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Facultad de Ciencias
Universidad de Los Andes
Mérida 5101, Venezuela

Fax: +58 74 401286

Abstract

In this paper we study the equation

ut = ∆[ϕ(u(x, [t/τ ]τ))u(x, t)] , x ∈ Ω , t > 0,

with homogeneous Neumann boundary conditions in a bounded
domain in Rn. We show existence and uniqueness for the initial
value problem, and prove some results that show the aggregating
behaviour exhibited by the solutions.
Key words and phrases: parabolic equation, functional differ-
ential equation, aggregating populations.

Resumen

En este art́ıculo estudiamos la ecuación

ut = ∆[ϕ(u(x, [t/τ ]τ))u(x, t)] , x ∈ Ω , t > 0,

con condiciones de frontera homogéneas de tipo Neumann en un
dominio acotado en Rn. Probamos la existencia y unicidad del
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problema de valores iniciales y obtenemos algunos resultados que
muestran el comportamiento de agregación que exhiben las solu-
ciones.
Palabras y frases clave: ecuación parabólica, ecuación dife-
rencial funcional, agregación en poblaciones.

Introduction

In this paper we study the equation

ut = ∆[ϕ(u(x, [t/τ ]τ))u(x, t)] , x ∈ Ω , t > 0 (1)

with boundary conditions

η · ∇[ϕ(u(x, [t/τ ]τ))u(x, t)] = 0 , x ∈ ∂Ω , t > 0 (2)

and initial data

u(x, 0) = u0(x) , x ∈ Ω. (3)

Here Ω is a bounded domain in Rn with smooth boundary ∂Ω, τ > 0 is a
constant, [θ] denotes the greatest integer less than or equal to θ (i.e. [θ] is an
integer such that [θ] ≤ θ < [θ] + 1 ), and ϕ is a non-increasing function. This
problem arises on a model for aggregating populations with migration rate
ϕ and constant population. A first attempt to model aggregating behavior
using partial differential equations conducts to the following equation (see
D. Aronson [1]),

ut = ∆f(u), (4)

where f(u) = uϕ(u), and ϕ is a non-increasing function of u. Nevertheless,
since f ′(u) may be negative for positive values of u, the standard initial-
boundary value problems for this equation are ill-posed.

Several models have been proposed to overcome this difficulty. These
include models based on systems of difference-differential equations [7], on
advection-diffusion equations [3], and on some type of regularization of equa-
tion (4) [5, 6, 8].

In this paper we assume that the density dependent dispersal coefficient
ϕ(u) gets actualized at certain predetermined intervals of time, letting us to
consider the functional differential equation (1).
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In Section 1 we prove existence and uniqueness of the solutions of (1)-(3).
We also show some comparison results and study the asymptotic behavior of
the solutions of a problem associated to (1)-(3).

In Section 2 we prove some results which show the aggregating behavior
that the solutions of (1)-(3) exhibit.

We include an Appendix with the derivation of equation (1).

1 Existence and Uniqueness of
Global Solutions

We will assume that the functions ϕ(u) and f(u) := uϕ(u) satisfy the following
hypothesis:

Hypothesis 1. 1. ϕ : [0,∞) 7→ (0,∞) is bounded and non-increasing.

2. There exist constants α1 and α2 with 0 < α1 < α2 ≤ ∞ such that f
is increasing for u ∈ (0, α1) and f is decreasing for u ∈ (α1, α2). If
α2 <∞, then f is nondecreasing for u ∈ (α2,∞).

For example, the following functions are admissible: ϕ(u) = exp(−u);
ϕ(u) = 2

3(1+u12) + 1
3 ; ϕ(u) = k1 for 0 ≤ u ≤ α1, ϕ(u) = k1 + k2−k1

α2−α1
(u−α1) for

α1 ≤ u ≤ α2, and ϕ(u) = k2 for α2 ≤ u <∞, where k1 and k2 are constants
such that 0 < k2 < k1 and k1α1 > k2α2.

In this section we will solve (1)-(3) by the method of steps, i.e., we in-
tegrate the equation inductively in Ω × (kτ, (k + 1)τ ], fork = 0, 1, . . . . This
leads us to solve the parabolic equation:

vt = 4[a(x)v(x, t)], x ∈ Ω , t ∈ (0, T ], (5)

with boundary conditions:

η · ∇[a(x)v(x, t)] = 0 , x ∈ ∂Ω , t > 0 (6)

and initial data

v(x, 0) = v0(x) , x ∈ Ω. (7)

for any T > 0. We will solve (5)-(7) with the following assumptions about the
data a and v0:

A1 a ∈ L∞(Ω) and 0 < α ≤ a(x) ≤ β for a.e. x ∈ Ω.
A2 v0 ∈ L∞(Ω) and v0(x) ≥ 0 for a.e. x ∈ Ω
A3 av0 ∈W 1

2 (Ω)
These will be called “Assumptions A”.
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Definition 1. A solution of problem (5)-(7) on [0, T ] is a function v with the
following properties:

i) v ∈ L∞(QT ),
ii) av ∈ C([0, T ] ; L2(Ω)) ∩W 1,0

2 (QT ),
iii)

∫
Ω v(x, t)ψ(x, t)dx−

∫∫
QT

[v(x, t)ψt(x, t)−∇(a(x)v(x, t)) · ∇ψ]dxdt
=
∫

Ω v0(x)ψ(x, 0)dx, for all ψ ∈W 1
2 (QT ) and for all t ∈ (0, T ].

A solution on [0,∞) means a solution on each [0, T ], and a sub-solution (super-
solution) is defined by (i), (ii) and (iii) with equality replaced by ≤ (≥).
Here we are using the standard notation QT := Ω× (0, T ].
Next, we will obtain some comparison results for the solutions of (5)-(7).

Proposition 1. Let v̂ be a supersolution of problem (5)-(7) in [0, T ] with
initial data v̂0 and let v be a sub-solution in [0, T ] with initial data v0. Then,
for all λ > 0 and 0 ≤ t ≤ T , we have

eλt
∫

Ω
(v(x, t)− v̂(x, t))+ ≤

∫
Ω

(v0(x)− v̂0(x))+ +
∫
Qt

[λ(v − v̂)]+eλs.(8)

Proof: For any ψ ∈ C2(QT ) such that ψx = 0 for (x, t) ∈ ∂Ω × [0, T ], we
have ∫

Ω
vψ −

∫∫
Qt

(vψt + avψxx) ≤
∫

Ω
v0ψ(0)

and

−
∫

Ω
v̂ψ +

∫∫
Qt

(v̂ψt + av̂ψxx) ≤ −
∫

Ω
v̂0ψ(0).

Adding term by term we obtain∫
Ω

(v − v̂)ψ −
∫∫

Qt

(v − v̂)(ψt + aψxx) ≤
∫

Ω
(v0 − v̂0)ψ(0). (9)

We now construct a special sequence of functions {ψn} to use in (9). Fix
T > 0 and choose a sequence {an} of smooth functions such that

0 < γ ≤ an ≤ ‖a‖L∞(Ω)

and

(an − a)/
√
an −→ 0 in L2(Ω).
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Since ||a−1/2
n ||L∞(Ω) < 1/γ, for all n, it is enough to choose {an} such that

(an − a)→ 0 in L2(Ω). 2

Next, let χ ∈ C∞0 (Ω) be such that 0 ≤ χ ≤ 1. Finally let ψn be the solution
of the backward problem

ψnt + anψnxx = λψn for (x, t) ∈ Ω× [0, T )
ψnx(x, t) = 0 (x, t) ∈ ∂Ω× [0, T )
ψn(x, T ) = χ(x) x ∈ Ω.

This is a parabolic problem and has a unique solution ψn ∈ C∞(QT ) that
satisfies the properties stated in the following Lemma.

Lemma 1. The function ψn has the following properties:
(i) 0 ≤ ψn ≤ eλ

(t−T )
in QT

(ii)
∫∫

QT

an(ψnxx)2 < c

(iii) sup
0≤t≤T

∫
Ω

(ψnx)2 (t) < c, where the constant c depends only on χ.

The proof of this Lemma is similar to the proof of Lemma 10 in D. Aronson,
M. G. Crandall and L. A. Peletier [2] and it is omitted.
If we set t = T and ψ = ψn in (9) we obtain:∫

Ω
(v − v̂)χ −

∫∫
QT

(v − v̂)(a− an)ψnxx

≤
∫

Ω
(v0 − v̂0)ψn(0) +

∫∫
QT

λ(v − v̂)ψn (10)

≤
∫

Ω
(v0 − v̂0)+e−λT +

∫∫
QT

[λ(v − v̂)]+eλ(s−T ).

Since ∫∫
QT

|a− an||ψnxx| =
∫∫

QT

|a− an|√
an

(
√
an |ψnxx|),

we have, by Lemma 1 (ii),

‖(a− an)ψnxx‖L1(QT ) ≤ ‖a− an√
an
‖L2(QT ) ‖

√
an ψnxx‖L2(QT )

= T 1/2 ‖a− an√
an
‖L2(Ω) ‖

√
an ψnxx‖L2(QT )

≤ (cT )1/2 ‖a− an√
an
‖L2(Ω),
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which tends to zero as n → ∞ by the choice of an. Thus, letting n → ∞ in
(10) we obtain∫

Ω
(v(T )− v̂(T ))χ ≤

∫
Ω

(v0 − v̂0)+e−λT +
∫∫

QT

[λ(v − v̂)]+eλ(S−T )(11)

This inequality holds for any χ ∈ C∞0 (Ω) with 0 ≤ χ ≤ 1. Hence, it continues
to hold for χ(x) = 1 on {x : v(T ) > v̂(T )} and χ = 0 otherwise (i.e.,
χ = sign(v(T ) − v̂(T ))+). Here we have used the fact that C∞0 (Ω) is dense
in L1(Ω). Replacing T by any t ≤ T and applying the same argument we
complete the proof of the Proposition.

2

Theorem 1. (i) Let v, v̂ be solutions problem (5)-(7) on [0, T ] with initial
data v0 and v̂0 respectively. Then

‖v(t)− v̂(t)‖L′(Ω) ≤ ‖v0 − v̂0‖L′(Ω)

Thus, in particular, the solution of problem (5)-(7) is unique.
(ii) Let v be a sub-solution and v̂ a super-solution of problem (5)-(7) with
initial data v0, and v̂0 respectively. Then if v0 ≤ v̂0 it follows that

v ≤ v̂

Proof: With the assumptions of (ii), Proposition 1 yields

eλt
∫

Ω
(v(t)− v̂(t))+ ≤

∫
Ω

(v0 − v̂0)+ +
∫ t

0

∫
Ω
eλs[λ(v − v̂)]+. (12)

Thus if we write

h(t) = eλt
∫

Ω
(v(t)− v̂(t))+

(12) implies, by Gronwall’s Lemma, that h(t) ≤ h(0) eλt or∫
Ω

(v(t)− v̂(t))+ ≤
∫

Ω
(v0 − v̂0)+.

This proves (ii). The assertion (i) follows by adding the corresponding in-
equality for (v̂ − v)+.

2
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Remark 1. Since v0 ≥ 0 and zero is a solution of (5)-(7), we obtain that the
solutions of (5)-(7) are non negative.

Remark 2. Since v0 ∈ L∞(Ω), let K be a constant such that v0 ≤ K. Let
v̂0 = K then v̂(x, t) = eMt is a super-solution (in fact, a solution) of the
problem (5)-(7). Then, by the theorem, v̂(x, t) ≤ eMt. In particular,

v ∈ L∞(QT ).

Now we proceed to the proof of the following theorem:

Theorem 2. If the Assumptions A are fulfilled, then the problem (5)-(7) has
a unique solution v un [0, T ] for any T > 0. Moreover, v satisfies the following
energy relation

1
2

∫
Ω
av2 +

∫
Qt

(av)2
xi =

1
2

∫
Ω

(av0)2, (13)

and the estimate

ess sup
0≤t≤T

‖a(·)v(·, t)‖L2(Ω) + ‖∇(av)‖L2(QT ) ≤ C‖a(·)v0(·)‖L2(Ω), (14)

where C = C(α, β) is a constant independent of T .

Proof: The uniqueness is already given in Theorem 1 (i).
For the proof of solvability we make the change of variable w(x, t) = a(x)v(x, t)
and arrive to the following problem ãwt = 4w, (x, t) ∈ QT

η · ∇w = 0, (x, t) ∈ ∂Ω× (0, T ]
w(x, 0) = w0(x) := a(x)v0(x), x ∈ Ω,

(15)

where ã = 1/a. It is clear that ã ∈ L∞(Ω).
Now we take a fundamental system {ϕk(x)} in W 1

2 (Ω). Since ã(x) ≥ 1/β > 0,
for a.e. x ∈ Ω, we can choose ϕk(x) such that

∫
Ω ã(x)ϕk(x)ϕl(x) dx = 0 for

k 6= l. We shall look for approximate solutions

wN (x, t) =
N∑
k=1

CNk (t)ϕk(x)

from the relation

(ãwNt , ϕl) + (wNxi , ϕlxi) = 0 , l = 1, . . . , N (16)
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and the equation

CNl (0) = (w0, ϕl) , l = 1, . . . , N, (17)

where (·, ·) denotes the inner product in L2(Ω). Here and in what follows the
terms of the form (wNxi , ϕlxi) mean

∑N
i=1(wNxi , ϕlxi).

The relation (16) is simply a system of N linear ordinary differential equa-
tions in the unknowns Cl(t) ≡ CNl (t), (l = 1, . . . , N), whose principal terms
are of the form dCl(t)/dt, the coefficients of Ck(t) being constant. By a well
known theorem on the solvability of such systems, we see that (16) and (17)
uniquely determine continuously differentiable functions CNl (t) on [0, T ].

Now we shall obtain bounds for wN which do not depend on N . To do this,
let us multiply each equation of (16) by the appropriate CNl , add then up
from 1 to N and then integrate the result with respect to t from 0 to t ≤ T ,
to obtain: ∫

Qt

ãwNt w
N +

∫
Qt

(wNxi)
2 = 0.

From this we obtain

1
2

∫
Ω
ã(wN )2 +

∫
Qt

(wNxi)
2 =

1
2

∫
Ω
ã(wN0 )2, (18)

where wNo (x) = wN (x, 0) =
∑N

1 CNK (0)ψK(x) =
∑N

1 (wo, ψK)ψK . Now, since
1/β ≤ ã ≤ 1/α, we obtain

1
2β
‖wN (·, t)‖2Ω + ‖wNx ‖2Qt ≤

1
2α
‖wN (·, 0)‖2Ω,

where

‖wx‖Qt :=

(∫
Qt

n∑
i=1

w2
xi

)1/2

.

We replace ‖wN0 ‖2Ω by y(t)‖wN0 ‖Ω, where y(t) := ess sup0≤τ≤t ‖wN (·, t)‖Ω.
This gives the inequality

‖wN (·, t)‖2Ω + ν‖wx‖2Qt ≤ µy(t)‖wN0 ‖Ω := j(t),

where µ = β
2α , ν = 2β. From this the two inequalities

y2(t) ≤ j(t) (19)
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and

‖wNx ‖2Qt ≤ υ−1j(t) (20)

follow. We take the square root of each side of (19) and (20), add together the
resulting inequalities, and then estimate the right-hand size in the following
way:

|wN |Qt := y(t) + ‖wNx ‖Qt ≤ (1 + υ−1/2)j1/2(t)

≤ (1 + ν−1/2)µ1/2‖wN0 ‖
1/2
Ω |wN |1/2Qt

.

From this we obtain the following bound for |wN |Qt :

|wN |Qt ≤ (1 + ν−1/2)2µ‖wN0 ‖Ω. (21)

Thus, we obtain the inequality

|wN |Qt ≤ c‖wN0 ‖Ω, (22)

which holds for any t in [0, T ], with c = c(α, β) independent of t and T . But
‖wN0 ‖Ω ≤ ‖w0‖Ω, so we have the bound

|wN |Qt ≤ C1, (23)

with a constant C1 independent of N . Because of (23), we can choose a
subsequence {wNk} (k = 1, 2, . . . ) from the sequence {wN} (N = 1, 2, . . . )
which converges weakly in L2(QT ), together with the derivatives wNkxi , to some
element w ∈W 1

2 (QT ) (as a result of subsequent arguments, we shall show that
the entire sequence {wN} converges to w). This element w(x, t) is the desired
generalized solution of the problem (15).

Indeed, let us multiply (16) by an arbitrary absolutely continuous function
dl(t) with ddl(t)/dt ∈ L2(0, T ), add up the equations thus obtained from 1
to N , and then integrate the result from 0 to t ≤ T . If we integrate the first
term by parts with respect to t, we obtain an identity:∫

Ω
ãwNΦdx−

∫
Qt

[ãwNΦt + wNxiΦxi ]dxdt =
∫

Ω
ãwN0 Φ(x, 0)dx (24)

in which Φ =
∑N
l=1 dl(t)ϕl(x). Let us denote byMN the set function Φ with

dl(t) having the properties indicated above. The totality ∪∞p=1Mp is dense in
W 1

2 (QT ).
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For a fixed Φ ∈ Mp in (24) we can take the limit of the subsequence
{wNk} chosen above, starting with Nk ≥ p. As a result, we obtain (24) for
w. But since ∪∞p=1Mp is dense in W 1

2 (QT ), it is not hard to obtain that w
satisfies (ii) in the corresponding definition of solution of problem (15).

Finally it can be easily seen that the difference, wNk − wNl satisfies the
inequality (22):

|wNk − wNl |QT ≤ C(T )‖wNk0 − wNl0 ‖Ω.

This implies that wNk converges to w in the norm | · |QT , showing that w ∈
C([0, T ;L2(Ω))∩W 1,0

2 (QT ). Now, applying (18) to the subsequence wNk and
taking limits we obtain (13). From this, following the same argument that led
to (22), we obtain (14). This finishes the proof of the Theorem. 2

The following result is a consequence of the previous Theorem. The proof
is given in [9].

Theorem 3. Any solution v(x, t) of (5)-(7) satisfies

lim
t→∞

‖v(·, t)− v∞‖L2(Ω) = 0,

where v∞ := 1
a(x)

(∫
Ω v0

) (∫
Ω

1
a

)−1.

Now we are ready to prove the main result of this section. A global
solution for the problem (1)-(3) is a function u(x, t), x ∈ Ω, t > 0, such that
u is a solution of the problem (5)-(7) in Ω× (kτ, (k+ 1)τ ], k = 0, 1, 2, ..., with
a(x) = ϕ(u(x, [t/τ ]τ)).

Theorem 4. If u0 ∈ L∞(Ω) then the problem (1)-(3) has a unique global
solution.

Proof: The proof is by induction in k. The case k = 0 is obtained directly
from Theorem 2. Assuming the case k and using the Remark 2 after the proof
of Theorem 1 we obtain that u(x, (k+1)τ) ∈ L∞(Ω) and a(x)u(x, (k+1)τ) ≤
W 1

2 (Ω). From this it follows that we can apply Theorem 2 to solve (5)-(7) in
Ω×((k+1)τ, (k+2)τ ] with a(x) = ϕ(u(x, (k+1)τ)) and u0(x) = u(x, (k+1)τ).
This finishes the proof. 2

2 Aggregation

In this section we consider some results that show the aggregating behavior
that the solutions of (1)-(3) exhibit. The first result is a direct consequence
of Theorem 3. For any u0 ∈ L∞(Ω) and τ > 0, let u(x, t;u0, τ) denote the
solution of (1)-(3).
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Theorem 5. Suppose that ϕ(u) and f(u) = uϕ(u) satisfy Hypothesis 1. For
any ε > 0 there exists τ > 0 such that

‖u(·, τ ;u0, τ)− u∞(·)‖L2(Ω) < ε,

where u∞ := 1
ϕ(u0(x))

(∫
Ω u0(x) dx

) (∫
Ω

dx
ϕ(u0(x))

)−1
.

Since ϕ(u) is a non-increasing function this result states that, for large enough
τ , the solutions of (1)-(3) concentrate its mass around the points of higher
density of the initial data u0(x), thus showing the kind of aggregating behavior
that we were expecting.

Another way to look at this result it is to notice that, by the change of
variable s = t/τ and the definition w(x, s) := u(x, sτ), problem (1)-(3) is
transformed into the equivalent problem

ws = ∆[τϕ(w(x, [s]))w(x, s)] , x ∈ Ω , s > 0
η · ∇[τϕ(w(x, [s]))w(x, s)] = 0 , x ∈ ∂Ω , s > 0 (25)
w(x, 0) = w0(x) := u0(x) , x ∈ Ω.

Hence, taking τ > 0 big accounts for multiplying ϕ by a large constant.
Therefore, Theorem 5 states that for any ε > 0 we can choose ϕ̃ := τϕ,
multiplying the original ϕ by a large constant τ , such that the solution w of
(25) satisfies

‖w(·, 1)− u∞(·)‖L2(Ω) < ε.

That is, given an initial data u0, we can generate aggregation around the
points of higher density of u0, at a prescribed time, by an adequate choice of
ϕ.

Proof of Theorem 5: We consider the problem

vt = ∆[a(x)v(x, t)] , x ∈ Ω , t > 0
η · ∇[a(x)v(x, t)] = 0 , x ∈ ∂Ω , t > 0
v(x, 0) = v0(x) := u0(x) , x ∈ Ω,

with a(x) := ϕ(u0(x)). By Theorem 3, for any ε > 0 there exists τ > 0 such
that

‖v(·, t)− v∞(·)‖L2(Ω) < ε,
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for any t > τ , where v∞ := 1
a(x)

(∫
Ω v0(x) dx

) (∫
Ω

dx
a(x)

)−1
. By uniqueness of

the solutions of (1)-(3) it follows that u(·, τ ;u0, τ) = v(·, τ). This finishes the
proof. 2

In what follows we restrict ourselves to a more specific function ϕ. Let
ϕ(u) be a continuous function such that

ϕ(u) :=

 k1, 0 ≤ u ≤ α1
ψ(u), α1 ≤ u ≤ α2
k2, α2 ≤ u

where ψ(u) is a non-increasing function, k1, k2, α1 and α2 are positive con-
stants such that k2 < k1, α1 < α2 and k2α2 < k1α1. For example, we can
choose ψ to be linear, that is ψ(u) = k1 + k2−k1

α2−α1
(u− α1).

The following result shows that, under certain restrictions on the initial
data, the solutions of (1)-(3) converge to a steady state. It is not difficult to
show that a function u ∈ L∞(Ω) is a steady state solution of (1)-(2) if and only
if f(u(x)) = constant for a.e. x ∈ Ω. Let βi be such that β2 < α1 < α2 < β1
and f(βi) = f(αi), i = 1, 2. That is, k1β2 = k2α2 and k2β1 = k1α1.

Theorem 6. Let Ω̃ ⊂ Ω be such that both Ω̃ and Ω\ Ω̃ have positive measure.
Suppose that u0 satisfies β2 ≤ u0(x) ≤ α1, for a.e. x ∈ Ω̃ and α2 ≤ u0(x) ≤ β1
for a.e.x ∈ Ω \ Ω̃. Then, the solution u(x, t) of (1)-(3) satisfies

lim
t→∞

‖u(·, t)− u∞‖L2(Ω) = 0,

where u∞ is a steady solution of (1)-(2). Moreover,

u∞ =
{
γ2, x ∈ Ω̃
γ1, x ∈ Ω \ Ω̃,

(26)

where

γi =
ki

k2|Ω̃|+ k1|Ω \ Ω̃|

∫
Ω
u0(x) dx, i = 1, 2

and β2 ≤ γ2 ≤ α1 < α2 ≤ γ1 ≤ β1.

Proof: First, we will show that u(x, t) satisfies

β2 ≤ u(x, t) ≤ α1, x ∈ Ω̃, t ≥ 0 (27)

and

α2 ≤ u(x, t) ≤ β1, x ∈ Ω \ Ω̃, t ≥ 0. (28)
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Let

v1(x) =
{
α1, x ∈ Ω̃
β1, x ∈ Ω \ Ω̃,

and

v2(x) =
{
β2, x ∈ Ω̃
α2, x ∈ Ω \ Ω̃.

Then vi (i = 1, 2) are steady solutions of (1)-(2). For 0 ≤ t ≤ τ let a(x) :=
ϕ(u0(x)); then

a(x) =
{
k1, x ∈ Ω̃
k2, x ∈ Ω \ Ω̃.

Then, v(x, t) := u(x, t), 0 ≤ t ≤ τ , is the solution of (5)-(7) in [0, τ ]. Moreover,
since

v2(x) = β2 ≤ v0(x) ≤ α1 = v1(x), x ∈ Ω̃

and

v2(x) = α2 ≤ v0(x) ≤ β1 = v1(x), x ∈ Ω \ Ω̃,

we have that

v2(x) ≤ v0(x) ≤ v1(x)

for almost every x ∈ Ω. Since vi (i = 1, 2) are steady solutions of (5)-(6), it
follows from Theorem 1 that

v2(x) ≤ v(x, t) ≤ v1(x)

for almost every x ∈ Ω and 0 ≤ t ≤ τ . That is, (27) and (28) hold for
0 ≤ t ≤ τ . Repeating the same argument inductively we obtain that (27) and
(28) hold for any t ≥ 0, as we wanted to show.

This implies, in particular, that u(x, t) is a solution of (5)-(7) on [0,∞)
with a(x) = ϕ(u0(x)). Therefore, it follows from Theorem 3 that

lim
t→∞

‖u(·, t)− u∞‖L2(Ω) = 0,

where

u∞ :=
1

a(x)

(∫
Ω
u0

)(∫
Ω

1
a

)−1

.
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Then (26) follows by noticing that∫
Ω

dx

a(x)
=
k2|Ω̃|+ k1|Ω \ Ω̃|

k1k2
.

Now, by using the hypothesis that β2 ≤ u0(x) ≤ α1, for a.e. x ∈ Ω̃ and
α2 ≤ u0(x) ≤ β1 for a.e.x ∈ Ω \ Ω̃, we obtain

β2|Ω̃|+ α2|Ω \ Ω̃| ≤
∫

Ω
u0 ≤ α1|Ω̃|+ β1|Ω \ Ω̃|.

Hence,

β2 =
k2β2|Ω̃|+ k2α2|Ω \ Ω̃|
k2|Ω̃|+ k1|Ω \ Ω̃|

≤ γ2 ≤
k2α1|Ω̃|+ k2β1|Ω \ Ω̃|
k2|Ω̃|+ k1|Ω \ Ω̃|

.

Here we have used the fact that k1β2 = k2α2 and k2β1 = k1α1. Therefore,
β2 ≤ γ ≤ α1. Similarly, we obtain that α2 ≤ γ1 ≤ β1. Hence, f(γ2) = k1γ2
and f(γ1) = k2γ1. Therefore, since k1γ2 = k2γ1, f(γ1) = f(γ2). That is, u∞
is a steady solution of (1)-(2). This finishes the proof.

2

Appendix

Following an approach as in M. E. Gurtin and R. C. MacCamy [4] we describe
the dynamics of a biological species in a region Ω ⊆ Rn by the following three
functions of position x ∈ Ω and time t:

u(x, t) : the “population density”,
ϕ(x, t) : the “migration rate”,
γ(x, t) : the “rate of population supply”.

The function u(x, t) gives the number of individuals, per unit volume, at
x at time t; its integral over any region R gives the total population of R
at time t. The function ϕ(x, t) gives the rate at which individuals migrate,
per unit volume, from the point x at time t towards any of the coordinates
directions ei := (0, . . . , 1, . . . ). The product u(x, t)ϕ(x, t) gives the number of
individuals that migrate from x at time t towards the direction ei. The flow
of population at the point x in the direction η is given by η · ∇[u(x, t)ϕ(x, t)].
Finally the function γ(x, t) gives the rate at which individuals are supplied,
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per unit volume, directly at x by births and deaths. The product u(x, t)γ(x, t)
gives the number of individuals supplied at x.

The functions u, ϕ and γ must be consistent with the following “Law of
population balance”: For every regular subregion R of Ω and for all t,

d

dt

∫
R

u(x, t)dx =
∫
∂R

η · ∇[u(x, t)ϕ(x, t)]dsx +
∫
R

u(x, t)γ(x, t)dx,

where η is the outward unit normal to the boundary ∂R of R. This equation
asserts that the rate of change of population of R must equal the rate at which
individuals leave R across its boundary plus the rate at which individuals are
supplied directly to R.
Using the well known Divergence Theorem we obtain

d

dt

∫
R

u(x, t)dx =
∫
R

4[u(x, t)ϕ(x, t)]dx+
∫
R

u(x, t)γ(x, t)dx

Since R is an arbitrary region in Ω we obtain the following local counterpart

∂u

∂t
= 4[ϕ(x, t)u(x, t)] + u(x, t)γ(x, t).

In this paper we are only concerned with migration mechanisms. There-
fore we assume that ϕ is not explicitly dependent upon the position and time
but on the population density u at times t = kτ , k = 0, 1, 2, ..., for a given
τ > 0. that is, ϕ(x, t) = ϕ(u(x, [t/τ ]τ)) where [θ] denotes the greatest integer
less than or equal to θ.

Introducing this in the previous equation we arrive at the following non-
linear functional differential equation for the density u:

∂u

∂t
= 4[ϕ(u(x, [t/τ ]τ))u(x, t)] + Γ(u(x, [t/τ ]τ))u(x, t)
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