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Some Values of Olson’s Constant
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Abstract

LetG be a finite abelian group of order n. Erdös conjectured that ev-
ery subset A of G with cardinality |A| ≥

√
2n contains a nonempty sub-

set with zero sum. The Olson Constant Ol(G) is defined as the smallest
k such that every subset ofG of cardinality k contains a nonempty 0-sum
subset. Olson’s Constant is analogous to Davenport’s Constant D(G),
but no repetitions of elements of G are allowed. In this work we give
the values of Ol(G) for some groups G. Thus we have Ol(Zn2 ) = n+ 1
and Ol(Zn3 ) = 2n+ 1 for n ≥ 3. With some restrictions on the subsets
of Zn3 we obtain an example of a graph with 8 vertices, 16 edges and
minimal degree 3, which contains no cubic subgraph (this was accom-
plished with the aid of a computer). In addition we supply a table with
the values of Ol(G) for all abelian groups G with order ≤ 55.
Key words and phrases: zero-sum set, finite abelian group, se-
quences without repetition.

Resumen

Sea G un grupo abeliano finito de orden n. Erdös conjeturó que
todo subconjunto A de G con cardinalidad |A| ≥

√
2n contiene un

subconjunto no vaćıo de suma cero. La Constante de Olson Ol(G) se
define como el menor k tal que todo subconjunto de G de cardinalidad k
contiene un subconjunto no vaćıo de suma cero. La Constante de Olson
es análoga a la Constante de Davenport D(G), pero no se permiten
repeticiones de elementos de G. En este trabajo damos los valores de
Ol(G) para algunos grupos G. Aśı tenemos Ol(Zn2 ) = n+1 y Ol(Zn3 ) =
2n + 1 para n ≥ 3. Con algunas restricciones on los subconjuntos de
Zn3 obtenemos un ejemplo de un grafo con 8 vértices, 16 aristas y grado
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mı́nimo 3, que no contiene ningún subgrafo cúbico (esto se logró con la
ayuda de un computador). Adicionalmente proporcionamos una tabla
con los valores de Ol(G) para todos los grupos abelianos G de orden
≤ 55.
Palabras y frases clave: conjuntos de suma cero, grupos abelianos
finitos, secuencias sin repetición.

1 Introduction

Let G be a finite abelian group. Davenport’s Constant D(G) is defined as
the smallest integer k such that every sequence S with |S| = k contains a
nonempty subsequence with zero sum. Thus D(G)−1 is the maximal possible
length of a sequence that does not contain nonempty subsequences with zero
sum. H. Davenport pointed out the connection between this constant and
Algebraic Number Theory, where it is used to measure the maximal number of
ideal classes which can occur in the decomposition of an irreducible element of
a prime ideal in the ring of integers of a number field (Midwestern Conference
on Group Theory and Number Theory, Ohio State Univ., 1966). Davenport’s
Constant has been used to obtain results in Graph Theory (see below). It has
also been used to show that there exist infinitely many Carmichael numbers
[1]. The value of D(G) has been determined for various types of groups, in
particular for groups of rank ≤ 2 and for p-groups:

Theorem 1 ([6]). Let G be a finite abelian group. If (a) G is a p-group or
(b) G has rank ≤ 2 then D(G) = 1 +

∑r
i=1(ni − 1), where the ni’s are the

invariant factors of G.

Results (a) and (b) were proved independently by Olson and Kruyswijk.
For groups of rank ≥ 4 the above formula is no longer valid, in general. For
groups of rank 3, the problem still remains open.

In this work we need the following corollary:

Corollary 1. D(Zn2 ) = n+ 1, D(Zn3 ) = 2n+ 1.

We’ll now study injective sequences of elements of G (this is the same as
considering subsets of G).

Definition 1. Let G be a finite abelian group. The Olson Constant Ol(G)
is the minimal k such that every subset A ⊂ G, with |A| = k, contains a
nonempty subset with zero sum.
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Ol(G) is the analog of D(G), with no repetitions of elements of G allowed.
The name of this constant was proposed in 1994, during a seminar held at
Universidad Central de Venezuela (Caracas), as a tribute to Olson and his
work on this subject.

Problem 1. Given a finite abelian group G, determine Ol(G).

One of the first results on this problem is due to Szmerédi [12], who proved
a conjecture of Erdös and Heilbron, namely that a constant c exists such that
if G is an abelian group of order n, S ⊂ G and |S| ≥ c

√
n, then zero is

represented as a sum of distinct elements of S. Erdös conjectured that the
above statement holds for c =

√
2 (see [5, p. 95] for related questions). Olson

[11] showed that the conjecture holds with c = 3 (working with not neccesarily
abelian groups, allowing rearrangements of the elements of S). When G is
a cyclic group of prime order, Olson [10] showed that the constant c can be
relaxed to c = 2. In this case not only zero but every element of the group
can be obtained as a sum of elements of S. Further results in this direction
may be found in [4]. The last results on Olson’s constant are in [8], where
Hamidoune and Zémor show that Ol(Zp) ≤ d

√
2p+ 5 ln(p)e, for p prime. For

arbitrary abelian groups G they proved that Ol(G) ≤ d
√

2|G|+ε(|G|)e, where
ε(n) = O(n1/3 lnn).

2 Some Results

Proposition 1. Ol(Zn2 ) = D(Zn2 ) = n+ 1.

Proof. This is a consequence of Corollary 1 and the fact that in Zn2 a sequence
with some repetition contains a nonempty 0-sum subset (since x+x = 0).

In a conference in Lisbon, in 1995, Hamidoune [7] proposed the following:

Question 1. Let V be a vector space over Z3 with dimension n. If E ⊂ V
and |E| ≥ 2n, does E necessarily contain a nonempty subset with sum 0?

As we shall see later, an afirmative answer to Question 1 would readily
imply Berge-Sauer’s Conjecture. We thought at that moment that an affir-
mative answer was plausible since D(Zn3 ) = 2n + 1, and injective sequences
are less abundant than arbitrary sequences; thus it seemed possible to relax
2n+ 1 to 2n. Hence we refered to Question 1 as:

Conjecture 1. Let E ⊂ V , where V is a vector space over Z3 with dimension
n. If |E| ≥ 2n then E contains a nonempty subset with zero sum.
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Later we wrote a computer program to check some problems about 0-sum
and related questions. When Conjecture 1 was checked unfortunately it came
out to be false. We found a counterexample in dimension 3:

Counterexample 1. Let E = {(100), (010), (110), (001), (101), (211)} ⊂ Z3
3 .

Then E does not contain any nonempty 0-sum set.

After this Hamidoune asked us (in a private communication) what would
happen if we permit 0-1 components only. At this respect we found:

Counterexample 2. Let E = {e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4, e1 + e2 +
e3 + e4}, where {e1, e2, e3, e4} is the canonical basis of Z4

3 . Then E does not
contain any nonempty 0-sum set.

Later Hamidoune asked for subsets of vectors with exactly two 1-compo-
nents (and the remaining components equal to zero). And we found, with
more work and some luck, a counterexample in dimension 9:

Counterexample 3. Let (ij) denote the vector ei + ej in Z9
3 , 1 ≤ i, j ≤ 9.

Let E = {(12), (13), (14), (15), (16), (17), (18), (19), (23), (24), (35), (36),
(37), (38), (45), (49), (69), (79)} ⊂ Z9

3 . Then |E| = 18 and E does not
contain any nonempty 0-sum set.

Counterexample 3 was the first encountered, but actually there is an easier
one in dimension eigth:

Counterexample 4. Let (ij) denote the vector ei + ej in Z8
3 , 1 ≤ i, j ≤ 8.

Let E = {(12), (13), (14), (15), (16), (17), (18), (23), (24), (25), (26), (37),
(47), (58), (68), (78)} ⊂ Z8

3 . Then |E| = 16 and E does not contain any
nonempty 0-sum set.

From these counterexamples we can obtain exact values of Olson’s constant
and some of its variations for the groups Zn3 .

Proposition 2. Ol(Z3) = 2, Ol(Z3⊕Z3) = 4, Ol(Zn3 ) = 2n+1 for all n ≥ 3.

Proof. The values of Ol(Zn3 ) for n = 1 and n = 2 are given in Table 1. We
know that D(Zn3 ) = 2n + 1 (Corollary 1) because Zn3 is a p-group. Then
Ol(Zn3 ) ≤ D(Zn3 ) = 2n + 1. But for n = 3, Counterexample 1 shows that
Ol(Z3

3 ) ≥ 7. Then Ol(Z3
3 ) = 7. Let n ≥ 3 and suppose that E ⊂ Zn3 ,

|E| = 2n and E does not contain any nonempty 0-sum subset. Then E ∪
{en+1, e1 + en+1} cannot contain any nonempty 0-sum subset. It follows that
Ol(Zn+1

3 ) ≥ 2(n+ 1) + 1. Hence Ol(Zn+1
3 ) = 2(n+ 1) + 1.
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Figure 1: Graph corresponding to Counterexample 4.

Let us denote by Ol1(G) the analog of Ol(G) when only 0-1 components
are valid in the subsets, and Ol2(G) when only two 1’s are valid and all other
components are zero.

Remark 1. Of course Ol2(Zn3 ) is defined only for n ≥ 4.

Obviously we have Ol2(Zn3 ) ≤ Ol1(Zn3 ) ≤ Ol(Zn3 ).

Proposition 3. Ol1(Zn3 ) = 2n+ 1 for n ≥ 4.

Proof. Counterexample 1 shows that Ol1(Z4
3 ) ≥ 9. Then Ol1(Z4

3 ) = 9, by
Corollary 1. Suppose n ≥ 4 and E ⊂ Zn3 , |E| = 2n, such that E does not
contain a nonempty 0-sum subset. Then E∪{e1 +en+1, en+1} cannot contain
a nonempty 0-sum subset.

With respect to Ol2(Zn3 ) we have Ol2(Z4
3 ) = 6, of course. With the aid of a

computer we found the values Ol2(Z5
3 ) = 9, Ol2(Z6

3 ) = 11 and Ol2(Z7
3 ) = 14.

Proposition 4. Ol2(Zn3 ) = 2n+ 1, for all n ≥ 8.

Proof. By Corollary 1 we know that Ol2(Zn3 ) ≤ 2n + 1. Counterexample
4 shows that Ol2(Z8

3 ) ≥ 17. Suppose that E is a subset of Zn3 with k ele-
ments, two 1’s components and all other components equal to 0, and without
nonempty 0-sum subsets. Then E1 = E∪{e1+en+1, e2+en+1} cannot contain
nonempty 0-sum subsets, and |E1| = k + 2.
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Type of G Ol(G) Type of G Ol(G) Type of G Ol(G)
2 2 22 7 38 9
3 2 23 7 39 9
4 3 24 7 40 9
2 2 3 2 12 7 2 20 9
5 3 2 2 6 7 2 2 10 9
6 4 25 8 41 9
7 4 5 5 7 42 10
8 4 26 8 43 9
2 4 4 27 8 44 10
2 2 2 4 3 9 7 2 22 10
9 5 3 3 3 7 45 10
3 3 4 28 8 3 15 10
10 5 2 14 8 46 10
11 5 29 8 47 10
12 5 30 8 48 10
2 6 5 31 8 2 24 10
13 5 32 8 2 2 12 10
14 6 2 16 8 2 2 2 6 9
15 6 2 2 8 8 4 12 10
16 6 2 2 2 4 7 49 10
2 8 6 2 2 2 2 2 6 7 7 10
2 2 4 6 4 8 8 50 10
2 2 2 2 5 2 4 4 8 5 10 10
4 4 6 33 8 51 10
17 6 34 9 52 11
18 6 35 9 2 26 11
3 6 6 36 9 53 10
19 6 2 18 9 54 11
20 7 3 12 9 3 18 11
2 10 7 6 6 9 3 3 6 10
21 7 37 9 55 11

Table 1: Ol(G) for abelian groups.
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Order 56 57 58 59 60 61 62 63 64
Ol(G) 11 11 11 11 11 11 12 11 12

Table 2: Ol(G) for cyclic groups.

Later we realized that vectors with two 1-components can be considered as
the edges of a symmetric simple graph with n nodes. The graph corresponding
to Counterexample 4 is shown in Figure 1.

A 4-regular graph of n nodes has 2n edges. A 3-regular subgraph is ob-
tained from a 0-sum subset of the 2n edges. Then Conjecture 1 implies the
Berge-Sauer’s conjecture. In 1984 Alon, Friedland and Kalai [2] used this fact
to prove that if one adds an edge to a 4-regular graph (possibly with multi-
ple edges), then the resultant graph contains a cubic graph. In any case the
Berge-Sauer’s conjecture was proved by Zhang in 1985 (cited by Locke, [9]).
Another proof (by Taskinov) is cited in [7].

3 A table of Ol(G) for small values of |G|
A table with the values of Ol(G) (actually of Ol(G)− 1) for cyclic groups G
with |G| ≤ 50, due to Devitt and Lam, is mentioned in [5] (as personal commu-
nication). A table with Ol(G) and other related constants for abelian groups
with orders up to 22, due to the author, appeared in [3]. Later we constructed
Table 2, for cyclic groups with orders up to 64. Finally we constructed Table 1
for arbitrary abelian groups with orders up to 55. Let us recall that an abelian
group G is determined (up to isomorphisms) by its invariant factors ni, which
are integers such that 1 < n1|n2|...|nr and G ≈ Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr . The
ordered set n1, n2, . . . , nr is called the type of G, and r is the rank of G.

As one can see the mentioned Erdös’ conjecture seems sharp, specially for
cyclic groups. We propose the following:

Conjecture 2. If G is a finite abelian group of order n then Ol(G) ≤ Ol(Zn).

References

[1] Alford, W. R., Granville, A. Pomerance, C. There are infinitely many
Carmichael numbers, Ann. of Math., 140 (1994), 703–722.



128 Julio C. Subocz G.

[2] Alon, N., Friedland, S., Kalai, G. Every four-regular graph plus an edge
contains a three regular subgraph, J. Combin. Theory Ser.B, 37 (1984),
92–93.

[3] Delorme, C., Ordaz, O., Ortuño, A. Some existence conditions for
barycentric subsets, Rapport de recherche no. 990, Centre d’Orsay, 1995.

[4] Dias Da Silva, J. A., Hamidoune, Y. O. Cyclic spaces for Grassmann
derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140–
146.

[5] Erdös, P., Graham, R. Old and new problems and results in combinatorial
number theory, L’Enseignement Mathématique no. 28, Genève, 1980.
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