.

So,

v′(x) = −(
α−

x
)

β−1
β +

∫ ϕ(x)

0

e(β−1)tL′(xeβt)dt. (13)
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Now, let’s compute the second derivative at x

v′′(x) = −β − 1
β

(
α−

x
)−

1
β (−α−

x2
) +

∫ ϕ(x)

0

e(β−1)tL′′(xeβt)eβtdt

+ e−ϕ(x)L′(xeβϕ(x))eβϕ(x)ϕ′(x)

=
β − 1
βx

(
α−

x
)

β−1
β +

∫ ϕ(x)

0

e(2β−1)tL′′(xeβt)dt

+ (
α−

x
)−

1
β L′(α−)(

α−

x
)(− 1

βx
).

Then,

v′′(x) = [
1

βx
(
α−

x
)

β−1
β (β − 1− L′(α−))] +

∫ ϕ(x)

0

e(2β−1)tL′′(xeβt)dt. (14)

Let

ψ(x) =
1

βx
(
α−

x
)

β−1
β (β − 1− L′(α−)).

It is clear that ψ(x) −→ 0 and (α−
x )

2β−1
β −→ 0 as x −→ +∞. Then, given

ε > 0 there exists K < 0 such that for x > K we have 0 < (α−
x )

2β−1
β < 1 and

v′′(x) >

∫ ϕ(x)

0

e(2β−1)tµdt− ε = µ[
1

2β − 1
(e(2β−1)ϕ(x) − 1)]− ε

= µ[
1

2β − 1
((

α−

x
)

2β−1
β − 1)]− ε > µ[

1
2β − 1

(−1)]− ε.

Thus, taking ε > 0 small, and the corresponding K > 0, v′′(x) ≥ γ > 0; ∀x ∈
[K, +∞). Now, integrating over the interval [K,x], for K < x < +∞ we have

−v′(K) + v′(x) ≥ γ(x−K). Thus, v′(x) ≥ γ(x−K) + v′(K).

Therefore,
v′(x) −→ +∞, as x −→ +∞.

This is a contradiction since the function v′ can never be greater than 1.
Case (i) and (ii) imply α+ 6= +∞. Thus −∞ < α+ < +∞.

8 The optimal control outside the interval [α−, α+]

First, we need to prove a verification theorem.
Let U ⊂ Rk the control set. Let f : Rn × U → Rn be a continuous function
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such that satisfies the global Lipchitz continuity in the state variable and
uniformly in the control variable.
We consider the control system

ẋ = f(x(t), u(t)), x(0) = x ∈ Rn. (15)

The controls u(·) are functions of time in the family,

U = L∞([′,∞),U)

We set, for each x ∈ Rn and any control u(·) ∈ U the Cost Functional

J(x, u(·) =
∫ ∞

0

e−tL(x(t), u(t)) dt, (16)

where x(t) is the solution of (15), for the initial value x(0) = x, and for the
control u(·).
We define the Value Function as,

v(x) = inf
u(·)∈U

J [x(t), u(t)] (17)

The value function v solves the Hamilton-Jacobi-Bellman equation

v(x) + H(x, Dv(x)) = 0, (18)

where
H(x, p) = sup

u∈U
{−f(x, u)p− L(x, u)}

Theorem 10. (A Verification Theorem) We consider the optimal control
problem (15), (16), (17).
Let W ∈ C1(Rn) such that satisfies

W (x) + H(x,W ′(x)) = 0,∀x ∈ Rn

and for all solution x(t) of (15) to any initial value x given,

lim
t→∞

e−tW (x(t)) = 0

Then,

i) W (x) ≤ V (x), ∀x ∈ Rn
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ii) Given x ∈ Rn, if there exists u∗(·) ∈ U such that

H[x∗(s),W ′(x∗(s))] = −f(x∗(s), u∗(s))W ′(x∗(s))− L(x∗(s), u∗(s))

where x∗(s) is the solution of (15) for the given control u∗(s) and the
initial value x∗(s) = x,
Then u∗(s) is optimal control for the initial data x and

V (x) = W (x)

iii) Given x ∈ Rn, if there exists a sequence of controls
{

un(·)
}∞

n=1
⊂ U

such that
lim

n→∞
J(x, un(·)) = W (x),

Then,
V (x) = W (x).

Proof. i) Let x ∈ Rn, and let u(·) ∈ U be any control. Let x(t) be the solution
of (15), for the control u(·) given and the initial value x(0) = x.

d

dt
e−t[W (x(t))] = −e−t[W (x(t)− f(x(t), u(t)W ′(x(t))]

Integrating over the interval [0, T ], for T > 0.

e−T W (x(T ))+W (x) =
∫ T

0

e−t[W (x(t)−f(x(t), u(t))W ′(x(t))] dt (19)

On the other hand, notice that

W (x(t))− f(x(t), u(t))W ′(x(t))− L(x(t), u(t)) ≤
W (x(t)) + sup

u∈U

{
− f(x(t), u)W ′(x(t))− L(x(t), u)

}
= 0,

since W is a solution of (18). Thus,

W (x(t))− f(x(t), u(t))W ′(x(t)) ≤ L(x(t), u(t)) (20)

Now, combining 19) y (20) we have,

−e−T W (x(t)) + W (x) ≤
∫ T

0

e−tL(x(t), u(t)) dt
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Letting T ↑ ∞,

W (x) ≤
∫ ∞

0

e−tL(x(t), u(t))dt

since e−tW (x(t)) → 0, as T ↑ ∞ by hypothesis. The control u(·) is
arbitrary, then, we take the infimum over all control u(·)

W (x) ≤ inf
u∈U

∫ ∞

0

e−tL(x(t), u(t))dt = V (x)

ii) Given x ∈ R; let’s suppose that there exists u∗(·) ∈ U such that

−L(x∗(s), u∗(s))− f(x∗(s), u∗(s))W ′(x∗(s)) = +H(x∗(s),W ′(x∗(s)),

for almost every s ∈ [0, +∞]. Since W is solution of (15), we can write

0 =W (x∗(s)) + H(x∗(s),W ′(x∗(s)))
=W (x∗(s))− f(x∗(s), u∗(s))W ′(x∗(s))− L(x∗(s), u∗(s)),

So
W (x∗(s))− f(x∗(s), u∗(s))W ′(x∗(s)) = L(x∗(s), u∗(s)) (21)

thus according to (19)we can write for the control u∗(·),

−eT W (x∗(T )) + W (x) =
∫ T

0

e−t[W (x∗(t))− f(x∗(t), u∗(t))W ′(x∗(t))]dt

=
∫ T

0

e−tL(x∗(t), u∗(t))dt

using (21). Letting T ↑ ∞, since e−T W (x∗(T )) → 0, as ↑ ∞, by
hypothesis, we get

W (x) =
∫ ∞

0

e−tL(x ∗ (t), u∗(t))dt ≥ V (x)

by definition of V. Therefore, since (15), we get,

W (x) = V (x)

iii) Let x ∈ Rn, and let’s suppose that there exists a a sequence of controls
{Un}∞n=1 ⊂ U such that

lim
n→∞

J(x, un(·)) = W (x)
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By definition, V (x) ≤ J(x, u(·)); for any u(·) ∈ U , In particular, for the
given sequence of controls this inequality holds,

V (x) ≤ J(x, un(·)),

for all natural number n.
Letting n ↑ ∞, we have

V (x) ≤ lim
n→∞

J(x, un(·)).

So,
V (x) ≤ W (x),

by hypotesis.

Let’s go back to our original optimal control problem (1), (2), (3).

Proposition 11. For all x ∈ R such that x /∈ [α−, α+], there exists a sequence
of controls (un(·)) ⊂ U with limn→∞un(·) = δγ, where δ is the Delta function
and γ is the distance from x to the interval [α−, α+], such that,

lim
n→∞

vun(·)(x) = v(x) (22)

Therefore, since the verification theorem, 10, outside the interval [α−, α+],
the optimal control is impulsive.

Proof.Case x ∈ R, x /∈ [α−, α+], x < α− .
Let’s consider the sequence of controls (un(·)) ⊂ U defined by, for each n ∈ N

un(t) =

{
n(α− − x), 0 ≤ t < 1

n ,

0, t ≥ 1
n .

For each n ∈ N , we have the scalar control system,

ẋ = βx + un, x(0) = x,

whose solution is,

x(t) =

{
xn(t), 0 ≤ t < 1

n ,

xn( 1
n )eβ(t− 1

n ), t ≥ 1
n ,
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where,

xn(t) = (x +
n(α− − x)

β
)eβt − n(α− − x)

β
, 0 ≤ t <

1
n

.

For each n ∈ N the cost functional is

vun(x) =
∫ ∞

0

e−t[L(x(t)) + |un(t)|]dt,

=
∫ 1

n

0

e−tL(xn(t))dt,

+
∫ 1

n

0

e−tn(α− − x)dt,

+
∫ ∞

1
n

e−tL[xn(
1
n

)eβ(t− 1
n )]dt,

Observe that for n large enough, n(α− − x) > βx, so x′n(t) > 0, hence xn(t)
is increasing, then

xn(t) < xn(
1
n

), ∀t, 0 ≤ t <
1
n

.

Also,

lim
n→∞

xn(
1
n

) = α−.

On the other hand, since L is convex, L ≥ 0 and x ≤ xn(t) ≤ α−, 0 ≤ t < 1
n ,

there exists K > 0 such that

L[xn(t)] ≤ max[L(x), L(α−)] ≤ K, ∀t, 0 ≤ t <
1
n

, ∀n, large enough,

Then,

0 ≤ lim
n→∞

∫ 1
n

0

e−tL(xn(t)) dt ≤ lim
n→∞

∫ 1
n

0

e−tK dt = 0.

This means,

lim
n→∞

∫ 1
n

0

e−tL(xn(t)) dt = 0 (23)

Also,

lim
n→∞

∫ 1
n

0

e−tn(α− − x) dt = α− − x. (24)
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We may also apply the Dominated Convergence theorem to get

lim
n→∞

∫ ∞

1
n

e−tL[xn(
1
n

)eβ(t− 1
n )]dt =

∫ ∞

0

e−tL[α−eβt] dt = v(α−). (25)

Therefore, combining 23, 24, 25, 8 and 10, we have

lim
n→∞

vun(x) = α− − x + v(α−),

= α− − x + L(α−)− βα−,

= −x + (1− β)α− + L(α−),
= v(x).

Proof.Case x ∈ R, x /∈ [α−, α+], x > α+.
Let’s consider the sequence of controls (un(·)) ⊂ U defined by, for each n ∈ N

un(t) =

{
n(α+ − x), 0 ≤ t < 1

n ,

0, t ≥ 1
n .

For each n ∈ N , we have the scalar control system,

ẋ = βx + un, x(0) = x,

whose solution is,

x(t) =

{
xn(t), 0 ≤ t < 1

n ,

xn( 1
n )eβ(t− 1

n ), t ≥ 1
n ,

where,

xn(t) = [x +
n(α+ − x)

β
]eβt − n(α+ − x)

β
, 0 ≤ t <

1
n

.

For each n ∈ N the cost functional is

vun(x) =
∫ ∞

0

e−t[L(x(t)) + |un(t)|]dt,

=
∫ 1

n

0

e−tL(xn(t)) dt,

+
∫ 1

n

0

e−tn(x− α+) dt,

+
∫ ∞

1
n

e−tL[xn(
1
n

)eβ(t− 1
n )]dt,
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Observe that for n large enough, βx + n(α+ − x) < 0, so x′n(t) < 0, hence
xn(t) is decreasing over [0, 1

n ], then

xn(t) > xn(
1
n

), ∀t, 0 ≤ t <
1
n

.

Also,

lim
n→∞

xn(
1
n

) = α+.

On the other hand, since L is convex, L ≥ 0 and x ≥ xn(t) ≥ α+, 0 ≤ t < 1
n ,

there exists K > 0 such that

L[xn(t)] ≤ max[L(x), L(α+)] ≤ K, ∀t, 0 ≤ t <
1
n

,∀n, large enough,

Then,

0 ≤ lim
n→∞

∫ 1
n

0

e−tL(xn(t)) dt ≤ lim
n→∞

∫ 1
n

0

e−tK dt = 0.

This means,

lim
n→∞

∫ 1
n

0

e−tL(xn(t)) dt = 0 (26)

Also,

lim
n→∞

∫ 1
n

0

e−tn(x− α+) dt = x− α+. (27)

We may also apply the Dominated Convergence theorem to get

lim
n→∞

∫ ∞

1
n

e−tL[xn(
1
n

)eβ(t− 1
n )]dt =

∫ ∞

0

e−tL[α+eβt] dt = v(α+). (28)

Therefore, combining (26), (27), (28), (9) and (11), we have

lim
n→∞

vun(x) = x− α+ + v(α+),

= x− α+ + L(α+) + βα+,

= x + (β − 1)α+ + L(α+),
= v(x).

Reasoning as in [8, Lemma 7.1, p. 27, Chapter I] and using the verification
theorem, the optimal control outside the interval [α−, α+] is impulsive.
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9 The Second Order Derivative of the Value
Function

Proposition 12. The value function v is in C2(R \ {α−, α+}). Also, the C2

condition at {α−, α+} for the value function v is as follows:

(i) v is C2 at α− ⇐⇒ 0 < α− ⇐⇒ 0 < a−.

(ii) v is C2 at α+ ⇐⇒ α+ < 0 ⇐⇒ a+ < 0.

As a consequence v is never C2 on R. Moreover, in any case the free boundary
set {α−, α+} is determined in terms of the parameters of the control problem
as

α− = min (a−, b−) and α+ = max (a+, b+).

Proof. Case α− ≤ 0 ≤ α+ .
By Proposition 7 the control u(·) ≡ 0 is optimal on (α−, α+). Hence v = ω
in (α−, α+), where ω is the cost of the control u(·) ≡ 0 studied in Lemma
4 Thus, v′(x) = ω′(x), ∀x ∈ (α−, α+). In particular, by continuity of v′

and ω′, v′(α−) = −1 = ω′(α−) and v′(α+) = 1 = ω′(α+). Therefore, since
ω′(a−) = −1, and ω′(a+) = 1, and since ω′ is strictly increasing α− = a−

and α+ = a+. Also since the function ω is strictly convex, and since the value
function v is an affine function to the left of α− and to the right of α+, we
have 0 = v′′−(α−) = v′′+(α+). But 0 < ω′′+(α−) = v′′+(α−) and 0 < ω′′−(α+) =
v′′−(α+). Therefore, v ∈ C2(R \ {α−, α+}) and v is C2 neither at α− nor at
α+.
Now, let’s show that a− < b−. By Lemma 4 (iv) ω(x) − βxω′(x) − L(x) =
0, ∀x ∈ (α−, α+) = (a−, a+). Thus, differentiating,

ω′(x)− βxω′′(x)− βω′(x)− L′(x) = 0, ∀x ∈ (α−, α+) = (a−, a+), (29)

and inserting x = a− = α−, yields

L′(a−)− β = −1− βa−ω′′(a−) < −1 = L′(b−)− β.

Thus, L′(a−) < L′(b−), hence a− < b−. So,

α− = a− = min (a−, b−).

Now, let’s show that b+ ≤ a+. By Lemma 4 (iv) inserting x = b+ and using
(6) yields

(ω′(b+)− 1)(1− β) = βb+ω′′(b+).
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Let’s suppose that a+ < b+. Thus, b+ > 0, since a+ ≥ 0. So, βb+ω′′(b+) <
0, which implies ω′(b+) − 1 < 0. Therefore, ω′(a+) < ω′(b+) < 1, since
the function ω′ is increasing. This is a contradiction since we know that
ω′(a+) = 1. Therefore, b+ ≤ a+. Hence

α+ = max(a+, b+).

Case 0 < α− < α+ .
Observe that by Proposition 7, the control u∗(t) ≡ −βα−, ∀t ≥ 0, is optimal
at α−.
Let’s try to pin down the parameter α−. For any bounded control u consider
the family of bounded controls defined by

uε(t) = −βα− + εu(t), ∀t ≥ 0, ε > 0.

Let vuε(α−) be the corresponding cost starting at α−. Then

vu∗(α−) ≤ vuε(α−), for all ε > 0,

since u∗ is the optimal control at α−. Then

d

dε
(vuε(α−))|ε=0 = 0.

Given ε > 0, and the control uε, let xε(t) be the solution of

ẋ = βx + [−βα− + εu], xε(0) = α−.

Interchanging d
dt and d

dε we see that d
dε [xε(t)] is the solution of

ż = F (z, u), z(0) = 0, where F (z, u) = βz + u.

Then, the variation of the constants formula gives us that

d

dε
[xε(t)] = eβt[

∫ t

0

e−βsu(s)ds] =
∫ t

0

eβ(t−s)u(s)ds.

Thus,

0 =
d

dε
(vuε(α−))|ε=0 =

∫ ∞

0

e−t{L′(xε(t))
d

dε
[xε(t)] + u(t)}|ε=0dt

= L′(α−)
∫ ∞

0

e−t[
∫ t

0

eβ(t−s)u(s)ds]dt +
∫ ∞

0

e−tu(t)dt.
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Now, integrating by parts

0 = L′(α−)
{

(
∫ t

0

e−βsu(s)ds)(
1

β − 1
e(β−1)t)

}∞

0

− L′(α−)
∫ ∞

0

1
β − 1

e(β−1)t(e−βtu(t))dt +
∫ ∞

0

e−tu(t)dt.

Therefore,

0 = [
L′(α−)
1− β

+ 1]
∫ ∞

0

e−tu(t)dt.

Since u was arbitrary

L′(α−)
1− β

+ 1 = 0, hence L′(α−) = β − 1.

By definition L′(b−) = β − 1. Therefore, α− = b−.
Now, let’s show that b− < a−. Using Lemma 4 (iv) for x = α− = b− yields

ω′(b−)− βω′(b−)− βb−ω′′(b−)− L′(b−) = 0.

Since βb− < 0 and ω is strictly convex

(ω′(b−) + 1)(1− β) = βb−ω′′(b−) < 0.

Then,
ω′(b−) + 1 < 0, hence ω′(b−) < −1.

Therefore, b− < a−, since the function ω′ is increasing and since ω′(a−) = −1.
So,

α− = b− = min (a−, b−).

Now, let’s show that b+ < a+. Using Lemma 4 (iv) and inserting x = b+

yields
ω′(b+)− βω′(b+)− βb+ω′′(b+)− L′(b+) = 0.

Thus,
(ω′(b+)− 1)(1− β) = βb+ω′′(b+) < 0.

Then,
ω′(b+)− 1 < 0, hence ω′(b+) < 1.

Therefore,
b+ < a+,
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since the function ω′ is increasing and since ω′(a+) = 1.
Now, let’s show that

α+ = a+ = max (a+, b+).

In fact,
1 = v′(α+) = ω′(α+) = ω′(α+).

Thus,
α+ = a+,

since the function ω′ is strictly increasing .
Now, let’s prove that the value function v is C2 at α− but not at α+. By (7)

v(x)− βxv′(x)− L(x) = 0, ∀x ∈ (α−, α+).

Thus, differentiating on the right hand side of α−, and since

v′+(α−) = −1, and L′+(α−) = L′(b−) = β − 1,

we have

−βα−v′′+(α−) = 0. Thus, v′′+(α−) = 0.

On the other hand, by the Lemma 5 v′(x) = −1, ∀x ∈ (∞, α−].
So, v′′−(α−) = 0. Therefore, v′′(α−) = 0. Hence, the value function v is C2 at
α−.
Now, let’s prove that the value function v is not C2 at α+. By the Lemma 5
v′(x) = 1, ∀x ∈ [α+,∞). So, v′′+(α+) = 0. It suffices to show that v′′−(α+) 6=
0. Given x ∈ (α−, α+), note that 0 < α−, then there exists T > 0 such that

x(T ) = α+, and x(t) ∈ (α−, α+),∀t ∈ [0, T ).

Therefore, by Proposition 6 equation (12) holds. So,

v(x) = e−T v(α−) +
∫ T

0

e−tL(x(t))dt.

Then

v′(x) = −(
α−

x
)

β−1
β +

∫ ϕ(x)

0

e(β−1)tL′(xeβt)dt.

So

v′′(x) = [
1

βx
(
α−

x
)

β−1
β (β − 1− L′(α−))] +

∫ ϕ(x)

0

e(2β−1)tL′′(xeβt)dt.
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Note that α− = b−. Then β − 1 − L′(α−)) = 0. So, if T > 0 is such that
ϕ(x) = T , then

v′′(x) =
∫ ϕ(x)

0

e(2β−1)tL′′(xeβt)dt >

∫ T

0

e(2β−1)tµdt > Te(2β−1)T µ > 0.

Letting x ↑ α+, we get

v′′−(α+) ≥ Te(2β−1)T µ > 0.Therefore, v′′−(α+) > v′′+(α+) = 0.

Hence the value function v is not C2 at α+.
Case α− < α+ < 0 .
Observe that by Proposition 7, the control u∗(t) ≡ −βα+, ∀t ≥ 0, is optimal
at α+.
Let’s try to pin down the parameter α+. For any bounded control u consider
the family of bounded controls defined by

uε(t) = −bα+ − εu(t), ∀t ≥ 0.

where ε > 0 is small enough so that uε(t) < 0. Let vuε(α+) be the corre-
sponding cost starting from α+. Then

vu∗(α+) ≤ vuε(α+), for all ε > 0,

since u∗ is the optimal control at α+. Then

d

dε
(vuε(α+))|ε=0 = 0.

Given ε > 0, and the control uε, let xε(t) be the solution of

ẋ = βx + [−βα+ − εu], xε(0) = α+.

Interchanging d
dt and d

dε we see that d
dε [xε(t)] is the solution of

ż = F (z, u), z(0) = 0, where F (z, u) = βz − u.

Then, the variation of the constants formula gives us that

d

dε
[xε(t)] = eβt[

∫ t

0

e−βs(−u(s))ds] = −
∫ t

0

eβ(t−s)u(s)ds.

Thus,

0 =
d

dε
(vuε(α+))|ε=0 = −L′(α+)

∫ ∞

0

e−t[
∫ t

0

eβ(t−s)u(s)ds]dt +
∫ ∞

0

e−tu(t)dt.
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Now, integrating by parts

0 = −L′(α+){(
∫ t

0

e−βsu(s)ds)(
1

β − 1
e(β−1)t)}∞0

+ L′(α+)
∫ ∞

0

1
β − 1

e(β−1)t(e−βtu(t))dt +
∫ ∞

0

e−tu(t)dt.

But

{(
∫ t

0

e−βsu(s)ds)(
1

β − 1
e(β−1)t)}∞0 = 0.

Therefore,

0 = [−L′(α+)
1− β

+ 1]
∫ ∞

0

e−tu(t)dt.

Since u was arbitrary

−L′(α+)
1− β

+ 1 = 0.

Hence, by definition L′(α+) = 1 − β = L′(b+). Thus,α+ = b+. since the
function L′ is strictly increasing.
Let’s prove that

b+ > a+. Hence α+ = max(b+, a+).

Using Lemma 4 (iv) and inserting x = b+ = α+ , yields

ω′(b+)− βω′(b+)− βb+ω′′(b+)− L′(b+) = 0.

But L′(b+) = L′(α+) = 1− β, ω is strictly convex and since b+ = α+ < 0,
we get

(ω′(b+)− 1)(1− β) = βb+ω′′(b+) > 0,

so, ω′(b+)−1 > 0, hence ω′(b+) > 1. Therefore,b+ > a+, since the function
ω′ is increasing and since ω′(a+) = 1.
Let’s prove that

b− > a−. Hence α− = min(b−, a−).

By Lemma 4 (iv), differentiating and inserting x = b− ,yields

ω′(b−)− βω′(b−)− βb−ω′′(b−)− L′(b−) = 0.
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But L′(b−) = β − 1, ω is strictly convex and since b− < b+ = α+ < 0, we
have

(ω′(b−) + 1)(1− β) = βb−ω′′(b−) > 0.

Then, ω′(b−) + 1 > 0, hence ω′(b−) > −1. Therefore, b− > a−, since
ω′ is increasing and since ω′(a−) = −1. On the other hand, note that
−1 = v′(α−) = ω′(α−) = ω′(a−). Then α− = a−, since ω′ is strictly in-
creasing. Therefore, α− = min (a−, b−) = a−.
Now, let’s prove that the value function v is C2 at α+. But v is not C2 at
α+.
We recall (7) v(x) − bxv′(x) − f(x) = 0, ∀x ∈ (α−, α+). Thus, differen-
tiating on the left hand side of α+, and since v′−(α+) = 1, and L′−(α+) =
L′(b+) = 1− β, yields

−βα+v′′−(α+) = 0. Thus v′′−(α+) = 0.

On the other hand, by Lemma 5 v′(x) = 1, ∀x ∈ (α+,∞). So, v′′+(α+) = 0.
Therefore, v′′(α+) = 0. Hence, the value function v is C2 at α+.
Now, let’s prove that the value function v is not C2 at α−. By Lemma 5
v′(x) = −1, ∀x ∈ (−∞, α−). So, v′′−(α−) = 0. It suffices to show that
v′′+(α−) 6= 0. Given x ∈ (α−, α+), note that α+ < 0, then there exists
T > 0 such that x(T ) = α+, and x(t) ∈ (α−, α+), ∀t ∈ [0, T ). Therefore, by
Proposition 6 equation (12) holds. So,

v(x) = e−T v(α+) +
∫ T

0

e−tL(x(t))dt.

So,

v′(x) = (
α+

x
)

β−1
β +

∫ ϕ(x)

0

e(β−1)tL′(xeβt)dt.

Then

v′′(x) = [− 1
βx

(
α+

x
)

β−1
β (β − 1 + L′(α+))] +

∫ ϕ(x)

0

e(2β−1)tL′′(xeβt)dt.

Note that α+ = b+. Then β − 1 + L′(α+)) = 0. So, if T > 0 is such that
ϕ(x) = T , then

v′′(x) =
∫ ϕ(x)

0

e(2β−1)tL′′(xeβt)dt >

∫ T

0

e(2β−1)tµdt > Te(2β−1)T µ > 0.

Letting x ↓ α−, yields v′′+(α−) ≥ Te(2β−1)T µ > 0. Therefore, v′′+(α−) >
v′′−(α−) = 0. Hence the value function v is not C2 at α−.
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