Equations Involving Arithmetic Functions of Factorials

Ecuaciones que Involucran Funciones Aritméticas de Factoriales
Florian Luca (luca@matsrv.math.cas.cz)
Mathematical Institute
Czech Academy of Sciences
Zitná 25,11567 Praha 1
Czech Republic

Abstract

For any positive integer k let $\phi(k), \sigma(k)$, and $\tau(k)$ be the Euler function of k, the divisor sum function of k, and the number of divisors of k, respectively. Let f be any of the functions ϕ, σ, or τ. In this note, we show that if a is any positive real number then the diophantine equation $f(n!)=a m!$ has only finitely many solutions (m, n). We also find all solutions of the above equation when $a=1$. Key words and phrases: arithmetical function, factorial, diophantine equations.

Resumen

Para k entero positivo sean $\phi(k), \sigma(k)$ y $\tau(k)$ la función de Euler de k, la función suma de divisores de k y el número de divisores de k, respectivamente. Sea f cualquiera de las funciones ϕ, σ o τ. En esta nota se muestra que si a is cualquier número real positivo entonces la ecuación diofántica $f(n!)=a m$! tiene sólo un número finito de soluciones (m, n). También se hallan todas las soluciones de la mencionada ecuación cuando $a=1$.
Palabras y frases clave: función aritmética, factorial, ecuaciones diofánticas.

[^0]
1 Introduction

For any positive integer k let $\phi(k), \sigma(k)$ and $\tau(k)$ be the Euler's totient function, the divisor sum and the number of divisors of k, respectively. In this note, we prove the following theorem:

Theorem.

Let a be any positive rational number and let f be any of the arithmetical functions ϕ, σ or τ. Then, the equation

$$
\begin{equation*}
\frac{f(n!)}{m!}=a \tag{1}
\end{equation*}
$$

has only finitely many solutions (m, n).
We also find all the solutions of equation (1) when $a=1$.

Corollary.

(i) The only solutions of the equation

$$
\begin{equation*}
\phi(n!)=m! \tag{2}
\end{equation*}
$$

are obtained for $n=0,1,2,3$.
(ii) The only solutions of the equation

$$
\begin{equation*}
\sigma(n!)=m! \tag{3}
\end{equation*}
$$

are obtained for $n=0,1$.
(iii) The only solutions of the equation

$$
\begin{equation*}
2 \sigma(n!)=m! \tag{4}
\end{equation*}
$$

are obtained for $n=2,3,4,5$.
(iv) The only solutions of the equation

$$
\begin{equation*}
\tau(n!)=m! \tag{5}
\end{equation*}
$$

are obtained for $n=0,1,2$.
The only reason that we have also treated equation (4) is because it has a rather interesting set of solutions given by

$$
2 \sigma(n!)=(n+1)!\quad \text { for } n=2,3,4,5
$$

which is, in Richard Guy's terminology, just another manifestation of the "law of small numbers".

Related to equations (3) and (4) above Pomerance (see [4]) showed that the only positive integers n such that n ! is multiply perfect (that is, a divisor of $\sigma(n!))$ are $n=1,3,5$.

Various other diophantine equations involving factorials have been previously treated in the literature. Erdős \& Obláth (see [2]) have studied the equations $n!=x^{p} \pm y^{p}$ and $n!\pm m!=x^{p}$ and Erdős \& Graham have studied the equation $y^{2}=a_{1}!a_{2}!\ldots a_{r}!$ (see [1]). The reader interested in results and open problems concerning diophantine equations involving factorials or arithmetic functions should consult Guy's excellent book [3].

2 The Proofs

In what follows p denotes a prime number. For a positive integer n, we denote by $\mu_{p}(n)$ the sum of the digits of n written in base p.

2.1 The Proof of the Theorem.

When $f \in\{\phi, \sigma\}$, we use the fact that

$$
\begin{equation*}
\frac{n}{2 \log \log n}<\frac{n}{\phi(n)}<\frac{\sigma(n)}{n} \quad \text { for all } n>2 \cdot 10^{9} \tag{6}
\end{equation*}
$$

(see, for example [6]) to conclude that equation (1) has only finitely many solutions (m, n) with $m \neq n$. We then show that equation (1) has only finitely many solutions (m, n) with $m=n$ as well.

Assume, for example, that $f=\phi$.
We first show that equation (1) has finitely many solutions with $n<m$. Indeed, if $n \leq m-1$, we get

$$
a m!=\phi(n!)<n!\leq(m-1)!
$$

which implies that $m \leq 1 / a$.
We now show that equation (1) has only finitely many solutions with $m<n$. Indeed, assume that $n \geq(m+1)$ and $n!>2 \cdot 10^{9}$. Since $(m+1)!<$ $(m+1)^{m+1}$, it follows, by inequality (6), that

$$
a m!=\phi(n!)>\frac{n!}{2 \log \log (n!)} \geq \frac{(m+1)!}{2 \log \log (m+1)!}>\frac{(m+1)!}{2 \log \log \left((m+1)^{m+1}\right)}
$$

or

$$
\begin{equation*}
m+1<2 a \log ((m+1) \log (m+1)) . \tag{7}
\end{equation*}
$$

Inequality (7) implies that m is bounded by a constant depending on a.
Hence, equation (1) has only finitely many solutions (m, n) with $m \neq n$. Assume now that $m=n$. In this case, we get

$$
\begin{equation*}
\frac{1}{a}=\frac{n!}{\phi(n!)}=\prod_{p \leq n}\left(1+\frac{1}{p-1}\right) \tag{8}
\end{equation*}
$$

Since the product from the right side of formula (8) diverges to infinity when n tends to infinity, it follows that equation (8) has only finitely many solutions as well.

Hence, equation (1) has only finitely many solutions (m, n) when $f=\phi$. The case $f=\sigma$ is entirely analogous.

Assume now that $f=\tau$. In this case, we use only divisibility arguments to conclude that equation (1) has only finitely many solutions.

For every real number x let $\pi(x)$ be the number of primes less than or equal to x and $\pi_{1}(x)$ be the number of primes in the interval $(x / 2, x]$. Since we are interested in proving that equation (1) has only finitely many solutions, we may assume that both m and n are very large. We use the notation $n \gg 1$ and $m \gg 1$ to indicate that we assume that n (respectively m) is large enough.

Write

$$
n!=\prod_{p \leq n} p^{\alpha_{p}(n)}
$$

It is well-known that

$$
\alpha_{p}(n)=\frac{n-\mu_{p}(n)}{p-1}<n .
$$

Write equation (1) as

$$
\begin{equation*}
\prod_{p \leq n}\left(\alpha_{p}(n)+1\right)=a m! \tag{9}
\end{equation*}
$$

We first investigate the order at which the prime 2 divides both sides of equation (9). On the one hand, since $\alpha_{p}(n)=1$ for all primes $p \in(n / 2, n]$, it follows that the order at which 2 divides the left hand side of equation (9) is at least $\pi_{1}(n)$. On the other hand, the order at which 2 divides the right hand side of equation (9) is at most $\alpha_{2}(m)+c<m+c$, where c is a constant that depends only on a. Hence,

$$
\begin{equation*}
\pi_{1}(n)<m+c \tag{10}
\end{equation*}
$$

From the prime number theorem, it follows that

$$
\frac{n}{3 \log n}<\pi_{1}(n) \quad \text { for } n \gg 1
$$

Hence,

$$
\begin{equation*}
\frac{n}{3 \log n}<m+c \tag{11}
\end{equation*}
$$

when $n \gg 1$. From inequality (11), it follows that

$$
\begin{equation*}
n<4 m \log m \quad \text { for } n \gg 1 \tag{12}
\end{equation*}
$$

We now investigate the large primes dividing both sides of equation (9). Assume that $m \gg 1$ is such that $m / 2$ is bigger than the denominator of a. In this case, all primes $q \in(m / 2, m]$ divide the right hand side of equation (9). In particular, every such prime divides at least one of the factors from the right hand side of (9). Since

$$
\alpha_{p}(n)+1<n+1<4 m \log m+1<(m / 2)^{2}
$$

for $m \gg 1$, it follows that every prime $q \in(m / 2, m]$ divides exactly one of the factors from the left hand side of equation (9). In particular, there are at least $\pi_{1}(m)$ primes $p \leq n$ such that $\alpha_{p}(n)+1$ is at least $m / 2$. Let p be one of such primes. Since

$$
\frac{m}{2}<\alpha_{p}(n)+1=\frac{n-\mu_{p}(n)}{p-1}+1<\frac{4 m \log m}{p-1}+1
$$

it follows that

$$
p<1+\frac{8 m \log m}{m-2}<9 \log m
$$

for $m \gg 1$. But this last inequality shows that there are at most $\pi(9 \log m)<$ $9 \log m$ primes p for which $\alpha_{p}(n)+1$ can be larger than $m / 2$. Hence, we get

$$
\pi_{1}(m)<9 \log m
$$

which, combined with the fact that

$$
\pi_{1}(m)>\frac{m}{3 \log m} \quad \text { for } m \gg 1
$$

shows that, in fact, m is bounded. Hence, equation (1) has only finitely many solutions when $f=\tau$ as well.

The Theorem is therefore proved.
For the proof of the Corollary, we employ ad hoc divisibility arguments to deal with the equations involving ϕ and σ. For equation (5), we simply follow the procedure indicated in the proof of the Theorem.

2.2 The Proof of the Corollary.

The proof of (i). The statement is true for $n \leq 4$. Now suppose that $n \geq 5$. Write $n!=2^{s} \cdot t$ where t is odd. Then $\phi(n!)=2^{s-1} \phi(t)$ where $\phi(t)$ is divisible by $\prod_{p \leq n}(p-1)$. In particular, $\phi(t)$ is divisible by $(3-1)(5-1)=8$. It now follows that the exponent of 2 in the prime factor decomposition of $\phi(n!)$ is at least $s-1+3>s$. On the other hand, since $m!=\phi(n!)<n!$, it follows that $m<n$. Thus, the exponent of 2 in the prime factor decomposition of m ! cannot exceed s. This gives the desired contradiction.

The proof of (ii) and (iii). One can check that the asserted solutions are the only ones for which $n \leq 8$. Assume now that $n \geq 9$. We have:

$$
\frac{\sigma(n!)}{n!}<\frac{n!}{\phi(n!)}=\prod_{p \leq n} \frac{p}{p-1} \leq \prod_{\substack{2 \leq k \leq n \\ k \neq 4,6,8,9}} \frac{k}{k-1}=n \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \frac{8}{9}<\frac{n}{2}
$$

Hence, $n!<m!\leq 2 \sigma(n!)<2 \cdot(n / 2) \cdot n!<(n+1)$!, which is a contradiction. \square
The proof of $(i v)$. We proceed in two steps.
Step I. Suppose that (n, m) is a solution of equation (5). Then the following hold:

1) if $n>41$, then

$$
m>\frac{3 n}{10 \log (n / 2)}
$$

2) if $m \geq 340$, then

$$
n>\frac{m^{2}}{12}
$$

1) Suppose that (n, m) is a solution of (5) with $n>41$. Since $\tau(s) \leq s$ for all $s \geq 1$, it follows that $n \geq m$. Let

$$
n!=p_{1}^{\alpha_{1}(n)} p_{2}^{\alpha_{2}(n)} \cdots p_{\pi(n)}^{\alpha_{\pi(n)}(n)}
$$

where $2=p_{1}<3=p_{2}<\cdots<p_{\pi(n)}$ are all the prime numbers less than or equal to n. Since

$$
\alpha_{i}(n)=\left[\frac{n}{p_{i}}\right]+\left[\frac{n}{p_{i}^{2}}\right]+\cdots
$$

for all $1 \leq i \leq \pi(n)$, it follows that $\alpha_{i}(n) \geq \alpha_{j}(n)$ whenever $i \leq j$. In particular

$$
\begin{equation*}
\alpha_{1}(n)=\max \left\{\alpha_{i}(n) \mid 1 \leq i \leq \pi(n)\right\} \tag{13}
\end{equation*}
$$

Equation (5) can now be rewritten as

$$
\begin{equation*}
\left(\alpha_{1}(n)+1\right)\left(\alpha_{2}(n)+1\right) \ldots\left(\alpha_{p_{\pi(n)}}(n)+1\right)=m! \tag{14}
\end{equation*}
$$

We now use the inequality

$$
\begin{equation*}
\pi(2 x)-\pi(x)>\frac{3 x}{5 \log x} \quad \text { for } x>20.5 \tag{15}
\end{equation*}
$$

(see [6]) with $x=n / 2$, to conclude that at least $\frac{3 n}{10 \log (n / 2)}$ of the $\alpha_{i}(n)$'s are equal to 1. Hence,

$$
\begin{equation*}
m \geq m-\mu_{2}(m)=\operatorname{ord}_{2}(m!)=\operatorname{ord}_{2}\left(\prod_{i=1}^{\pi(n)}\left(\alpha_{p_{i}}(n)+1\right)\right)>\frac{3 n}{10 \log (n / 2)} \tag{16}
\end{equation*}
$$

which proves 1).
2) Suppose that (n, m) is a solution of equation (5) with $m \geq 340$. Applying inequality (16) for $x=m / 2$, it follows that there are at least

$$
k=\left[\frac{3 m}{10 \log (m / 2)}\right]+1
$$

primes q such that $m / 2<q \leq m$. Since all these primes divide

$$
\prod_{i=1}^{\pi(n)}\left(\alpha_{i}+1\right)
$$

we conclude that one of the following situations must occur:
CASE 1. There exist two primes p and q such that $m / 2<p<q \leq m$ and $p q \mid \alpha_{i}(n)+1$ for some $i \geq 1$.

In this case

$$
\begin{equation*}
n \geq n-\mu_{2}(n)+1 \geq \alpha_{1}(n)+1 \geq \alpha_{i}(n)+1 \geq p q>\frac{m^{2}}{4}>\frac{m^{2}}{12} \tag{17}
\end{equation*}
$$

CASE 2. For every $i \geq 1$ the number $\alpha_{i}(n)+1$ is divisible by at most one prime $p>m / 2$.

By the arguments employed at CASE 1, we may assume that none of the numbers $\alpha_{i}(n)+1$ is divisible by two distinct primes $p>m / 2$. Since there
are k such primes and each one of the numbers $\alpha_{i}(n)+1$ is divisisble by at most one of them, it follows that k of the numbers $\alpha_{i}(n)+1$ are larger than $m / 2$. Since the sequence $\left(\alpha_{i}(n)+1\right)_{i \geq 1}$ is decreasing, it follows that $\alpha_{k}(n)+1>m / 2$. Hence,

$$
\frac{n}{p_{k}-1}+1>\alpha_{k}(n)+1>\frac{m}{2}
$$

or

$$
\begin{equation*}
n>\frac{1}{2}(m-2)\left(p_{k}-1\right) \tag{18}
\end{equation*}
$$

Since $p_{s}>s \log s$ for all $s \geq 1$ (see [5]), it follows that
$n>\frac{1}{2}(m-2)(k \log k-1)>\frac{1}{2}(m-2)\left(\left(\frac{3 m}{10 \log (m / 2)}\right) \log \left(\frac{3 m}{10 \log (m / 2)}\right)-1\right)$.
From inequality (19), it follows that in order to prove that $n>m^{2} / 12$ it suffices to show that

$$
\frac{1}{2}(m-2)\left(\left(\frac{3 m}{10 \log (m / 2)}\right) \log \left(\frac{3 m}{10 \log (m / 2)}\right)-1\right)>\frac{m^{2}}{12} \quad \text { for } m \geq 340
$$

or, with $x=m / 2$, that

$$
\begin{equation*}
f(x)=\left(1-\frac{1}{x}\right)\left(\left(\frac{3}{5 \log (x)}\right) \log \left(\frac{3 x}{5 \log (x)}\right)-\frac{2}{x}\right)>\frac{1}{3} \quad \text { for } x>170 \tag{20}
\end{equation*}
$$

One can now check, using Mathematica for example, that $f(x)>1 / 3$ for $x>161.5$.

Step II. The only solutions (n, m) of equation (5) are the asserted ones.
We first show that if (n, m) is a solution, then $m<340$ and $n<9608$.
Suppose that $m \geq 340$. In this case, by 2) of Step I, it follows that

$$
n>\frac{m^{2}}{12} \geq \frac{340^{2}}{12}>41
$$

By 1) of Step I it follows that

$$
m>\frac{3 n}{10 \log (n / 2)}
$$

Since the function $g(x)=\frac{3 x}{10 \log (x / 2)}$ is increasing for $x>2 e$ and since $n>m^{2} / 12$, it follows that

$$
\begin{equation*}
m>\frac{3 n}{10 \log (n / 2)}>\frac{m^{2}}{40 \log \left(m^{2} / 24\right)} \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
m<40 \log \left(\frac{m^{2}}{24}\right) \tag{22}
\end{equation*}
$$

Inequality (22) implies that $m<338.95<340$.
We now show that $n<9608$. Suppose that $n>41$. By 1) of Step I, it follows that

$$
\frac{3 n}{10 \log (n / 2)}<m<340
$$

Hence,

$$
\begin{equation*}
n<\frac{3400}{3} \log \left(\frac{n}{2}\right) \tag{23}
\end{equation*}
$$

Inequality (23) implies that $n<9607.5<9608$.
One can now use Mathematica to test that the asserted solutions are the only ones in the range $m<340$ and $n<9608$.

Acknowledgements

I would like to thank Bob Bell who developed a Mathematica code which tested for the solutions of equation (5) in the range $m<340$ and $n<9608$.

I would also like to thank a couple of anonymous referees for suggestions which greatly improved this note.

References

[1] P. Erdös, R. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica, Taiwan, 4 (1976), 337-355.
[2] P. Erdös, R. Obláth, Über diophantische Gleichungen der Form n! $=x^{p} \pm$ y^{p} und $n!\pm m!=x^{p}$, Acta Szeged. 8 (1937), 241-255.
[3] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1994.
[4] C. Pomerance, Problem 10331, Amer. Math. Monthly 100 (1993), 796.
[5] B. Rosser, The n-th prime is greater than $n \log n$, Proc. Lond. Math. Soc. (2) 45 (1939), 21-44.
[6] B. Rosser, Approximate formulas for some functions of prime numbers, Illinois J. of Math. 6 (1962), 64-94.

[^0]: Received: 1999/06/01. Revised: 1999/07/18. Accepted: 1999/09/15. MSC (1991): 11A25, 11A41, 11D99.

