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Abstract

We study the equations of motion of two immiscible fluids with
comparable densities, but very different viscosities in a two-dimensional
horizontal pipe. This is applied to the lubricated transportation of
heavy crude oil. First, we write the problem in variational form and
next we derive an energy balance for this model.
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Resumen

En este trabajo se estudian las ecuaciones de movimiento de dos flui-
dos no miscibles con densidades comparables pero de viscosidades dife-
rentes en una tubeŕıa horizontal. Esto se aplica al transporte lubricado
de crudo pesado. Primero, se escribe el problema en forma variacional
y después se deriva un balance de enerǵıa para este modelo.
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1 Introduction

This work is devoted to the equations of motion of the lubricated transporta-
tion of heavy crude oil in a horizontal pipeline. In petroleum industry, an
efficient way for transporting heavy crude oil in pipelines is by injecting wa-
ter under pressure along the inner wall of the pipeline. The water acts as
a lubricant by coating the wall of the pipeline, thus preventing the oil from
adhering to the pipe. This behavior is made possible by the facts that both
fluids are immiscible and the oil is much more viscous than the water while
both have comparable densities. For more details, the reader can refer to
Joseph & Renardy [4].

The full problem is that of a three-dimensional flow in a cylindrical pipe
of two immiscible fluids, water and oil, governed by the transient Navier-
Stokes equations. On entering the pipe, the fluid with low viscosity (water) is
adjacent to the pipe wall and it surrounds the fluid with high viscosity (heavy
oil). It is assumed that the flow is sufficiently smooth so that this situation
holds until a certain time T , and so that the interface between the two fluids,
which is a free surface, can be suitably parametrized and is never adjacent
to the pipe wall. The equation of the free surface is given by a transport
equation and the transmission conditions on the interface are:

1) the continuity of the velocity;

2) the balance of the normal stress with the surface tension.

Since this is a difficult problem, we consider here the simplified situation of a
horizontal pipeline in two dimensions. In this case, we can take advantage of
symmetry and consider only one half of the domain, say the upper half, that
we denote by Ω.

In this work, we propose to study the energy balance of this problem.
Although the flow of two immiscible fluids has been addressed before, to our
knowledge, this is the first time that inflow and outflow boundary conditions
are considered. Usually, either the pipe has an infinite length, as in the work
by Socolowsky [7], or the flow occurs in a closed vessel and the free surface is
a smooth closed curve as in the work of Solonnikov [10], [8], [9]. We also refer
to our previous work [2] in which we analyze a numerical scheme for solving
one time step of a discrete analogue of (5).

This work is organized as follows. In Section 1, we state the fully non-
linear equations. In Section 2, we set the equations in a variational form. The
equation for the energy balance is derived in Section 3.

We finish this introduction by recalling the notation that is used in the
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sequel. We shall use the standard Sobolev space (cf. Adams [1] or Nečas [6]):

H1(Ω) = {v ∈ L2(Ω) ; ∇ v ∈ L2(Ω)2} ,

where ∇ v is the gradient of v taken in the sense of distributions:

∇ v = (
∂v

∂x1
,

∂v

∂x2
)t ,

i.e. in the dual space D′(Ω) of D(Ω), the space of indefinitely differentiable
functions with compact support in Ω . The space H1(Ω) is equipped with the
seminorm

|v|H1(Ω) =

[
2∑

i=1

∫

Ω

| ∂v

∂xi
|2 dx

]1/2

,

and is a Hilbert space for the norm

‖v‖H1(Ω) =
[
‖v‖2L2(Ω) + |v|2H1(Ω)

]1/2

.

The scalar product of L2(Ω) is denoted by (·, ·). Finally, the definitions of
these spaces are extended straightforwardly to vectors, with the same nota-
tion. The euclidean vector norm is denoted by | · |.

2 The two-phase flow model

Let us consider the 2 − D flow illustrated by Fig. 1 that depicts the upper
half Ω of the domain of interest.

For each time t ∈ [0, T ], the domain Ω is decomposed into two moving
subdomains Ω1(t) and Ω2(t), with boundary

∂Ωi(t) = Γi
in ∪ Γi

0 ∪ Γi
out(t) ∪ Γ(t), i = 1, 2, (1)

where Γin = Γ1
in ∪ Γ2

in denotes the inlet boundary that is independent of
time, Γout(t) = Γ1

out(t)∪Γ2
out(t) denotes the outlet boundary, Γ2

0 is the upper
pipeline boundary, Γ1

0 is the artificial boundary in the middle of the pipeline,
Ω1(t) is the region occupied by the high-viscosity fluid (oil) and Ω2(t) that
occupied by the low-viscosity fluid (water). As stated in the introduction, it
is assumed that the interface between the two fluids: Γ(t) = Ω1(t) ∩ Ω2(t),
can be parametrized by a function (x, t) 7→ Φ(x, t) such that the subdomains
can be written
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Ω1(t) = {(x, y) ∈ Ω , 0 < x < L , 0 < y < Φ(x, t)}, (2)

Ω2(t) = {(x, y) ∈ Ω , 0 < x < L , Φ(x, t) < y < D}, (3)

where D denotes the radius of the pipeline and L its length. Note that whereas
Γin is the actual inlet boundary, Γout is an artificial outlet boundary, intro-
duced to cut the domain of interest at a convenient location, in view of nu-
merical computation.

(x,t)

Γ

Γ

Γ

Γ

Γ

Γ

Γ

in

in

0

0

out

out

1

1

1

2
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(t)

(t)

(t)

y
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1
(t)

(t)

y = Φ

Figure 1: Positioning of the two fluids with water above oil.

To describe the density and viscosity, we introduce the piecewise constant
quantities ρ = ρ(t) and µ = µ(t) defined by:

ρ = χ1 ρ1 + χ2 ρ2 , µ = χ1 µ1 + χ2 µ2, (4)

where χi = χi(t) is the characteristic function of the domain Ωi = Ωi(t), ρi

are the constant densities and µi the constant viscosities, for i = 1, 2. To
denote the velocity and pressure, we set:

u = ui = (ui
x, ui

y) , p = pi in Ωi , i = 1, 2 .

Then for almost every t ∈]0, T [, the fluids must satisfy the following equations
(to simplify, we suppress the dependence on t):
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ρi

(
∂ui

∂t
+ ui · ∇ui

)
− µi4ui +∇pi = ρi g in each Ωi , i = 1, 2

∇ · ui = 0 in Ω ,
(5)

where g is the gravity and

u · ∇u =
2∑

i=1

ui
∂u
∂xi

.

The equation for the motion of the free surface Γ, stating the immiscibility of
the fluids, is

∂Φ
∂t

+ ux
∂Φ
∂x

= uy . (6)

The equations (5) are complemented by an adequate initial condition, appro-
priate inflow and outflow conditions on the vertical boundaries of Ω, a no-slip
boundary condition on the top horizontal boundary of Ω, and an artificial
symmetry condition on the bottom horizontal boundary of Ω:





u = U on Γin

u2 = 0 on Γ2
0

u1 · n = 0 on Γ1
0

t · σ1 · n = 0 on Γ1
0

σ · n = −pout n on Γout,

(7)

and interface conditions (continuity of the velocity and balance of the normal
stress with the surface tension, across the interface)

[u]Γ = 0 , [σ]Γ · n1 = − κ

R
n1 , (8)

where U = Ui on Γi
in for i = 1, 2 denotes the given inlet velocity independent

of time, pout a given exterior pressure on the outlet boundary, n is the unit
exterior normal vector to the boundary of Ω, t is the unit tangent vector
to Γ1

0, pointing in the direction of increasing x (i.e. in the counterclockwise
direction), n1 is the unit normal to Γ, exterior to Ω1, [·]Γ denotes the jump
on Γ in the direction of n1:

[f ]Γ = f |Ω1 − f |Ω2 ,
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κ > 0 is a given constant related to the surface tension, R is the radius of
curvature with the appropriate sign, i.e. with the convention that R > 0 if
the center of curvature of Γ is located in Ω1, and the stress tensor σ satisfies
the constitutive equation of a Newtonian fluid:

σ = σ(u, p) = µ A1(u)− p I = µ
(∇u + (∇u)t

)− p I .

We assume that the inlet velocity U has the form:

U = −U(y)n = (U(y), 0)t , U(y) ≥ 0 , (9)

i.e. the inlet velocity is parallel to the normal vector n and is directed inside
Ω. Moreover, we assume that U(D) = 0; thus U satisfies the compatibility
conditions:

U2(Γ2
0 ∩ Γ2

in) = 0 , U1 · t1(Γ1
in ∩ Γ1

0) = 0 , (10)

where t1 is the unit tangent vector to Γ1
in (i.e. in the direction of the normal

to Γ1
0).

Remark 2.1. It follows from the second and third boundary conditions in
(7) and the fact that div u = 0 that necessarily,

∫

Γout

u · n dy =
∫

Γout

U(y) dy =
∫

Γin

U(y) dy . (11)

Finally, (6) is complemented by the initial and boundary conditions,

∀x ∈ [0, L] , Φ(x, 0) = y0 ,

∀t ∈ [0, T ] , Φ(0, t) = y0 ,
(12)

where y0 ∈]0, D[ is a given constant. As a consequence, the inlet velocity
U does not depend on time. Furthermore, since the oulet boundary Γout is
in fact artificial, we shall need to introduce an additional condition there.
This will appear when performing the energy balance and doing numerical
computation. This situation is somewhat similar to that encountered when
studying a meniscus.

3 Variational formulation

Let us put problem (5), (7), (8), (9) and (10) into an equivalent variational
formulation. For this, we assume that the interface Γ is Lipschitz continuous.
This is compatible with the fact that the interface is very smooth at initial time
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(in fact, its graph is a straight horizontal line); therefore we can reasonably
assume that it remains a sufficiently smooth graph for some time T . Thus each
subdomain Ωi is also Lipschitz continuous. The given function U belongs to
H1(0, D), the outlet pressure pout belongs to L2(Γout) and g being the force
of gravity is very smooth. Then we assume that the solution (u, p) is also
sufficiently smooth during the above-mentioned time T .

First we consider the problem where the first equation in (7) is replaced
by the homogeneous boundary condition with U = 0:

u = 0 on Γin .

Afterward, we shall introduce an adequate lifting of U in the variational
formulation. In view of the boundary conditions, we choose the following
space for the velocity:

X = {v ∈ H1(Ω)2 ; v|Γin = 0 , v|Γ2
0

= 0 , v · n|Γ1
0

= 0} . (13)

Both the transmission condition on the interface and the outflow condition
involve the stress tensor; thus the pressure has no indeterminate constant and
hence the space for the pressure is

M = L2(Ω) , (14)

and as usual, we define the space of the velocities with zero divergence:

V = {v ∈ X ; ∇ · v = 0} . (15)

Now, for the variational formulation, since ∇ · v = 0, we have the identity in
each Ωi:

∆u = ∇ ·A1(u) .

Therefore, taking the scalar product of the first equation of (5) in L2(Ωi)2

with a test function v ∈ X, applying Green’s formula in each Ωi (that is valid
for a sufficiently smooth solution) and summing over i, we obtain:

∫

Ω

ρ
∂u
∂t

· v dx +
2∑

i=1

∫

Ωi

(µ A1(ui)− pi I) : ∇vi dx +
∫

Ω

ρ(u · ∇u) · v dx

+
2∑

i=1

∫

∂Ωi

(−µ A1(ui)ni + pini) · vi ds =
∫

Ω

ρg · v dx .

(16)
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The symmetry of the operator A1(u) gives A1(u) : ∇v = A1(u) : (∇v)t and
therefore, as both u and v belong to H1(Ω)2 we have

2∑

i=1

∫

Ωi

(µ A1(ui)− pi I) : ∇vi dx =
1
2

∫

Ω

µA1(u) : A1(v) dx−
∫

Ω

p∇ · v dx .

As far as the boundary terms are concerned observe that v = 0 on Γin and
Γ2

0 and
v = (vx, 0)t = vxt on Γ1

0 .

Therefore the boundary term in (16) reduces to
∫

Γ

(−σ(u1, p1)n1,v1) ds +
∫

Γ

(σ(u2, p2)n1,v2) ds +
∫

Γ1
0

(−σ(u, p)n, t)vx ds

+
∫

Γout

(−σ(u, p)n,v) ds .

Substituting these equalities into (16) and using the second equation of (8)
and the last line of (7), we obtain a variational formulation of the homogeneous
problem: For almost every t in ]0, T [, find u(t) ∈ X and p(t) ∈ M solution of:





∫
Ω

ρ ∂u
∂t
· v dx + 1

2

∫
Ω

µ
(∇u + (∇u)t

)
:
(∇v + (∇v)t

)
dx +

∫
Ω

ρ(u · ∇u) · v dx

+κ
∫
Γ
v · n1

R
ds− ∫

Ω
p∇ · v dx =

∫
Ω

ρg · v dx− ∫
Γout

poutv · n ds , ∀v ∈ X

∫
Ω

q∇ · u dx = 0 , ∀q ∈ M .
(17)

Now, to handle the non-homogeneous boundary condition on Γin, we must
construct a lifting, say Ū, of the inlet velocity U. Recall that owing to the
geometry of Ω (see Fig.1), the inlet velocity has the form (9)

U = (U(y), 0)t ,

where U ∈ H1(0, D) is a known function of y, that satisfies:

U(D) = 0 .

Then Ū is obtained by replicating these values for all (x, y) in Ω, i.e.

∀(x, y) ∈ Ω , Ū(x, y) = (U(y), 0)t , (18)
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which has clearly zero divergence, depends continuously on the function U ,
belongs to H1(Ω)2 and satisfies the boundary conditions :

Ū|Γ2
0

= 0 and Ū · n|Γ1
0

= 0 .

Moreover, as U does not depend on time, neither does Ū. Therefore, we
propose the variational formulation for the non-homogeneous problem: For
almost every t in ]0, T [, find u(t) ∈ X + Ū and p(t) ∈ M solution of:




∫
Ω

ρ ∂u
∂t
· v dx + 1

2

∫
Ω

µ
(∇u + (∇u)t

)
:
(∇v + (∇v)t

)
dx +

∫
Ω

ρ(u · ∇u) · v dx

+κ
∫
Γ
v · n1

R
ds− ∫

Ω
p∇ · v dx =

∫
Ω

ρg · v dx− ∫
Γout

poutv · n ds , ∀v ∈ X

∫
Ω

q∇ · u dx = 0 , ∀q ∈ M .
(19)

Remark 3.1. Note that Remark 2.1 applies also to Ū, whatever the lifting
chosen. Hence, since the function U is nonnegative, it follows from (11) that

∫

Γout

Ū · n dy =
∫

Γout

U(y) dy =
∫

Γin

U(y) dy > 0 .

As a consequence, if pout is a nonnegative constant, which is the case if it is
the atmospheric pressure, then

∫

Γout

poutŪ · n dy =
∫

Γin

poutU(y) dy > 0 .

Although the variational formulation (19) is not used for the energy bal-
ance in the next section, the first steps for obtaining both variational formu-
lation and energy balance are the same and it will be worth noting further on
the points by which they differ.

4 Energy balance

In this section, we suppose that the solution has sufficient smoothness. Now,
observe that at the entrance of the pipe, i.e. when x = 0, ∂Φ

∂t vanishes since

Φ(0, t) = y0 ,

a fixed number that does not depend on time. In addition, according to (9),
uy(0, y, t) = 0. Therefore, at x = 0, equation (6) reduces to:

U(y0)
∂Φ
∂x

(0, t) = 0 .
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As U(y0) 6= 0, this implies that:
For almost every t ∈]0, T [, the interface is horizontal at the intersection

with Γin:

∀t ≤ T ,
∂Φ
∂x

(0, t) = 0 . (20)

The energy balance we present here is based directly on (16). For almost
every t ∈]0, T [, let us choose v = u(t) in (16). Then the only difference with
(17) is that div v = 0 and that v does not vanish on Γin; therefore, (17) is
replaced here by:

∫

Ω

ρ(t)
∂u

∂t
(t) · u(t) dx+

1

2

∫

Ω

µ(t) |A1(u(t))|2 dx +

∫

Ω

ρ(t) (u(t) · ∇u(t)) · u(t) dx

+ κ

∫

Γ(t)

u(t) · n
1

R
(t) ds−

∫

Γin

(σ(u(t), p(t))n) · u(t) ds

=

∫

Ω

ρ(t)g · u(t) dx−
∫

Γout

poutu(t) · n ds .

(21)

Note that if the solution u(t) vanishes on Γin, then (21) simplifies and follows
immediately from (19).

Let us examine the terms in (21). First, in view of (9), the integral on Γin

has the expression
∫

Γin

(σ(u(t), p(t))n) · u(t) ds =
∫

Γin

(
−2 µ

∂ux

∂x
+ p

)
(0, y, t)U(y) dy , (22)

and in view of the direction of the normal vector to Γout, the integral on Γout

has the expression:
∫

Γout

poutu(t) · n ds =
∫

Γout

pout(y, t)ux(L, y, t) dy . (23)

Next, the following proposition studies the time derivative.

Proposition 4.1. If ρ, u and the function Φ are sufficiently smooth, we have
∫

Ω

ρ(t)
∂u(t)

∂t
· u(t) dx =

1
2

d

dt

(∫

Ω

ρ(t) |u(t)|2 dx
)

− 1
2
(ρ1 − ρ2)

∫

Γ(t)

u(s, t) · n1(s, t)|u(s, t)|2 ds .

(24)
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Proof. Splitting Ω into Ω1 and Ω2, we can write

d

dt

(∫

Ω

ρ(t) |u(t)|2 dx

)
= ρ1 d

dt

(∫

Ω1(t)

|u1(t)|2 dx

)
+ ρ2 d

dt

(∫

Ω2(t)

|u2(t)|2 dx

)
.

But in view of (2),

∫

Ω1(t)

|u1(t)|2 dx =
∫ L

0

∫ Φ(x,t)

0

|u1(x, y, t)|2 dy dx .

Then by definition of the time derivative,

d

dt

(∫

Ω1(t)

|u1(t)|2 dx

)

=
∫ L

0

lim
h→0

1
h

[∫ Φ(x,t+h)

0

|u1(x, y, t + h)|2 dy −
∫ Φ(x,t)

0

|u1(x, y, t)|2 dy

]
dx

=
∫ L

0

lim
h→0

1
h

∫ Φ(x,t)

0

{|u1(x, y, t + h)|2 − |u1(x, y, t)|2} dy dx

+
∫ L

0

lim
h→0

1
h

∫ Φ(x,t+h)

Φ(x,t)

|u1(x, y, t + h)|2 dy dx .

As expected, assuming sufficient smoothness, the first term in the right-
hand side converges to

∫ L

0

∫ Φ(x,t)

0

∂

∂t

(|u1(x, y, t)|2) dy dx .

For the second term, assuming again sufficient smoothness, we apply to Φ the
mean-value theorem: there exists τ ∈]t, t + h[ such that

Φ(x, t + h) = Φ(x, t) + h
∂Φ
∂t

(x, τ) ,

and the first law of the mean for integrals: there exists ζ ∈]Φ(x, t),Φ(x, t+h)[
such that

∫ Φ(x,t+h)

Φ(x,t)

|u1(x, y, t + h)|2 dy = h
∂Φ
∂t

(x, τ)|u1(x, ζ, t + h)|2 .
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Therefore, considering that u belongs to H1(Ω)2, the second term converges
to ∫ L

0

∂Φ
∂t

(x, t)|u(x, Φ(x, t), t)|2 dx .

Hence

d

dt

(∫

Ω1(t)

|u1(t)|2 dx

)
=

∫ L

0

∫ Φ(x,t)

0

∂

∂t

(|u1(x, y, t)|2) dy dx

+
∫ L

0

∂Φ
∂t

(x, t)|u(x, Φ(x, t), t)|2 dx ,

(25)

with a similar formula in Ω2(t):

d

dt

(∫

Ω2(t)

|u2(t)|2 dx

)
=

∫ L

0

∫ D

Φ(x,t)

∂

∂t

(|u2(x, y, t)|2) dy dx

−
∫ L

0

∂Φ
∂t

(x, t)|u(x, Φ(x, t), t)|2 dx .

(26)

Now, let us apply (6):
∂Φ
∂t

= uy − ux
∂Φ
∂x

.

Considering that the unit normal vector to Γ(t), exterior to Ω1(t), is

n1(x, t) =
1√

1 +
(

∂Φ
∂x (x, t)

)2
(−∂Φ

∂x
(x, t), 1)t , (27)

we have

∂Φ
∂t

(x, t) =

√
1 +

(
∂Φ
∂x

(x, t)
)2

u(x, Φ(x, t), t) · n1(x, t) . (28)

Substituting into (25), this yields:

d

dt

(∫

Ω1(t)

|u1(x, t)|2 dx

)
=

∫

Ω1(t)

∂

∂t

(|u1(x, t)|2) dx

+
∫

Γ(t)

u(s, t) · n1(s, t)|u(s, t)|2 ds ,
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with a similar equation when substituting into (26). Then (4) gives

d

dt

(∫

Ω

ρ(t) |u(t)|2 dx
)

=
∫

Ω

ρ(t)
∂

∂t

(|u(t)|2) dx

+ (ρ1 − ρ2)
∫

Γ(t)

u(s, t) · n1(s, t)|u(s, t)|2 ds ,

(29)

and (24) follows from (29).

The next proposition studies the convection term.

Proposition 4.2. If ρ, u and the function Φ are sufficiently smooth, we have
∫

Ω

ρ(t) (u(t) · ∇u(t)) · u(t) dx =
1
2
(ρ1 − ρ2)

∫

Γ(t)

u(s, t) · n1(s, t)|u(s, t)|2 ds

− 1
2

∫

Γin

ρ(0, y, t) U(y)3 dy +
1
2

∫

Γout

ρ(L, y, t)ux(L, y, t)|u(L, y, t)|2 dy .

(30)

Proof. As usual, we write:
∫

Ω

ρ(t) (u(t) · ∇u(t)) · u(t) dx =
∫

Ω

ρ(t)u(t) · ∇
(

1
2
|u(t)|2

)
dx ,

and we split the integral in the right-hand side as in the previous proof:
∫

Ω

ρ(t)u(t) · ∇ (|u(t)|2) dx = ρ1

∫

Ω1(t)

u(t) · ∇ (|u(t)|2) dx

+ ρ2

∫

Ω2(t)

u(t) · ∇ (|u(t)|2) dx .

Then we apply Green’s formula, use the incompressibility condition, the con-
tinuity of u across the interface Γ and the boundary conditions. This yields:
∫

Ω

ρ(t)u(t) · ∇
(

1
2
|u(t)|2

)
dx =

1
2
(ρ1 − ρ2)

∫

Γ(t)

u(s, t) · n1(s, t)|u(s, t)|2 ds

+
1
2

∫

Γin

ρ(0, y, t)U(y) · n|U(y)|2 dy

+
1
2

∫

Γout

ρ(L, y, t)u(L, y, t) · n|u(L, y, t)|2 dy ,

and (30) follows immediately from this equation and (9).
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It remains to express suitably the term involving the surface tension. We
shall prove that it is directly related to the time derivative of the measure of
the interface Γ, a behavior similar to that derived by Murat and Simon in [5]
for a closed interface. The next proposition gives an expression for this time
derivative.

Proposition 4.3. If the function Φ is sufficiently smooth, we have:

d

dt
(|Γ(t)|) = −

∫ L

0

(u · n1)(x, Φ(x, t), t)
∂2Φ
∂x2

(x, t)
1

1 + (∂Φ
∂x (x, t))2

dx

+
∂Φ
∂x

(L, t)
(
u · n1

)
(L, Φ(L, t), t) .

(31)

Proof. Let us prove that

d

dt
(|Γ(t)|) = −

∫ L

0

(u · n1)(x, Φ(x, t), t)
∂2Φ
∂x2

(x, t)
1

1 + (∂Φ
∂x (x, t))2

dx

+
[
∂Φ
∂x

(x, t)(u · n1)(x, Φ(x, t), t)
]L

0

;

(32)

in view of (20), ∂Φ
∂x (0, t) = 0 and this yields (31). Considering the expression

(27) for the normal vector n1, we have:

|Γ(t)| =
∫ L

0

√
1 +

(
∂Φ
∂x

(x, t)
)2

dx ,

where |Γ| denotes the measure of Γ. Therefore

d

dt
(|Γ(t)|) =

∫ L

0

1√
1 +

(
∂Φ
∂x (x, t)

)2

(
∂Φ
∂x

(x, t)
)(

∂2Φ
∂t∂x

(x, t)
)

dx . (33)

Now, it follows from (6) and (27) that

∂2Φ
∂t∂x

=
∂2Φ
∂x∂t

=
∂

∂x
(uy − ux

∂Φ
∂x

) =
∂

∂x


(u · n1)

√
1 +

(
∂Φ
∂x

)2

 .
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Hence, substituting into (33) and integrating by parts, we obtain

d

dt
(|Γ(t)|) =−

∫ L

0

(u · n1)

√
1 +

(
∂Φ

∂x
(x, t)

)2
∂

∂x


 1√

1 +
(

∂Φ
∂x

(x, t)
)2

∂Φ

∂x
(x, t)


 dx

+

[
(u · n1)(x, Φ(x, t), t)

∂Φ

∂x
(x, t)

]L

0

.

(34)

A straightforward computation gives

∂

∂x


 1√

1 +
(

∂Φ
∂x (x, t)

)2

∂Φ
∂x

(x, t)


 =

(
∂2Φ
∂x2

(x, t)
)

1

(1 +
(

∂Φ
∂x (x, t)

)2
)3/2

.

Therefore, substituting into (34), we readily derive (32).

In order to compare (31) with the surface tension, we use the fact that,
with the convention of sign used for R, we have:

n1

R
= −n

R̄
and

n
R̄

=
dt
ds

, (35)

where t is the tangent to Γ in the direction of increasing s, that is the same
as that of increasing x, n is the principal normal to Γ, i.e. parallel to n1

and directed toward the center of curvature of Γ, and R̄ is the positive radius
of curvature, i.e. R̄ = R if the center of curvature is located inside Ω1 and
R̄ = −R otherwise. Then we have the following result.

Proposition 4.4. If the function Φ is sufficiently smooth, we have:
∫

Γ(t)

u(s, t) · n
1

R
(s, t) ds = −

∫ L

0

(u · n1)(x, t)
1

1 +
(

∂Φ
∂x (x, t)

)2

∂2Φ
∂x2

(x, t) dx .

(36)

Proof. Considering that

dx

ds
=

1√
1 +

(
∂Φ
∂x (x, t)

)2
,

we can write
dt
ds

=
1√

1 +
(

∂Φ
∂x (x, t)

)2

(
dt
dx

)
,
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and (35) implies

∫

Γ(t)

u(s, t) · n
1

R
(s, t) ds = −

∫ L

0

u(x,Φ(x, t), t) ·
(

dt
dx

(x, t)
)

dx . (37)

It remains to find the expression of dt/dx. In view of (27), t is given by

t(x, t) =
1√

1 +
(

∂Φ
∂x (x, t)

)2
(1,

∂Φ
∂x

(x, t))t .

A straightforward derivation gives

dt
dx

(x, t) =

[
1

1 +
(

∂Φ
∂x (x, t)

)2

∂2Φ
∂x2

(x, t)

]
n1 , (38)

whence (36).

These two propositions imply immediately the following theorem.

Theorem 4.5. If the function Φ is sufficiently smooth, we have:

κ

∫

Γ(t)

u(s, t) · n
1

R
(s, t) ds = κ

d

dt
(|Γ(t)|)− κ

∂Φ
∂x

(L, t)
(
u · n1

)
(L,Φ(L, t), t) .

(39)

Finally, substituting (24), (30), (39), (22) and (23) into (21), we derive
our equation of energy balance.

Theorem 4.6. If ρ, u and the function Φ are sufficiently smooth, we have

1
2

d

dt

(∫

Ω

ρ(t) |u(t)|2 dx
)

+
1
2

∫

Ω

µ(t) |A1(u(t))|2 dx + κ
d

dt
(|Γ(t)|)

= −
∫

Γout

pout(y, t)ux(L, y, t) dy +
∫

Γin

(
−2 µ

∂ux

∂x1
+ p

)
(0, y, t)U(y) dy

− 1
2

∫

Γout

ρ(L, y, t)ux(L, y, t)|u(L, y, t)|2 dy +
1
2

∫

Γin

ρ(0, y, t)U(y)3 dy

+
∫

Ω

ρ(t)g · u(t) dx + κ
∂Φ
∂x

(L, t)
(
u · n1

)
(L, Φ(L, t), t) .

(40)
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The relation (40) expresses the transfers between the different forms of
energy of the system and the outside world. In the left-hand side, the first
term involves the time derivative of the kinetic energy, the third one involves
the time derivative of the superficial energy and the second one is the power of
the viscous forces. Note that this last term is non-negative, as well as the two
energies: kinetic and superficial. In particular, this is important in deriving a
stability estimate for this system.

In the right-hand side, the terms in the first line correspond both to the
powers of the stress tensor on the inlet and outlet boundaries. The terms in
the second line are fluxes of the kinetic energy. The last term in the second
line, that involves g, stands for the power of gravitational forces.

Now, let us assume that for almost every t ∈]0, T [, the horizontal compo-
nent of the velocity ux remains non-negative on the outlet boundary Γout:

∀y ∈]0, D[ , ∀t ≤ T , ux(L, y, t) ≥ 0 . (41)

Since this is the case on entering the pipe, it is reasonable to assume that this
situation prevails for a certain time T and for a certain distance L.

Then, with this assumption, the first term in the second line of the right-
hand side in non-positive, thus expressing the fact that kinetic energy is lost
at the outlet boundary, whereas kinetic energy is injected at the entrance of
the pipe (whence a positive term).

The term in the last line is problematic. It expresses the fact that some
superficial energy is transferred (gained or lost) to the outside world at the
point where the pipe is cut. It is possible to control this term (thus stabilizing
the system) by prescribing a zero vertical velocity at the outlet boundary, i.e.:

For almost every t ∈]0, T [, the vertical component of the velocity uy

vanishes on Γout:

∀y ∈ [0, D] , ∀t ≤ T , uy(L, y, t) = 0 . (42)

This condition is also satisfied on entering the pipe, but it is not necessarily
satisfied at all points inside Ω. It has the following consequence:

∂Φ
∂x

(L, t)
(
u · n1

)
(L,Φ(L, t), t) = −


ux

(∂Φ
∂x )2√

1 + (∂Φ
∂x )2


 (L, Φ(L, t), t) ,

that is a non-positive term, if (41) holds. Of course, if we prescribe (42), then
we must relax the last condition in (7) and replace it by

∀y ∈ [0, D] , ∀t ≤ T , n · σ · n(L, y, t) = pout(y, t) . (43)

With (42) and (43), Theorem 4.6 has the following corollary.
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Corollary 4.7. If ρ, u and the function Φ are sufficiently smooth, if (42) is
prescribed and the last condition in (7) is replaced by (43), we have

1
2

d

dt

(∫

Ω

ρ(t) |u(t)|2 dx
)

+
1
2

∫

Ω

µ(t) |A1(u(t))|2 dx + κ
d

dt
(|Γ(t)|)

= −
∫

Γout

pout(y, t)ux(L, y, t) dy +
∫

Γin

(
−2 µ

∂ux

∂x1
+ p

)
(0, y, t)U(y) dy

− 1
2

∫

Γout

ρ(L, y, t) |ux(L, y, t)|3 dy +
1
2

∫

Γin

ρ(0, y, t)U(y)3 dy

+
∫

Ω

ρ(t)g · u(t) dx− κ


ux

(∂Φ
∂x )2√

1 + (∂Φ
∂x )2


 (L, Φ(L, t), t) .

(44)

If (41) holds, the last term in the right-hand side is non-positive, expressing
the fact that energy is lost at the point where the interface intersects the
outflow boundary.
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Divulgaciones Matemáticas Vol. 16 No. 1(2008), pp. 87–105



Energy balance of lubricated oil transportation in a pipe 105

[5] Murat, F. and Simon, J., Sur le contrôle par un domaine géométrique,
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