Aggregation on a Nonlinear Parabolic Functional Differential Equation ${ }^{\dagger}$

Agregación en una Ecuación Diferencial Funcional No Lineal
Víctor Padrón (padron@ciens.ula.ve)
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes
Mérida 5101, Venezuela
Fax: +58 74401286

Abstract

In this paper we study the equation $$
u_{t}=\Delta[\varphi(u(x,[t / \tau] \tau)) u(x, t)], x \in \Omega, t>0,
$$ with homogeneous Neumann boundary conditions in a bounded domain in \mathbb{R}^{n}. We show existence and uniqueness for the initial value problem, and prove some results that show the aggregating behaviour exhibited by the solutions. Key words and phrases: parabolic equation, functional differential equation, aggregating populations.

Resumen

En este artículo estudiamos la ecuación

$$
u_{t}=\Delta[\varphi(u(x,[t / \tau] \tau)) u(x, t)], x \in \Omega, t>0,
$$

con condiciones de frontera homogéneas de tipo Neumann en un dominio acotado en \mathbb{R}^{n}. Probamos la existencia y unicidad del

[^0]problema de valores iniciales y obtenemos algunos resultados que muestran el comportamiento de agregación que exhiben las soluciones.
Palabras y frases clave: ecuación parabólica, ecuación diferencial funcional, agregación en poblaciones.

Introduction

In this paper we study the equation

$$
\begin{equation*}
u_{t}=\Delta[\varphi(u(x,[t / \tau] \tau)) u(x, t)], x \in \Omega, t>0 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\eta \cdot \nabla[\varphi(u(x,[t / \tau] \tau)) u(x, t)]=0, x \in \partial \Omega, t>0 \tag{2}
\end{equation*}
$$

and initial data

$$
\begin{equation*}
u(x, 0)=u_{0}(x), x \in \Omega \tag{3}
\end{equation*}
$$

Here Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, \tau>0$ is a constant, $[\theta]$ denotes the greatest integer less than or equal to θ (i.e. $[\theta]$ is an integer such that $[\theta] \leq \theta<[\theta]+1$), and φ is a non-increasing function. This problem arises on a model for aggregating populations with migration rate φ and constant population. A first attempt to model aggregating behavior using partial differential equations conducts to the following equation (see D. Aronson [1]),

$$
\begin{equation*}
u_{t}=\Delta f(u) \tag{4}
\end{equation*}
$$

where $f(u)=u \varphi(u)$, and φ is a non-increasing function of u. Nevertheless, since $f^{\prime}(u)$ may be negative for positive values of u, the standard initialboundary value problems for this equation are ill-posed.

Several models have been proposed to overcome this difficulty. These include models based on systems of difference-differential equations [7], on advection-diffusion equations [3], and on some type of regularization of equation (4) $[5,6,8]$.

In this paper we assume that the density dependent dispersal coefficient $\varphi(u)$ gets actualized at certain predetermined intervals of time, letting us to consider the functional differential equation (1).

In Section 1 we prove existence and uniqueness of the solutions of (1)-(3). We also show some comparison results and study the asymptotic behavior of the solutions of a problem associated to (1)-(3).

In Section 2 we prove some results which show the aggregating behavior that the solutions of (1)-(3) exhibit.

We include an Appendix with the derivation of equation (1).

1 Existence and Uniqueness of Global Solutions

We will assume that the functions $\varphi(u)$ and $f(u):=u \varphi(u)$ satisfy the following hypothesis:
Hypothesis 1. 1. $\varphi:[0, \infty) \mapsto(0, \infty)$ is bounded and non-increasing.
2. There exist constants α_{1} and α_{2} with $0<\alpha_{1}<\alpha_{2} \leq \infty$ such that f is increasing for $u \in\left(0, \alpha_{1}\right)$ and f is decreasing for $u \in\left(\alpha_{1}, \alpha_{2}\right)$. If $\alpha_{2}<\infty$, then f is nondecreasing for $u \in\left(\alpha_{2}, \infty\right)$.

For example, the following functions are admissible: $\varphi(u)=\exp (-u)$; $\varphi(u)=\frac{2}{3\left(1+u^{12}\right)}+\frac{1}{3} ; \varphi(u)=k_{1}$ for $0 \leq u \leq \alpha_{1}, \varphi(u)=k_{1}+\frac{k_{2}-k_{1}}{\alpha_{2}-\alpha_{1}}\left(u-\alpha_{1}\right)$ for $\alpha_{1} \leq u \leq \alpha_{2}$, and $\varphi(u)=k_{2}$ for $\alpha_{2} \leq u<\infty$, where k_{1} and k_{2} are constants such that $0<k_{2}<k_{1}$ and $k_{1} \alpha_{1}>k_{2} \alpha_{2}$.

In this section we will solve (1)-(3) by the method of steps, i.e., we integrate the equation inductively in $\Omega \times(k \tau,(k+1) \tau]$, fork $=0,1, \ldots$ This leads us to solve the parabolic equation:

$$
\begin{equation*}
v_{t}=\triangle[a(x) v(x, t)], \quad x \in \Omega, t \in(0, T] \tag{5}
\end{equation*}
$$

with boundary conditions:

$$
\begin{equation*}
\eta \cdot \nabla[a(x) v(x, t)]=0, x \in \partial \Omega, t>0 \tag{6}
\end{equation*}
$$

and initial data

$$
\begin{equation*}
v(x, 0)=v_{0}(x), x \in \Omega . \tag{7}
\end{equation*}
$$

for any $T>0$. We will solve (5)-(7) with the following assumptions about the data a and v_{0} :

$$
\begin{array}{ll}
A_{1} & a \in L^{\infty}(\Omega) \text { and } 0<\alpha \leq a(x) \leq \beta \text { for a.e. } x \in \Omega . \\
A_{2} & v_{0} \in L^{\infty}(\Omega) \text { and } v_{0}(x) \geq 0 \text { for a.e. } x \in \Omega \\
A_{3} & a v_{0} \in W_{2}^{1}(\Omega)
\end{array}
$$

These will be called "Assumptions A".

Definition 1. A solution of problem (5)-(7) on $[0, T]$ is a function v with the following properties:
i) $v \in L^{\infty}\left(Q_{T}\right)$,
ii) $a v \in C\left([0, T] ; L_{2}(\Omega)\right) \cap W_{2}^{1,0}\left(Q_{T}\right)$,
iii) $\int_{\Omega} v(x, t) \psi(x, t) d x-\iint_{Q_{T}}\left[v(x, t) \psi_{t}(x, t)-\nabla(a(x) v(x, t)) \cdot \nabla \psi\right] d x d t$ $=\int_{\Omega} v_{0}(x) \psi(x, 0) d x$, for all $\psi \in W_{2}^{1}\left(Q_{T}\right)$ and for all $t \in(0, T]$.

A solution on $[0, \infty)$ means a solution on each $[0, T]$, and a sub-solution (supersolution) is defined by (i), (ii) and (iii) with equality replaced by $\leq(\geq)$.
Here we are using the standard notation $Q_{T}:=\Omega \times(0, T]$.
Next, we will obtain some comparison results for the solutions of (5)-(7).
Proposition 1. Let \hat{v} be a supersolution of problem (5)-(7) in $[0, T]$ with initial data \hat{v}_{0} and let v be a sub-solution in $[0, T]$ with initial data v_{0}. Then, for all $\lambda>0$ and $0 \leq t \leq T$, we have

$$
e^{\lambda t} \int_{\Omega}(v(x, t)-\hat{v}(x, t))^{+} \leq \int_{\Omega}\left(v_{0}(x)-\hat{v}_{0}(x)\right)^{+}+\int_{Q_{t}}[\lambda(v-\hat{v})]^{+} e^{\lambda s} .(8)
$$

Proof: For any $\psi \in C^{2}\left(\bar{Q}_{T}\right)$ such that $\psi_{x}=0$ for $(x, t) \in \partial \Omega \times[0, T]$, we have

$$
\int_{\Omega} v \psi-\iint_{Q_{t}}\left(v \psi_{t}+a v \psi_{x x}\right) \leq \int_{\Omega} v_{0} \psi(0)
$$

and

$$
-\int_{\Omega} \hat{v} \psi+\iint_{Q_{t}}\left(\hat{v} \psi_{t}+a \hat{v} \psi_{x x}\right) \leq-\int_{\Omega} \hat{v}_{0} \psi(0)
$$

Adding term by term we obtain

$$
\begin{equation*}
\int_{\Omega}(v-\hat{v}) \psi-\iint_{Q_{t}}(v-\hat{v})\left(\psi_{t}+a \psi_{x x}\right) \leq \int_{\Omega}\left(v_{0}-\hat{v}_{0}\right) \psi(0) \tag{9}
\end{equation*}
$$

We now construct a special sequence of functions $\left\{\psi_{n}\right\}$ to use in (9). Fix $T>0$ and choose a sequence $\left\{a_{n}\right\}$ of smooth functions such that

$$
0<\gamma \leq a_{n} \leq\|a\|_{L^{\infty}(\Omega)}
$$

and

$$
\left(a_{n}-a\right) / \sqrt{a_{n}} \longrightarrow 0 \text { in } L^{2}(\Omega)
$$

Since $\left\|a_{n}^{-1 / 2}\right\|_{L_{\infty(\Omega)}}<1 / \gamma$, for all n, it is enough to choose $\left\{a_{n}\right\}$ such that $\left(a_{n}-a\right) \rightarrow 0$ in $L^{2}(\Omega)$.
Next, let $\chi \in C_{0}^{\infty}(\Omega)$ be such that $0 \leq \chi \leq 1$. Finally let ψ_{n} be the solution of the backward problem

$$
\begin{array}{ll}
\psi_{n t}+a_{n} \psi_{n x x}=\lambda \psi_{n} & \text { for }(x, t) \in \Omega \times[0, T) \\
\psi_{n x}(x, t)=0 & (x, t) \in \partial \Omega \times[0, T) \\
\psi_{n}(x, T)=\chi(x) & x \in \Omega
\end{array}
$$

This is a parabolic problem and has a unique solution $\psi_{n} \in C^{\infty}\left(\bar{Q}_{T}\right)$ that satisfies the properties stated in the following Lemma.

Lemma 1. The function ψ_{n} has the following properties:
(i) $0 \leq \psi_{n} \leq e^{\lambda^{(t-T)}}$ in \bar{Q}_{T}
(ii) $\iint_{Q_{T}} a_{n}\left(\psi_{n x x}\right)^{2}<c$
(iii) $\sup _{0 \leq t \leq T} \int_{\Omega}\left(\psi_{n x}\right)^{2}(t)<c$, where the constant c depends only on χ.

The proof of this Lemma is similar to the proof of Lemma 10 in D. Aronson, M. G. Crandall and L. A. Peletier [2] and it is omitted.

If we set $t=T$ and $\psi=\psi_{n}$ in (9) we obtain:

$$
\begin{align*}
\int_{\Omega}(v-\hat{v}) \chi & -\iint_{Q_{T}}(v-\hat{v})\left(a-a_{n}\right) \psi_{n x x} \\
& \leq \int_{\Omega}\left(v_{0}-\hat{v}_{0}\right) \psi_{n}(0)+\iint_{Q_{T}} \lambda(v-\hat{v}) \psi_{n} \tag{10}\\
& \leq \int_{\Omega}\left(v_{0}-\hat{v}_{0}\right)^{+} e^{-\lambda T}+\iint_{Q_{T}}[\lambda(v-\hat{v})]^{+} e^{\lambda(s-T)}
\end{align*}
$$

Since

$$
\iint_{Q_{T}}\left|a-a_{n}\right|\left|\psi_{n x x}\right|=\iint_{Q_{T}} \frac{\left|a-a_{n}\right|}{\sqrt{a_{n}}}\left(\sqrt{a_{n}}\left|\psi_{n x x}\right|\right)
$$

we have, by Lemma 1 (ii),

$$
\begin{aligned}
\left\|\left(a-a_{n}\right) \psi_{n x x}\right\|_{L^{1}\left(Q_{T}\right)} & \leq\left\|\frac{a-a_{n}}{\sqrt{a_{n}}}\right\|_{L^{2}\left(Q_{T}\right)}\left\|\sqrt{a_{n}} \psi_{n x x}\right\|_{L^{2}\left(Q_{T}\right)} \\
& =T^{1 / 2}\left\|\frac{a-a_{n}}{\sqrt{a_{n}}}\right\|_{L^{2}(\Omega)}\left\|\sqrt{a_{n}} \psi_{n x x}\right\|_{L^{2}\left(Q_{T}\right)} \\
& \leq(c T)^{1 / 2}\left\|\frac{a-a_{n}}{\sqrt{a_{n}}}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ by the choice of a_{n}. Thus, letting $n \rightarrow \infty$ in (10) we obtain

$$
\begin{equation*}
\int_{\Omega}(v(T)-\hat{v}(T)) \chi \leq \int_{\Omega}\left(v_{0}-\hat{v}_{0}\right)^{+} e^{-\lambda T}+\iint_{Q_{T}}[\lambda(v-\hat{v})]^{+} e^{\lambda(S-T)}(11) \tag{11}
\end{equation*}
$$

This inequality holds for any $\chi \in C_{0}^{\infty}(\Omega)$ with $0 \leq \chi \leq 1$. Hence, it continues to hold for $\chi(x)=1$ on $\{x: v(T)>\hat{v}(T)\}$ and $\chi=0$ otherwise (i.e., $\left.\chi=\operatorname{sign}(v(T)-\hat{v}(T))^{+}\right)$. Here we have used the fact that $C_{0}^{\infty}(\Omega)$ is dense in $L^{1}(\Omega)$. Replacing T by any $t \leq T$ and applying the same argument we complete the proof of the Proposition.

Theorem 1. (i) Let v, \hat{v} be solutions problem (5)-(7) on $[0, T]$ with initial data v_{0} and \hat{v}_{0} respectively. Then

$$
\|v(t)-\hat{v}(t)\|_{L^{\prime}(\Omega)} \leq\left\|v_{0}-\hat{v}_{0}\right\|_{L^{\prime}(\Omega)}
$$

Thus, in particular, the solution of problem (5)-(7) is unique.
(ii) Let v be a sub-solution and \hat{v} a super-solution of problem (5)-(7) with initial data v_{0}, and \hat{v}_{0} respectively. Then if $v_{0} \leq \hat{v}_{0}$ it follows that

$$
v \leq \hat{v}
$$

Proof: With the assumptions of (ii), Proposition 1 yields

$$
\begin{equation*}
e^{\lambda t} \int_{\Omega}(v(t)-\hat{v}(t))^{+} \leq \int_{\Omega}\left(v_{0}-\hat{v}_{0}\right)^{+}+\int_{0}^{t} \int_{\Omega} e^{\lambda s}[\lambda(v-\hat{v})]^{+} \tag{12}
\end{equation*}
$$

Thus if we write

$$
h(t)=e^{\lambda t} \int_{\Omega}(v(t)-\hat{v}(t))^{+}
$$

(12) implies, by Gronwall's Lemma, that $h(t) \leq h(0) e^{\lambda t}$ or

$$
\int_{\Omega}(v(t)-\hat{v}(t))^{+} \leq \int_{\Omega}\left(v_{0}-\hat{v}_{0}\right)^{+}
$$

This proves (ii). The assertion (i) follows by adding the corresponding inequality for $(\hat{v}-v)^{+}$.

Remark 1. Since $v_{0} \geq 0$ and zero is a solution of (5)-(7), we obtain that the solutions of (5)-(7) are non negative.

Remark 2. Since $v_{0} \in L^{\infty}(\Omega)$, let K be a constant such that $v_{0} \leq K$. Let $\hat{v}_{0}=K$ then $\hat{v}(x, t)=e^{M t}$ is a super-solution (in fact, a solution) of the problem (5)-(7). Then, by the theorem, $\hat{v}(x, t) \leq e^{M t}$. In particular,

$$
v \in L^{\infty}\left(Q_{T}\right) .
$$

Now we proceed to the proof of the following theorem:
Theorem 2. If the Assumptions A are fulfilled, then the problem (5)-(7) has a unique solution v un $[0, T]$ for any $T>0$. Moreover, v satisfies the following energy relation

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega} a v^{2}+\int_{Q_{t}}(a v)_{x_{i}}^{2}=\frac{1}{2} \int_{\Omega}\left(a v_{0}\right)^{2} \tag{13}
\end{equation*}
$$

and the estimate

$$
\begin{equation*}
\operatorname{ess} \sup _{0 \leq t \leq T}\|a(\cdot) v(\cdot, t)\|_{L^{2}(\Omega)}+\|\nabla(a v)\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|a(\cdot) v_{0}(\cdot)\right\|_{L^{2}(\Omega)}, \tag{14}
\end{equation*}
$$

where $C=C(\alpha, \beta)$ is a constant independent of T.
Proof: The uniqueness is already given in Theorem 1 (i).
For the proof of solvability we make the change of variable $w(x, t)=a(x) v(x, t)$ and arrive to the following problem

$$
\begin{cases}\tilde{a} w_{t}=\triangle w, & (x, t) \in Q_{T} \tag{15}\\ \eta \cdot \nabla w=0, & (x, t) \in \partial \Omega \times(0, T] \\ w(x, 0)=w_{0}(x):=a(x) v_{0}(x), & x \in \Omega,\end{cases}
$$

where $\tilde{a}=1 / a$. It is clear that $\tilde{a} \in L^{\infty}(\Omega)$.
Now we take a fundamental system $\left\{\varphi_{k}(x)\right\}$ in $W_{2}^{1}(\Omega)$. Since $\tilde{a}(x) \geq 1 / \beta>0$, for a.e. $x \in \Omega$, we can choose $\varphi_{k}(x)$ such that $\int_{\Omega} \tilde{a}(x) \varphi_{k}(x) \varphi_{l}(x) d x=0$ for $k \neq l$. We shall look for approximate solutions

$$
w^{N}(x, t)=\sum_{k=1}^{N} C_{k}^{N}(t) \varphi_{k}(x)
$$

from the relation

$$
\begin{equation*}
\left(\tilde{a} w_{t}^{N}, \varphi_{l}\right)+\left(w_{x_{i}}^{N}, \varphi_{l x_{i}}\right)=0, l=1, \ldots, N \tag{16}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
C_{l}^{N}(0)=\left(w_{0}, \varphi_{l}\right), \quad l=1, \ldots, N \tag{17}
\end{equation*}
$$

where (\cdot, \cdot) denotes the inner product in $L^{2}(\Omega)$. Here and in what follows the terms of the form $\left(w_{x_{i}}^{N}, \varphi_{l x_{i}}\right)$ mean $\sum_{i=1}^{N}\left(w_{x_{i}}^{N}, \varphi_{l x_{i}}\right)$.

The relation (16) is simply a system of N linear ordinary differential equations in the unknowns $C_{l}(t) \equiv C_{l}^{N}(t),(l=1, \ldots, N)$, whose principal terms are of the form $d C_{l}(t) / d t$, the coefficients of $C_{k}(t)$ being constant. By a well known theorem on the solvability of such systems, we see that (16) and (17) uniquely determine continuously differentiable functions $C_{l}^{N}(t)$ on $[0, T]$.
Now we shall obtain bounds for w^{N} which do not depend on N. To do this, let us multiply each equation of (16) by the appropriate C_{l}^{N}, add then up from 1 to N and then integrate the result with respect to t from 0 to $t \leq T$, to obtain:

$$
\int_{Q_{t}} \tilde{a} w_{t}^{N} w^{N}+\int_{Q_{t}}\left(w_{x_{i}}^{N}\right)^{2}=0
$$

From this we obtain

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega} \tilde{a}\left(w^{N}\right)^{2}+\int_{Q_{t}}\left(w_{x_{i}}^{N}\right)^{2}=\frac{1}{2} \int_{\Omega} \tilde{a}\left(w_{0}^{N}\right)^{2} \tag{18}
\end{equation*}
$$

where $w_{o}^{N}(x)=w^{N}(x, 0)=\sum_{1}^{N} C_{K}^{N}(0) \psi_{K}(x)=\sum_{1}^{N}\left(w_{o}, \psi_{K}\right) \psi_{K}$. Now, since $1 / \beta \leq \tilde{a} \leq 1 / \alpha$, we obtain

$$
\frac{1}{2 \beta}\left\|w^{N}(\cdot, t)\right\|_{\Omega}^{2}+\left\|w_{x}^{N}\right\|_{Q_{t}}^{2} \leq \frac{1}{2 \alpha}\left\|w^{N}(\cdot, 0)\right\|_{\Omega}^{2}
$$

where

$$
\left\|w_{x}\right\|_{Q_{t}}:=\left(\int_{Q_{t}} \sum_{i=1}^{n} w_{x_{i}}^{2}\right)^{1 / 2}
$$

We replace $\left\|w_{0}^{N}\right\|_{\Omega}^{2}$ by $y(t)\left\|w_{0}^{N}\right\|_{\Omega}$, where $y(t):=\operatorname{ess} \sup _{0 \leq \tau \leq t}\left\|w^{N}(\cdot, t)\right\|_{\Omega}$. This gives the inequality

$$
\left\|w^{N}(\cdot, t)\right\|_{\Omega}^{2}+\nu\left\|w_{x}\right\|_{Q_{t}}^{2} \leq \mu y(t)\left\|w_{0}^{N}\right\|_{\Omega}:=j(t)
$$

where $\mu=\frac{\beta}{2 \alpha}, \nu=2 \beta$. From this the two inequalities

$$
\begin{equation*}
y^{2}(t) \leq j(t) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|w_{x}^{N}\right\|_{Q_{t}}^{2} \leq v^{-1} j(t) \tag{20}
\end{equation*}
$$

follow. We take the square root of each side of (19) and (20), add together the resulting inequalities, and then estimate the right-hand size in the following way:

$$
\begin{aligned}
\left|w^{N}\right|_{Q_{t}}:= & y(t)+\left\|w_{x}^{N}\right\|_{Q_{t}} \leq\left(1+v^{-1 / 2}\right) j^{1 / 2}(t) \\
& \leq\left(1+\nu^{-1 / 2}\right) \mu^{1 / 2}\left\|w_{0}^{N}\right\|_{\Omega}^{1 / 2}\left|w^{N}\right|_{Q_{t}}^{1 / 2} .
\end{aligned}
$$

From this we obtain the following bound for $\left|w^{N}\right|_{Q_{t}}$:

$$
\begin{equation*}
\left|w^{N}\right|_{Q_{t}} \leq\left(1+\nu^{-1 / 2}\right)^{2} \mu\left\|w_{0}^{N}\right\|_{\Omega} . \tag{21}
\end{equation*}
$$

Thus, we obtain the inequality

$$
\begin{equation*}
\left|w^{N}\right|_{Q_{t}} \leq c\left\|w_{0}^{N}\right\|_{\Omega}, \tag{22}
\end{equation*}
$$

which holds for any t in $[0, T]$, with $c=c(\alpha, \beta)$ independent of t and T. But $\left\|w_{0}^{N}\right\|_{\Omega} \leq\left\|w_{0}\right\|_{\Omega}$, so we have the bound

$$
\begin{equation*}
\left|w^{N}\right|_{Q_{t}} \leq C_{1}, \tag{23}
\end{equation*}
$$

with a constant C_{1} independent of N. Because of (23), we can choose a subsequence $\left\{w^{N_{k}}\right\}(k=1,2, \ldots)$ from the sequence $\left\{w^{N}\right\}(N=1,2, \ldots)$ which converges weakly in $L_{2}\left(Q_{T}\right)$, together with the derivatives $w_{x_{i}}^{N_{k}}$, to some element $w \in W_{2}^{1}\left(Q_{T}\right)$ (as a result of subsequent arguments, we shall show that the entire sequence $\left\{w^{N}\right\}$ converges to $\left.w\right)$. This element $w(x, t)$ is the desired generalized solution of the problem (15).

Indeed, let us multiply (16) by an arbitrary absolutely continuous function $d_{l}(t)$ with $d d_{l}(t) / d t \in L_{2}(0, T)$, add up the equations thus obtained from 1 to N, and then integrate the result from 0 to $t \leq T$. If we integrate the first term by parts with respect to t, we obtain an identity:

$$
\begin{equation*}
\int_{\Omega} \tilde{a} w^{N} \Phi d x-\int_{Q_{t}}\left[\tilde{a} w^{N} \Phi_{t}+w_{x_{i}}^{N} \Phi_{x_{i}}\right] d x d t=\int_{\Omega} \tilde{a} w_{0}^{N} \Phi(x, 0) d x \tag{24}
\end{equation*}
$$

in which $\Phi=\sum_{l=1}^{N} d_{l}(t) \varphi_{l}(x)$. Let us denote by \mathcal{M}_{N} the set function Φ with $d_{l}(t)$ having the properties indicated above. The totality $\cup_{p=1}^{\infty} \mathcal{M}_{p}$ is dense in $W_{2}^{1}\left(Q_{T}\right)$.

For a fixed $\Phi \in \mathcal{M}_{p}$ in (24) we can take the limit of the subsequence $\left\{w^{N_{k}}\right\}$ chosen above, starting with $N_{k} \geq p$. As a result, we obtain (24) for w. But since $\cup_{p=1}^{\infty} \mathcal{M}_{p}$ is dense in $W_{2}^{1}\left(Q_{T}\right)$, it is not hard to obtain that w satisfies (ii) in the corresponding definition of solution of problem (15).

Finally it can be easily seen that the difference, $w^{N_{k}}-w^{N_{l}}$ satisfies the inequality (22):

$$
\left|w^{N_{k}}-w^{N_{l}}\right|_{Q_{T}} \leq C(T)\left\|w_{0}^{N_{k}}-w_{0}^{N_{l}}\right\|_{\Omega} .
$$

This implies that $w^{N_{k}}$ converges to w in the norm $|\cdot|_{Q_{T}}$, showing that $w \in$ $C\left(\left[0, T ; L^{2}(\Omega)\right) \cap W_{2}^{1,0}\left(Q_{T}\right)\right.$. Now, applying (18) to the subsequence $w^{N_{k}}$ and taking limits we obtain (13). From this, following the same argument that led to (22), we obtain (14). This finishes the proof of the Theorem.

The following result is a consequence of the previous Theorem. The proof is given in [9].
Theorem 3. Any solution $v(x, t)$ of (5)-(7) satisfies

$$
\lim _{t \rightarrow \infty}\left\|v(\cdot, t)-v_{\infty}\right\|_{L^{2}(\Omega)}=0
$$

where $v_{\infty}:=\frac{1}{a(x)}\left(\int_{\Omega} v_{0}\right)\left(\int_{\Omega} \frac{1}{a}\right)^{-1}$.
Now we are ready to prove the main result of this section. A global solution for the problem (1)-(3) is a function $u(x, t), x \in \Omega, t>0$, such that u is a solution of the problem (5)-(7) in $\Omega \times(k \tau,(k+1) \tau], k=0,1,2, \ldots$, with $a(x)=\varphi(u(x,[t / \tau] \tau))$.

Theorem 4. If $u_{0} \in L^{\infty}(\Omega)$ then the problem (1)-(3) has a unique global solution.
Proof: The proof is by induction in k. The case $k=0$ is obtained directly from Theorem 2. Assuming the case k and using the Remark 2 after the proof of Theorem 1 we obtain that $u(x,(k+1) \tau) \in L^{\infty}(\Omega)$ and $a(x) u(x,(k+1) \tau) \leq$ $W_{2}^{1}(\Omega)$. From this it follows that we can apply Theorem 2 to solve (5)-(7) in $\Omega \times((k+1) \tau,(k+2) \tau]$ with $a(x)=\varphi(u(x,(k+1) \tau))$ and $u_{0}(x)=u(x,(k+1) \tau)$. This finishes the proof.

2 Aggregation

In this section we consider some results that show the aggregating behavior that the solutions of (1)-(3) exhibit. The first result is a direct consequence of Theorem 3. For any $u_{0} \in L^{\infty}(\Omega)$ and $\tau>0$, let $u\left(x, t ; u_{0}, \tau\right)$ denote the solution of (1)-(3).

Theorem 5. Suppose that $\varphi(u)$ and $f(u)=u \varphi(u)$ satisfy Hypothesis 1. For any $\epsilon>0$ there exists $\tau>0$ such that

$$
\left\|u\left(\cdot, \tau ; u_{0}, \tau\right)-u_{\infty}(\cdot)\right\|_{L^{2}(\Omega)}<\epsilon
$$

where $u_{\infty}:=\frac{1}{\varphi\left(u_{0}(x)\right)}\left(\int_{\Omega} u_{0}(x) d x\right)\left(\int_{\Omega} \frac{d x}{\varphi\left(u_{0}(x)\right)}\right)^{-1}$.
Since $\varphi(u)$ is a non-increasing function this result states that, for large enough τ, the solutions of (1)-(3) concentrate its mass around the points of higher density of the initial data $u_{0}(x)$, thus showing the kind of aggregating behavior that we were expecting.

Another way to look at this result it is to notice that, by the change of variable $s=t / \tau$ and the definition $w(x, s):=u(x, s \tau)$, problem (1)-(3) is transformed into the equivalent problem

$$
\begin{align*}
& w_{s}=\Delta[\tau \varphi(w(x,[s])) w(x, s)], x \in \Omega, s>0 \\
& \eta \cdot \nabla[\tau \varphi(w(x,[s])) w(x, s)]=0, x \in \partial \Omega, s>0 \tag{25}\\
& w(x, 0)=w_{0}(x):=u_{0}(x), x \in \Omega
\end{align*}
$$

Hence, taking $\tau>0$ big accounts for multiplying φ by a large constant. Therefore, Theorem 5 states that for any $\epsilon>0$ we can choose $\tilde{\varphi}:=\tau \varphi$, multiplying the original φ by a large constant τ, such that the solution w of (25) satisfies

$$
\left\|w(\cdot, 1)-u_{\infty}(\cdot)\right\|_{L^{2}(\Omega)}<\epsilon
$$

That is, given an initial data u_{0}, we can generate aggregation around the points of higher density of u_{0}, at a prescribed time, by an adequate choice of φ.

Proof of Theorem 5: We consider the problem

$$
\begin{aligned}
& v_{t}=\Delta[a(x) v(x, t)], x \in \Omega, t>0 \\
& \eta \cdot \nabla[a(x) v(x, t)]=0, x \in \partial \Omega, t>0 \\
& v(x, 0)=v_{0}(x):=u_{0}(x), x \in \Omega
\end{aligned}
$$

with $a(x):=\varphi\left(u_{0}(x)\right)$. By Theorem 3, for any $\epsilon>0$ there exists $\tau>0$ such that

$$
\left\|v(\cdot, t)-v_{\infty}(\cdot)\right\|_{L^{2}(\Omega)}<\epsilon
$$

for any $t>\tau$, where $v_{\infty}:=\frac{1}{a(x)}\left(\int_{\Omega} v_{0}(x) d x\right)\left(\int_{\Omega} \frac{d x}{a(x)}\right)^{-1}$. By uniqueness of the solutions of (1)-(3) it follows that $u\left(\cdot, \tau ; u_{0}, \tau\right)=v(\cdot, \tau)$. This finishes the proof.

In what follows we restrict ourselves to a more specific function φ. Let $\varphi(u)$ be a continuous function such that

$$
\varphi(u):= \begin{cases}k_{1}, & 0 \leq u \leq \alpha_{1} \\ \psi(u), & \alpha_{1} \leq u \leq \alpha_{2} \\ k_{2}, & \alpha_{2} \leq u\end{cases}
$$

where $\psi(u)$ is a non-increasing function, k_{1}, k_{2}, α_{1} and α_{2} are positive constants such that $k_{2}<k_{1}, \alpha_{1}<\alpha_{2}$ and $k_{2} \alpha_{2}<k_{1} \alpha_{1}$. For example, we can choose ψ to be linear, that is $\psi(u)=k_{1}+\frac{k_{2}-k_{1}}{\alpha_{2}-\alpha_{1}}\left(u-\alpha_{1}\right)$.

The following result shows that, under certain restrictions on the initial data, the solutions of (1)-(3) converge to a steady state. It is not difficult to show that a function $u \in L^{\infty}(\Omega)$ is a steady state solution of (1)-(2) if and only if $f(u(x))=$ constant for a.e. $x \in \Omega$. Let β_{i} be such that $\beta_{2}<\alpha_{1}<\alpha_{2}<\beta_{1}$ and $f\left(\beta_{i}\right)=f\left(\alpha_{i}\right), i=1,2$. That is, $k_{1} \beta_{2}=k_{2} \alpha_{2}$ and $k_{2} \beta_{1}=k_{1} \alpha_{1}$.
Theorem 6. Let $\tilde{\Omega} \subset \Omega$ be such that both $\tilde{\Omega}$ and $\Omega \backslash \tilde{\Omega}$ have positive measure. Suppose that u_{0} satisfies $\beta_{2} \leq u_{0}(x) \leq \alpha_{1}$, for a.e. $x \in \tilde{\Omega}$ and $\alpha_{2} \leq u_{0}(x) \leq \beta_{1}$ for a.e. $x \in \Omega \backslash \tilde{\Omega}$. Then, the solution $u(x, t)$ of (1)-(3) satisfies

$$
\lim _{t \rightarrow \infty}\left\|u(\cdot, t)-u_{\infty}\right\|_{L^{2}(\Omega)}=0,
$$

where u_{∞} is a steady solution of (1)-(2). Moreover,

$$
u_{\infty}= \begin{cases}\gamma_{2}, & x \in \tilde{\Omega} \tag{26}\\ \gamma_{1}, & x \in \Omega \backslash \tilde{\Omega},\end{cases}
$$

where

$$
\gamma_{i}=\frac{k_{i}}{k_{2}|\tilde{\Omega}|+k_{1}|\Omega \backslash \tilde{\Omega}|} \int_{\Omega} u_{0}(x) d x, \quad i=1,2
$$

and $\beta_{2} \leq \gamma_{2} \leq \alpha_{1}<\alpha_{2} \leq \gamma_{1} \leq \beta_{1}$.
Proof: First, we will show that $u(x, t)$ satisfies

$$
\begin{equation*}
\beta_{2} \leq u(x, t) \leq \alpha_{1}, x \in \tilde{\Omega}, t \geq 0 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{2} \leq u(x, t) \leq \beta_{1}, x \in \Omega \backslash \tilde{\Omega}, t \geq 0 . \tag{28}
\end{equation*}
$$

Let

$$
v_{1}(x)= \begin{cases}\alpha_{1}, & x \in \tilde{\Omega} \\ \beta_{1}, & x \in \Omega \backslash \tilde{\Omega},\end{cases}
$$

and

$$
v_{2}(x)= \begin{cases}\beta_{2}, & x \in \tilde{\Omega} \\ \alpha_{2}, & x \in \Omega \backslash \tilde{\Omega} .\end{cases}
$$

Then $v_{i}(i=1,2)$ are steady solutions of (1)-(2). For $0 \leq t \leq \tau$ let $a(x):=$ $\varphi\left(u_{0}(x)\right)$; then

$$
a(x)= \begin{cases}k_{1}, & x \in \tilde{\Omega} \\ k_{2}, & x \in \tilde{\Omega} \backslash \tilde{\Omega} .\end{cases}
$$

Then, $v(x, t):=u(x, t), 0 \leq t \leq \tau$, is the solution of (5)-(7) in [0, $\tau]$. Moreover, since

$$
v_{2}(x)=\beta_{2} \leq v_{0}(x) \leq \alpha_{1}=v_{1}(x), x \in \tilde{\Omega}
$$

and

$$
v_{2}(x)=\alpha_{2} \leq v_{0}(x) \leq \beta_{1}=v_{1}(x), x \in \Omega \backslash \tilde{\Omega},
$$

we have that

$$
v_{2}(x) \leq v_{0}(x) \leq v_{1}(x)
$$

for almost every $x \in \Omega$. Since $v_{i}(i=1,2)$ are steady solutions of (5)-(6), it follows from Theorem 1 that

$$
v_{2}(x) \leq v(x, t) \leq v_{1}(x)
$$

for almost every $x \in \Omega$ and $0 \leq t \leq \tau$. That is, (27) and (28) hold for $0 \leq t \leq \tau$. Repeating the same argument inductively we obtain that (27) and (28) hold for any $t \geq 0$, as we wanted to show.

This implies, in particular, that $u(x, t)$ is a solution of (5)-(7) on $[0, \infty)$ with $a(x)=\varphi\left(u_{0}(x)\right)$. Therefore, it follows from Theorem 3 that

$$
\lim _{t \rightarrow \infty}\left\|u(\cdot, t)-u_{\infty}\right\|_{L^{2}(\Omega)}=0
$$

where

$$
u_{\infty}:=\frac{1}{a(x)}\left(\int_{\Omega} u_{0}\right)\left(\int_{\Omega} \frac{1}{a}\right)^{-1} .
$$

Then (26) follows by noticing that

$$
\int_{\Omega} \frac{d x}{a(x)}=\frac{k_{2}|\tilde{\Omega}|+k_{1}|\Omega \backslash \tilde{\Omega}|}{k_{1} k_{2}}
$$

Now, by using the hypothesis that $\beta_{2} \leq u_{0}(x) \leq \alpha_{1}$, for a.e. $x \in \tilde{\Omega}$ and $\alpha_{2} \leq u_{0}(x) \leq \beta_{1}$ for a.e. $x \in \Omega \backslash \tilde{\Omega}$, we obtain

$$
\beta_{2}|\tilde{\Omega}|+\alpha_{2}|\Omega \backslash \tilde{\Omega}| \leq \int_{\Omega} u_{0} \leq \alpha_{1}|\tilde{\Omega}|+\beta_{1}|\Omega \backslash \tilde{\Omega}|
$$

Hence,

$$
\beta_{2}=\frac{k_{2} \beta_{2}|\tilde{\Omega}|+k_{2} \alpha_{2}|\Omega \backslash \tilde{\Omega}|}{k_{2}|\tilde{\Omega}|+k_{1}|\Omega \backslash \tilde{\Omega}|} \leq \gamma_{2} \leq \frac{k_{2} \alpha_{1}|\tilde{\Omega}|+k_{2} \beta_{1}|\Omega \backslash \tilde{\Omega}|}{k_{2}|\tilde{\Omega}|+k_{1}|\Omega \backslash \tilde{\Omega}|} .
$$

Here we have used the fact that $k_{1} \beta_{2}=k_{2} \alpha_{2}$ and $k_{2} \beta_{1}=k_{1} \alpha_{1}$. Therefore, $\beta_{2} \leq \gamma \leq \alpha_{1}$. Similarly, we obtain that $\alpha_{2} \leq \gamma_{1} \leq \beta_{1}$. Hence, $f\left(\gamma_{2}\right)=k_{1} \gamma_{2}$ and $f\left(\gamma_{1}\right)=k_{2} \gamma_{1}$. Therefore, since $k_{1} \gamma_{2}=k_{2} \gamma_{1}, f\left(\gamma_{1}\right)=f\left(\gamma_{2}\right)$. That is, u_{∞} is a steady solution of (1)-(2). This finishes the proof.

Appendix

Following an approach as in M. E. Gurtin and R. C. MacCamy [4] we describe the dynamics of a biological species in a region $\Omega \subseteq \mathbb{R}^{n}$ by the following three functions of position $x \in \Omega$ and time t :
$u(x, t): \quad$ the "population density",
$\varphi(x, t)$: the "migration rate",
$\gamma(x, t)$: the "rate of population supply".
The function $u(x, t)$ gives the number of individuals, per unit volume, at x at time t; its integral over any region R gives the total population of R at time t. The function $\varphi(x, t)$ gives the rate at which individuals migrate, per unit volume, from the point x at time t towards any of the coordinates directions $e_{i}:=(0, \ldots, 1, \ldots)$. The product $u(x, t) \varphi(x, t)$ gives the number of individuals that migrate from x at time t towards the direction e_{i}. The flow of population at the point x in the direction η is given by $\eta \cdot \nabla[u(x, t) \varphi(x, t)]$. Finally the function $\gamma(x, t)$ gives the rate at which individuals are supplied,
per unit volume, directly at x by births and deaths. The product $u(x, t) \gamma(x, t)$ gives the number of individuals supplied at x.

The functions u, φ and γ must be consistent with the following "Law of population balance": For every regular subregion R of Ω and for all t,

$$
\frac{d}{d t} \int_{R} u(x, t) d x=\int_{\partial R} \eta \cdot \nabla[u(x, t) \varphi(x, t)] d s_{x}+\int_{R} u(x, t) \gamma(x, t) d x
$$

where η is the outward unit normal to the boundary ∂R of R. This equation asserts that the rate of change of population of R must equal the rate at which individuals leave R across its boundary plus the rate at which individuals are supplied directly to R.
Using the well known Divergence Theorem we obtain

$$
\frac{d}{d t} \int_{R} u(x, t) d x=\int_{R} \triangle[u(x, t) \varphi(x, t)] d x+\int_{R} u(x, t) \gamma(x, t) d x
$$

Since R is an arbitrary region in Ω we obtain the following local counterpart

$$
\frac{\partial u}{\partial t}=\triangle[\varphi(x, t) u(x, t)]+u(x, t) \gamma(x, t)
$$

In this paper we are only concerned with migration mechanisms. Therefore we assume that φ is not explicitly dependent upon the position and time but on the population density u at times $t=k \tau, k=0,1,2, \ldots$, for a given $\tau>0$. that is, $\varphi(x, t)=\varphi(u(x,[t / \tau] \tau))$ where $[\theta]$ denotes the greatest integer less than or equal to θ.

Introducing this in the previous equation we arrive at the following nonlinear functional differential equation for the density u :

$$
\frac{\partial u}{\partial t}=\Delta[\varphi(u(x,[t / \tau] \tau)) u(x, t)]+\Gamma(u(x,[t / \tau] \tau)) u(x, t)
$$

References

[1] Aronson, D. G. The role of diffusion in mathematical population biology: Skellam revisited, in Mathematics in biology and medicine, Lecture Notes in Biomathematics 57, ed. S. Levin, Springer-Verlag Berlin, 1985, 2-6.
[2] Aronson, D., Crandall, M.G., Peletier, L.A. Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Analysis, Theory, Methods and Applications, Vol. 6, $N^{o} 10$ (1982), 1001-1022.
[3] Grunbaum, D., Okubo, A. Modelling social animal aggregations, Lecture Notes in Biomath. 100, ed. S. Levin, Springer-Verlag, 1994, 296-325.
[4] Gurtin, M.E., MacCamy, R.C. On the diffusion of biological population, Mathematical Biosciences 33 (1977), 35-49.
[5] Grindrod, P. Models of individuals aggregation in single and multispecies communities, J. Math. Biol. 26 (1988), 651-660.
[6] Novick-Cohen, A., Pego, R. L. Stable patterns in a viscous diffusion equation, Trans. Amer. Meth. Soc. (por aparecer).
[7] Lizana, M., Padrón, V. A spatially discrete model for aggregating populations, submited to J. Math. Biol., 1996.
[8] Padrón, V. Sobolev regularization of a nonlinear ill-posed parabolic problem, preprint.
[9] Padrón, V. A simple parabolic equation capable to generate aggregation, Segundo Coloquio sobre Ecuaciones Diferenciales y Aplicaciones, Vol. 1, Universidad del Zulia, Maracaibo, Venezuela, 1995.

[^0]: ${ }^{\dagger}$ Recibido 98/09/25. Aceptado 98/12/01.
 MSC (1991): 35K99, 39B99, 92D25.

