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A b s t r a c t. The eigenvalues of a graph are the eigenvalues of its ad-
jacency matrix. An eigenvalue of a graph is called main if the corresponding
eigenspace contains a vector for which the sum of coordinates is different
from 0. Connected graphs in which all eigenvalues are mutually distinct and
main have recently attracted attention in control theory.
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1. Introduction

In this paper the eigenvalues of a graph are the eigenvalues of its adja-
cency matrix. There is an extensive literature on the theory of graph spectra
(see, for example, [3], [7]).

An eigenvalue of a graph is called main if the corresponding eigenspace
contains a vector for which the sum of coordinates is different from 0.
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Definition. Connected graphs in which all eigenvalues are mutually distinct
and main are called controllable graphs.

Motivation for adopting the term controllable will become clear in the
next section.

The trivial graph K1 is controllable and there are no other controllable
graphs on fewer than 6 vertices.

It has been recognized for at least ten years that graph spectra have sev-
eral important applications in computer science (see, for example, [4], [8]).
Graph spectra appear in the literature on internet technologies, pattern
recognition, computer vision, data mining, multiprocessor systems, statisti-
cal databases and in many other areas.

It is the purpose of this note to describe an application of graph spectra
in control theory and to present some relevant mathematical results.

2. Control theory

Systems considered in control theory include networked dynamical sys-
tems which consist of independent “agents” (integrators) that exchange in-
formation along the edges of a graph. Such a system is controllable if and
only if the corresponding graph has all eigenvalues mutually distinct and
main.

Let us expand on the relevant connections between control theory and
graph theory. The following differential equation is a standard system model
for physical systems:

dx

dt
= Ax+ bu. (1)

Here x = x(t) is called the state vector, with given x(0), and the scalar
u = u(t) is the control input. The matrix A has size n × n, while both x
and b have size n× 1.

The system (1) is called controllable if the following is true; given any
vector x∗ and time t∗, there always exists a control function u(t), 0 < t < t∗,
such that the solution of (1) gives x(t∗) = x∗ irrespective of x(0). That is, the
state can be steered to any point of n-dimensional vector space arbitrarily
quickly.

It is well known in control theory (see [1], [10], [12]) that the system (1)
is controllable if and only if the following controllability matrix

[b Ab A2b . . . An−1b] (2)
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has full rank n.

The matrix (2) is the walk-matrix in graph theory in the case that b is
the all-one vector and A is the adjacency matrix of a graph.

Generally, in control theory, we do not assume any special structure or
property of the matrix A and the vector b. However control problems for
networked dynamical systems have recently become live issues in the control
community and, in a networked system, the form (1) can be read as a graph
G whose vertices are integrators (agents) and whose edges denote signal
exchanges between agents. In addition, b can be seen as a weighting term
that describes how much each agent is sensitive to a common external signal
u. In particular, if all agents have the same sensitivity then we obtain all-one
vector b.

In this context, the controllability is related to the main eigenvalues of
a graph. The walk matrix (2) has full rank n if and only if the number of
main eigenvalues is n (see, for example, [14]). This in turn implies that all
eigenvalues should be distinct. In addition, it is natural to require that the
graph G is connected.

Hence, the system of agents is controllable if and only if the graph G is
controllable.

In engineering, intuition suggests that it should be the case that the
more agents a system has, the less likely it is possible to control each agent
independently; thus it is strange that there are no non-trivial controllable
graphs with fewer than six agents (vertices) and only 8 controllable graphs
among the 112 connected graphs with six vertices. This is why it would
be interesting to know the graphs which have n main eigenvalues where
n = 7, 8, 9, . . . .

3. Theoretical considerations

We now present some theoretical results related to controllable graphs.

Regular graphs cannot be controllable (except for trivial graph K1) since
regular graphs have exactly one main eigenvalue (the largest one, which is
equal to the degree of vertices).

There are many classes of graphs with multiple eigenvalues. For ex-
ample, if a graph contains three vertices, mutually adjacent or mutually
non-adjacent, with the same neighbourhood, the graph contains at least one
repeated eigenvalue. In addition, most non-regular complete multipartite
graphs have a repeated eigenvalue 0. Of course, such graphs cannot be
controllable.
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The complement of a graph G is denoted by G. The disjoint union of
graphs G and H is denoted by G∪H and the join of these graphs by G▽H.

We mention the following result from [13].

Proposition 1. A graph and its complement have the same number of
main eigenvalues.

The next proposition is immediate.

Proposition 2. The disjoint union of two controllable graphs with dis-
joint spectra is a (disconnected) graph in which all eigenvalues are mutually
distinct and main.

We combine these observations in the following proposition.

Proposition 3. If G1, G2 are controllable and G1, G2 have disjoint
spectra then the join G1 ▽G2 is controllable.

P r o o f. The graphs G1, G2 are controllable with disjoint spectra, and so

G1 ∪ G2 has all eigenvalues mutually distinct and main. Hence G1 ∪ G2

is controllable, i.e. G1 ▽G2 is controllable. 2

We quote a special case of Proposition 3.

Proposition 4. The join of two self-complementary controllable graphs
with disjoint spectra is controllable.

Let B be a set of non–zero binary n–tuples. The NEPS (non–complete
extended p–sum) of graphs G1, . . . , Gn with basis B is the graph whose set
of vertices is the Cartesian product of the sets of vertices of the graphs
G1, . . . , Gn and in which two vertices (x1, . . . , xn) and (y1, . . . , yn) are ad-
jacent if and only if there is an n–tuple (β1, . . . , βn) ∈ B such that xi = yi
whenever βi = 0, and xi is adjacent to yi in Gi whenever βi = 1.

Proposition 5. Let G be a NEPS with basis B of the controllable graphs
G1, . . . , Gn. If G is connected and if all the eigenvalues of G are mutually
distinct then G is controllable.

P r o o f. By Theorem 2.3.4 of [6], the spectrum of G consists of all
possible values

Λi1,...,in =
∑
β∈B

λβ1
1i1

· · ·λβn
nin

(ik = 1, . . . , nk; k = 1, . . . , n), (3)

where λi1, . . . , λini are the eigenvalues of Gi (i = 1, . . . n). Next by, Theorem
2.3.6 of [6] an eigenvalue of G is main if and only if it depends only on
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main eigenvalues in the above expression. Since all Gi (i = 1, . . . , n) are
controllable, the proof follows directly. 2

Using Proposition 5 it is easy to determine the controllability of the
resulting graph in some specific cases. The sum G+H, the product G×H
and the strong product G∗H is the NEPS with the basis B = {(0, 1), (1, 0)},
B = {(1, 1)} and B = {(0, 1), (1, 0), (1, 1)}, respectively. If λ1, . . . , λn and
µ1, . . . , µm are the eigenvalues of the graphs G and H, regarding (3) we get
that

• λi + µj (i = 1, . . . , n; j = 1, . . . ,m) are the eigenvalues of G+H;

• λiµj (i = 1, . . . , n; j = 1, . . . ,m) are the eigenvalues of G×H;

• λi+µj+λiµj (i = 1, . . . , n; j = 1, . . . ,m) are the eigenvalues of G∗H.

Now, if G andH are controllable, the controllability of the corresponding
NEPS can be easy checked by considering the above sums and/or products
of the eigenvalues. Particularly, if 0 is an eigenvalue of any of G and H then
G×H is not controllable unless both G and H are equal to K1.

We shall now prove the following theorem.

Theorem. Controllable graphs have a trivial automorphism group.

P r o o f. By Theorem 2.4.5 of [6] any divisor of a graph contains in
its spectrum all the main eigenvalues of the graph. Hence, the only divisor
of a controllable graph is trivial (equal to the graph itself). On the other
hand, it is well-known that the orbits of the automorphism group of a graph
induce a divisor. This means that the orbits in a controllable graph are
singletons, and this further implies that the automorphism group contains
only the identity. 2

Remark. This theorem is a refinement of Theorem 2.5.1 of [6] which
reads: If a multigraph has no repeated eigenvalues then all of its non-trivial
automorphisms are involutions.

It is well-known that almost all graphs have a trivial automorphism
group (see, for example, [9], Corollary 2.3.3). However, it is not true that all
graphs with a a trivial automorphism group are controllable. The smallest
counterexamples have 7 vertices (see Table 1 below). The first such coun-
terexample in the table of connected graphs on 7 vertices in the appendix
of the book [2] has identification number 30. This graph has 7 distinct
eigenvalues but only 5 of them are main.
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4. Enumeration results

The 8 controllable graphs on 6 vertices can be identified from the table
of connected graphs on 6 vertices in [5]. These graphs have identification
numbers 46, 59, 60, 67, 77, 85, 87, 98. Note that graphs 98, 77, 85, 87 are
the complements of graphs 46, 59, 60, 67 respectively. This is not surprising
in view of Proposition 1.

We used the publicly available library of programs nauty [11] to generate
all connected graphs on a given number of vertices. The library nauty
includes a program for computing the automorphism groups of graphs and
digraphs; it is an open source program written in a portable subset of C, and
runs on a considerable number of different systems. The implementation of
the algorithm for generating graphs is very efficient.

We have calculated the numbers of controllable graphs with up to 10
vertices. It turns out that the numbers are 8, 85, 2275, 83034 for 6, 7, 8,
9, 10 vertices respectively. The 85 controllable graphs on 7 vertices can be
found in the above mentioned table of connected graphs on 7 vertices in [2]
under the following identification numbers:

3 21 39 52 64 67 74 75 77 100

126 128 130 150 158 160 165 167 177 201

205 232 236 249 268 270 280 281 283 288

289 291 307 309 314 315 322 324 348 367

368 370 376 394 399 404 406 407 414 416

418 419 443 447 448 455 458 517 519 520

527 532 552 554 559 578 581 591 606 628

641 645 646 650 652 671 674 692 727 745

748 757 761 785 793

Remark. The union of two controllable graphs with disjoint spectra is
not a controllable graph (Proposition 2). Then the complement of such a
graph is connected and controllable (Proposition 1). This applies in only
7 of the 8 cases of graphs H ∪ K1, where H is a controllable graph on 6
vertices. The exception is the graph with identification number 60 since it
has (main) eigenvalue 0 and this is the case with K1 too (cf. Proposition 3).

For a given number n of vertices (agents), let T (n) be the total number
of connected graphs, I(n) the total number of connected graphs with triv-
ial automorphism group, and C(n) the total number of connected graphs
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whose eigenvalues are all distinct and main. The numbers T (n) (n =
2, . . . , 10), I(n) (n = 2, . . . , 10) and C(n) (n = 2, . . . , 6) are known from
the literature. We have found the numbers C(n) (n = 7, 8, 9, 10) and all of
these numbers are presented in Table 1.

Table 1. The number of controllable graphs

n 1 2 3 4 5 6 7 8 9 10
T (n) 1 1 2 6 21 112 853 11117 261080 11716571
I(n) 1 0 0 0 0 8 144 3552 131452 7840396
C(n) 1 0 0 0 0 8 85 2275 83034 5512583

The results in Table 1 reveal that as the number of agents increases
from 2 to 10, it is more likely that the system (1) is controllable, i.e., the
ratio C(n)/T (n) increases monotonically. This is surprising and counter-
intuitive in an engineering sense, considering that controllability means that
it is possible to steer all system states independently to arbitrary values –
a possibility expected to be much harder to realize as the number of agents
increases.

The enumeration results above perhaps indicate that almost all con-
nected graphs are controllable.

We have also enumerated controllable trees with up to 16 vertices: there
are 1, 1, 1, 3, 7, 8, 31, 41, 105, 128 controllable trees on 7, 8, . . . , 16 vertices
respectively. Additionally, we have established that there are exactly 6 con-
trollable self-complementary graphs on 9 vertices. The trivial graph K1 is
self-complementary and controllable, and there are no other such graphs on
fewer than 9 vertices. (Recall that self-complementary graphs must have 4k
or 4k + 1 vertices, k being a non-negative integer.)
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