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Abstract

For any positive integer k let φ(k), σ(k), and τ(k) be the Euler
function of k, the divisor sum function of k, and the number of divisors
of k, respectively. Let f be any of the functions φ, σ, or τ . In this note,
we show that if a is any positive real number then the diophantine
equation f(n!) = am! has only finitely many solutions (m,n). We also
find all solutions of the above equation when a = 1.
Key words and phrases: arithmetical function, factorial, diophantine
equations.

Resumen

Para k entero positivo sean φ(k), σ(k) y τ(k) la función de Euler
de k, la función suma de divisores de k y el número de divisores de k,
respectivamente. Sea f cualquiera de las funciones φ, σ o τ . En esta
nota se muestra que si a is cualquier número real positivo entonces la
ecuación diofántica f(n!) = am! tiene sólo un número finito de solucio-
nes (m,n). También se hallan todas las soluciones de la mencionada
ecuación cuando a = 1.
Palabras y frases clave: función aritmética, factorial, ecuaciones dio-
fánticas.
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1 Introduction

For any positive integer k let φ(k), σ(k) and τ(k) be the Euler’s totient func-
tion, the divisor sum and the number of divisors of k, respectively. In this
note, we prove the following theorem:

Theorem.

Let a be any positive rational number and let f be any of the arithmetical
functions φ, σ or τ . Then, the equation

f(n!)
m!

= a (1)

has only finitely many solutions (m, n).

We also find all the solutions of equation (1) when a = 1.

Corollary.

(i) The only solutions of the equation

φ(n!) = m! (2)

are obtained for n = 0, 1, 2, 3.

(ii) The only solutions of the equation

σ(n!) = m! (3)

are obtained for n = 0, 1.

(iii) The only solutions of the equation

2σ(n!) = m! (4)

are obtained for n = 2, 3, 4, 5.

(iv) The only solutions of the equation

τ(n!) = m! (5)

are obtained for n = 0, 1, 2.

The only reason that we have also treated equation (4) is because it has a
rather interesting set of solutions given by

2σ(n!) = (n+ 1)! for n = 2, 3, 4, 5,
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which is, in Richard Guy’s terminology, just another manifestation of the “law
of small numbers”.

Related to equations (3) and (4) above Pomerance (see [4]) showed that
the only positive integers n such that n! is multiply perfect (that is, a divisor
of σ(n!)) are n = 1, 3, 5.

Various other diophantine equations involving factorials have been previ-
ously treated in the literature. Erdős & Obláth (see [2]) have studied the
equations n! = xp ± yp and n! ±m! = xp and Erdős & Graham have stud-
ied the equation y2 = a1!a2! . . . ar! (see [1]). The reader interested in results
and open problems concerning diophantine equations involving factorials or
arithmetic functions should consult Guy’s excellent book [3].

2 The Proofs

In what follows p denotes a prime number. For a positive integer n, we denote
by µp(n) the sum of the digits of n written in base p.

2.1 The Proof of the Theorem.

When f ∈ {φ, σ}, we use the fact that

n

2 log log n
<

n

φ(n)
<
σ(n)
n

for all n > 2 · 109, (6)

(see, for example [6]) to conclude that equation (1) has only finitely many
solutions (m, n) with m 6= n. We then show that equation (1) has only
finitely many solutions (m, n) with m = n as well.

Assume, for example, that f = φ.
We first show that equation (1) has finitely many solutions with n < m.

Indeed, if n ≤ m− 1, we get

am! = φ(n!) < n! ≤ (m− 1)!,

which implies that m ≤ 1/a.
We now show that equation (1) has only finitely many solutions with

m < n. Indeed, assume that n ≥ (m + 1) and n! > 2 · 109. Since (m + 1)! <
(m+ 1)m+1, it follows, by inequality (6), that

am! = φ(n!) >
n!

2 log log(n!)
≥ (m+ 1)!

2 log log(m+ 1)!
>

(m+ 1)!
2 log log

(
(m+ 1)m+1

) ,



18 Florian Luca

or
m+ 1 < 2a log

(
(m+ 1) log(m+ 1)

)
. (7)

Inequality (7) implies that m is bounded by a constant depending on a.
Hence, equation (1) has only finitely many solutions (m, n) with m 6= n.

Assume now that m = n. In this case, we get

1
a

=
n!

φ(n!)
=
∏
p≤n

(
1 +

1
p− 1

)
. (8)

Since the product from the right side of formula (8) diverges to infinity when
n tends to infinity, it follows that equation (8) has only finitely many solutions
as well.

Hence, equation (1) has only finitely many solutions (m, n) when f = φ.
The case f = σ is entirely analogous.

Assume now that f = τ . In this case, we use only divisibility arguments
to conclude that equation (1) has only finitely many solutions.

For every real number x let π(x) be the number of primes less than or equal
to x and π1(x) be the number of primes in the interval (x/2, x]. Since we are
interested in proving that equation (1) has only finitely many solutions, we
may assume that both m and n are very large. We use the notation n >> 1
and m >> 1 to indicate that we assume that n (respectively m) is large
enough.

Write
n! =

∏
p≤n

pαp(n).

It is well-known that

αp(n) =
n− µp(n)
p− 1

< n.

Write equation (1) as ∏
p≤n

(αp(n) + 1) = am! (9)

We first investigate the order at which the prime 2 divides both sides of
equation (9). On the one hand, since αp(n) = 1 for all primes p ∈ (n/2, n],
it follows that the order at which 2 divides the left hand side of equation (9)
is at least π1(n). On the other hand, the order at which 2 divides the right
hand side of equation (9) is at most α2(m) + c < m+ c, where c is a constant
that depends only on a. Hence,

π1(n) < m+ c. (10)
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From the prime number theorem, it follows that
n

3 log n
< π1(n) for n >> 1.

Hence,
n

3 log n
< m+ c, (11)

when n >> 1. From inequality (11), it follows that

n < 4m logm for n >> 1. (12)

We now investigate the large primes dividing both sides of equation (9).
Assume that m >> 1 is such that m/2 is bigger than the denominator of a.
In this case, all primes q ∈ (m/2, m] divide the right hand side of equation
(9). In particular, every such prime divides at least one of the factors from
the right hand side of (9). Since

αp(n) + 1 < n+ 1 < 4m logm+ 1 < (m/2)2,

for m >> 1, it follows that every prime q ∈ (m/2, m] divides exactly one of
the factors from the left hand side of equation (9). In particular, there are at
least π1(m) primes p ≤ n such that αp(n) + 1 is at least m/2. Let p be one of
such primes. Since

m

2
< αp(n) + 1 =

n− µp(n)
p− 1

+ 1 <
4m logm
p− 1

+ 1,

it follows that
p < 1 +

8m logm
m− 2

< 9 logm,

for m >> 1. But this last inequality shows that there are at most π(9 logm) <
9 logm primes p for which αp(n) + 1 can be larger than m/2. Hence, we get

π1(m) < 9 logm,

which, combined with the fact that

π1(m) >
m

3 logm
for m >> 1,

shows that, in fact, m is bounded. Hence, equation (1) has only finitely many
solutions when f = τ as well.

The Theorem is therefore proved. 2

For the proof of the Corollary, we employ ad hoc divisibility arguments to
deal with the equations involving φ and σ. For equation (5), we simply follow
the procedure indicated in the proof of the Theorem.
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2.2 The Proof of the Corollary.

The proof of (i). The statement is true for n ≤ 4. Now suppose that n ≥ 5.
Write n! = 2s · t where t is odd. Then φ(n!) = 2s−1φ(t) where φ(t) is divisible
by
∏
p≤n(p− 1). In particular, φ(t) is divisible by (3− 1)(5− 1) = 8. It now

follows that the exponent of 2 in the prime factor decomposition of φ(n!) is
at least s − 1 + 3 > s. On the other hand, since m! = φ(n!) < n!, it follows
that m < n. Thus, the exponent of 2 in the prime factor decomposition of m!
cannot exceed s. This gives the desired contradiction. 2

The proof of (ii) and (iii). One can check that the asserted solutions are
the only ones for which n ≤ 8. Assume now that n ≥ 9. We have:

σ(n!)
n!

<
n!

φ(n!)
=
∏
p≤n

p

p− 1
≤

∏
2≤k≤n
k 6=4,6,8,9

k

k − 1
= n · 3

4
· 5

6
· 7

8
· 8

9
<
n

2
.

Hence, n! < m! ≤ 2σ(n!) < 2 · (n/2) ·n! < (n+ 1)!, which is a contradiction.2

The proof of (iv). We proceed in two steps.

Step I. Suppose that (n, m) is a solution of equation (5). Then the
following hold:

1) if n > 41, then

m >
3n

10 log(n/2)
;

2) if m ≥ 340, then

n >
m2

12
.

1) Suppose that (n, m) is a solution of (5) with n > 41. Since τ(s) ≤ s
for all s ≥ 1, it follows that n ≥ m. Let

n! = p
α1(n)
1 p

α2(n)
2 · · · pαπ(n)(n)

π(n) ,

where 2 = p1 < 3 = p2 < · · · < pπ(n) are all the prime numbers less than or
equal to n. Since

αi(n) =
[ n
pi

]
+
[ n
p2
i

]
+ · · ·

for all 1 ≤ i ≤ π(n), it follows that αi(n) ≥ αj(n) whenever i ≤ j. In
particular

α1(n) = max
{
αi(n) | 1 ≤ i ≤ π(n)

}
. (13)
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Equation (5) can now be rewritten as

(α1(n) + 1)(α2(n) + 1) . . . (αpπ(n)(n) + 1) = m!. (14)

We now use the inequality

π(2x)− π(x) >
3x

5 log x
for x > 20.5 (15)

(see [6]) with x = n/2, to conclude that at least
3n

10 log(n/2)
of the αi(n)’s are

equal to 1. Hence,

m ≥ m− µ2(m) = ord2(m!) = ord2

(π(n)∏
i=1

(αpi(n) + 1)
)
>

3n
10 log(n/2)

, (16)

which proves 1).
2) Suppose that (n, m) is a solution of equation (5) with m ≥ 340. Ap-

plying inequality (16) for x = m/2, it follows that there are at least

k =
[ 3m

10 log(m/2)

]
+ 1

primes q such that m/2 < q ≤ m. Since all these primes divide

π(n)∏
i=1

(αi + 1),

we conclude that one of the following situations must occur:
CASE 1. There exist two primes p and q such that m/2 < p < q ≤ m and

pq | αi(n) + 1 for some i ≥ 1.
In this case

n ≥ n− µ2(n) + 1 ≥ α1(n) + 1 ≥ αi(n) + 1 ≥ pq > m2

4
>
m2

12
. (17)

CASE 2. For every i ≥ 1 the number αi(n) + 1 is divisible by at most one
prime p > m/2.

By the arguments employed at CASE 1, we may assume that none of the
numbers αi(n) + 1 is divisible by two distinct primes p > m/2. Since there
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are k such primes and each one of the numbers αi(n) + 1 is divisisble by
at most one of them, it follows that k of the numbers αi(n) + 1 are larger
than m/2. Since the sequence (αi(n) + 1)i≥1 is decreasing, it follows that
αk(n) + 1 > m/2. Hence,

n

pk − 1
+ 1 > αk(n) + 1 >

m

2
or

n >
1
2

(m− 2)(pk − 1). (18)

Since ps > s log s for all s ≥ 1 (see [5]), it follows that

n >
1
2

(m−2)(k log k−1) >
1
2

(m−2)
(( 3m

10 log(m/2)

)
log
( 3m

10 log(m/2)

)
−1
)
.

(19)
From inequality (19), it follows that in order to prove that n > m2/12 it
suffices to show that

1
2

(m− 2)
(( 3m

10 log(m/2)

)
log
( 3m

10 log(m/2)

)
− 1
)
>
m2

12
for m ≥ 340

or, with x = m/2, that

f(x) =
(

1− 1
x

)(( 3
5 log(x)

)
log
( 3x

5 log(x)

)
− 2
x

)
>

1
3

for x > 170. (20)

One can now check, using Mathematica for example, that f(x) > 1/3 for
x > 161.5.

Step II. The only solutions (n, m) of equation (5) are the asserted ones.
We first show that if (n, m) is a solution, then m < 340 and n < 9608.
Suppose that m ≥ 340. In this case, by 2) of Step I, it follows that

n >
m2

12
≥ 3402

12
> 41.

By 1) of Step I it follows that

m >
3n

10 log(n/2)
.

Since the function g(x) =
3x

10 log(x/2)
is increasing for x > 2e and since

n > m2/12, it follows that

m >
3n

10 log(n/2)
>

m2

40 log(m2/24)
(21)
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or

m < 40 log
(m2

24

)
. (22)

Inequality (22) implies that m < 338.95 < 340.
We now show that n < 9608. Suppose that n > 41. By 1) of Step I, it

follows that
3n

10 log(n/2)
< m < 340.

Hence,

n <
3400

3
log
(n

2

)
. (23)

Inequality (23) implies that n < 9607.5 < 9608.
One can now use Mathematica to test that the asserted solutions are the

only ones in the range m < 340 and n < 9608.
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