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Abstract Let G be a graph of order n. Let A\, Aa,..., A, be its
etgenvalues and 1, o, - . ., by its Laplacian eigenvalues. The Estrada index
EE of the graph G is defined as the sum of the terms e , i =1,2,...,n. In
this paper the notion of Laplacian—Estrada index (L-Estrada index, LEE)
of a graph is introduced. It is defined as the sum of the terms et | ¢ =
1,2,...,n. The basic properties of LEFE are established, and compared with
the analogous properties of EE . In addition, the Estrada and L-FEstrada
indices of some tmportant classes of graphs are computed.
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1. Introduction

Throughout this paper we are concerned with simple graphs, that is,
with graphs having no loops or multiple edges or directed edges. Let G
be such a graph and {1,2,...,n} be the set of its vertices. Let deg(i) be
the degree of the vertex ¢. The diagonal matrix D(G) = ||d;;|| is defined by
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dii = deg(i) and dij; = 0 if i # j. The adjacency matrix of G, denoted
by A(G), is the square matrix of order n whose (i, j)—entry is equal to the
number of edges between the vertices ¢ and j. The Laplacian matrix of G
is defined as L(G) = D(G) — A(G) . The characteristic polynomial and the
Laplacian characteristic polynomial of G are, respectively, the characteristic
polynomial of the adjacency matrix and of the Laplacian matrix. We denote
them by ¢(G, A) and ¥(G, A) , respectively. Thus, ¢(G, \) = det(A I,—A(G))
and ¥(G, \) = det(\ I, — L(QG)) , where I,, is the unit matrix of order n .

Let Aty > Xo > --- > XNy and g > po > -+ > uy, be, respectively, the
ordinary and the Laplacian eigenvalues of G, i.e., the zeros of ¢(G,\) and
(G, A) . These eigenvalues form the (ordinary) spectrum and the Laplacian
spectrum of the underlying graph. Details of the the theory of graph spectra
and Laplacian graph spectra can be found in the book [3] and the reviews
[21-23)].

The Estrada index EE(G) of the graph G is defined as the sum of the
terms e , i = 1,2,...,n. This quantity, introduced by Ernesto Estrada,
has noteworthy chemical applications (see [5-7] and the references cited
therein). A large number of recent works [1, 2, 4, 9, 10, 12-18, 24, 25] is
devoted to the study of its mathematical properties.

We now define the Laplacian—Estrada index, or, shorter, the L-Estrada
index of G, denoted by LEE(G), to be the sum of the terms et | i =
1,2,...,n. In this paper, some basic properties of this new index are estab-
lished.

We now introduce some notation that will be used throughout this paper.

The vertex and edge set of the graph G will be denoted by V(G) and
E(G), respectively.

An empty graph is a graph without edges, i. e., E(G) = (. The com-
plement of a graph G is denoted by G, where e € E(G) if and only if
e Z E(G).

Suppose that G and H are two graphs with disjoint vertex sets. The
disjoint union of G and H is a graph GU H , such that V(GUH) =V (G)U
V(H)and E(GUH)=E(G)UE(H).

The join G + H of the above specified graphs G and H is the graph
obtained from G U H by connecting all vertices from V(G) with all vertices
from V(H). If G1, G, ..., G, are graphs with mutually disjoint vertex sets,
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n

then we denote G1 + Go + --- + G, by > G;. In the case that G; = G =
i=1

.= Gy =G, we denote 3" G; by nG.
i=1
The Cartesian product G x H of graphs G and H has the vertex set
V(Gx H)=V(G)xV(H) and (a,z)(b,y) is an edge of G x H if a = b and
xy € E(H), or ab € E(G) and z = y. If G1,Ga,...,G, are graphs with
mutually disjoint vertex sets, then we denote G; X Go X --- x G, by [] G; .
i=1

In the case that Gy = Gy = --- = G, = G, we denote ﬁGi by G™.
i=1

1=

2. The Estrada index of graphs

This section is concerned with the use of algebraic techniques in the
study of the Estrada index of graphs. We begin with the following simple:

Proposition 1. Let G be a graph with exactly n vertices. Then EE(G) >
n , with equality if and only if G is the empty graph.

P r o o f. From the inequality between the arithmetic and geometric

means,
EE(G n o2
()Z"Hei: eimt = V0 =1
=1

n

with equality if and only if for all 1 < 4,7 < n, e’ = eV | that is if and only
if \; = A\;. This implies that all \;’s are zero, as desired. |

Proposition 2. ([1]) If G is an r-regular graph with n vertices and
m = rn/2 edges, and L(G) is its line graph, then EE(L(GQ)) = " 2EE(G)+
(m —mn)e 2.

By Proposition 2, if G is a connected r-regular graph, then EE(L(G)) =
EE(G) if and only if » = 1,2 and G is a cycle or a path with two vertices.
To see this, we assume that FE(L(G)) = FE(G) and r > 3. Then m > n
and
(n —m)e?

BE(G) =

This would imply that EE(G) < 0, a contradiction.
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Proposition 3. Let G and H be r— and s-reqular graphs with p and g
vertices, respectively. Then

_ 2
EE(G+H):EE(G)+EE(H)—(eT+eS)+2e<T+S>/Qcosh< (r 82) +4pq> :

P roof. It is known that [3]

R R e e ACEDENE

Since

Ir =

—s5)2 144 _ —35)24+4
(rts)+Vr—s)+dpg 0o, (4s) = Vr—s)"+dpg
2 2
are the roots of 22 — (r + s)z + rs — pg = 0, the eigenvalues of G + H are
those of G and H in which r and s are exchanged by x; and x5 . Hence
EE(G+ H)=FEE(G)+ EE(H) — (e" +€°) + "t + ™2
proving the result. O
Corollary 3.1. If G is an r-reqular n-vertex graph then

EE(2G) =2FEFE(G) — 2¢" + 2e" cosh(n) .

Corollary 3.2. FE(K, ) = m+n — 2+ 2cosh(y/mn) .

Corollary 3.3. If G is r-regular then

EE(3G) = 3EE(G) — 3¢” + 2¢" cosh(n) 4 2¢2"+/2 cosh (32”> —etn

The n-vertex star graph .S, is a tree with one vertex having degree n — 1
and the other n — 1 vertices having degree 1.

Corollary 3.4. EE(Sp11) =n— 1+ 2cosh(y/n) .

The wheel W, is a graph of order n containing a cycle of order n — 1,
and a vertex to which all other vertices are connected.
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Corollary 3.5. EE(W,, 1) = EE(C,) — €? + 2ecosh(y/n + 1).
Proof Wy 1 =K1 +C,. O

Example 1. A Mébius ladder L, of order 2n is a simple graph obtained
by introducing a twist in a prism graph of order n that is isomorphic to the
circulant graph. In this example the Estrada index of a Mdobius graph is
computed. By [3], the eigenvalues of L, are A\ = (—1)¥ + 2cos(kn/n),
where 0 < k <2n —1. So,

2n—2 2n—1
EE(L,) = e Z e2eos(km/n) 4 o—1 Z o2 cos(km/n)
k=0,k even k=1,k odd

_ Z 2cos(2k7r/n e 1 Z 2 cos((2k+1)mw/n)

k=0
n—1
_ eEE(Cn) —|—€_1 Ze2cos((2k+1)ﬂ'/n) .
k=0

In what follows we denote 2 Io 2 g2 cos(w) g by Ip. Then a similar argu-
ment as in [14] shows that EE(L,) ~ eEE(Cy,)+e 'EE(C,,) = 2ncosh(1) I .

Example 2. Take the star graph S,;; and add a new edge to each
of its n + 1 vertices to get an star-like graph To, 2. By [3], ¢(Tont2,A) =
(A2 —1)"71[(A%2 = 1)2 — nA?] and so

1 -1 [Vatvn+d])2 [—ﬁﬂm}/z)

Spec(Ton42) =
n—1 n—1 1 1

Therefore,

EE(Tyn42) = 2(n — 1) cosh(1) + 4 cosh ( n2—|— 4) cosh <\gﬁ> .

Proposition 4. Let G be an r-regular graph. Then
s n
EG)=e" "1 e lpe! Z e N,
i=1

In particular, if G is bipartite then EE(G) = e ' EE(G) +e" "1 —e7 71,



6 G. H. Fath-Tabar, A. R. Ashrafi, I. Gutman

P r o o f. The first formula is a direct consequence of [3]

— A—n+r+1

BG.N) = (-1 S 0(G -A - )

In order to arrive at the second equality, it is enough to note that the

eigenvalues of bipartite graphs are symmetric around zero. O

Let R(G) be the graph obtained from G by adding a new vertex to each
edge of G, see [3, p. 63].

Example 3. EE(R(C),)) ~ 8.57594154 n , for large n .
In order to obtain this result, notice that by [3]

2 _
BR(C) M) = (A+ 1" (cn, §+f) .

The eigenvalues of R(C,,) are the roots of (A\2—2)/(A+1) = 2cos(2km/n) , 1 <
k < mn. This yields

Ak = i\/0082 (2]”) + 2cos (%W) + 2+ cos <2lm)
n n n

and thus

EE(R(Cy)) =

0s(2£T) 4\ /cos? (25 ) 12 cos(2ET ) 42
(

n
> ¢
k=1
Zn: C0S( 25 ) —\ /cos? (25X ) 42 cos( 257 ) 42
k=1

8.57594154 n .

%

Proposition 5.
EE (H Gi> =[[EE@G)) .
i=1 i=1
In particular, EE(G") = EE(G)" .

Proof Let A,...,\, be the eigenvalues of G;, 1 < i < r. Then
[3] the eigenvalues of G1 x G2 X - -+ X G, are of the form of )\111 4+ )\gr ,
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where 1 <1i; < n;. So,

T s
EE <H Gi> = Y MR oy M = [[EEEG
i=1

i=1 i17i27---77;r i17"'7i7"
O
Consider the graph GG whose vertices are the N-tuples by by - - - by with
b € {0,1,---,n; — 1}, n; > 2, and let two vertices be adjacent if the cor-
responding tuples differ in precisely one place. Such a graph is called a
Hamming graph and is denoted by Hy, n,....ny - A Hamming graph with

by = by = --- = by = 2 is called a hypercube of dimension N and is denoted
by Qn . As well-known, a graph G is a Hamming graph if and only if it can

be written in the form G = H Ky, .

By Proposition 5, it is p0581ble to compute the Estrada index of a Ham-
ming graph: Since EE(K,,) = (n; — 1)e™! + e~ we get

N
EE(Hm,nzr",nN) = H[(nl - 1)6_1 + eni_l] .

Corollary 5.1. Let Q,, be a hypercube on 2™ vertices. Then
E(Qn) = BE((K2)") = [2cosh(1)]"

The graphs R = C,, x C,;, and S = P, x (), correspond to what in
the theory of nanomaterials is called a Cj—nanotorus and a Cy-nanotube,
respectively. In the following corollary, Proposition 5 and the results from
[14] are used to compute the Estrada index of R and S'.

Corollary 5.2. EE(R) ~ mn I and EE(S) ~ m(n+1) I3—m cosh(2)Iy

P r o o f. By the main result of [14],

n n ) 27
EE(Cy) = Ze)‘i = 262605(27) ~ %/0 2@ dy = n I
i=1 i=1

and
EE(P,) = Z 2cos(757) (n+ 1)1y — cosh(2) .
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The formulas given in Corollary 5.2 follow now straightforwardly from Propo-
sition 5.

Corollary 5.3. If T = P,, X P, , for some positive integers m and n ,
then EE(T) ~ [(m + 1)y — cosh(2)][(n + 1)1y — cosh(2)] .

3. The L-Estrada index of graphs

Let G be a graph without loops and multiple edges. Let n and m be,
respectively, the number of vertices and edges of G. Such a graph will be
referred to as an (n, m)-graph.

Proposition 6. The following properties of the L-Estrada index hold:

(a) LEE(G) > ne?™™ with equality if and only if G = K, ,

(b) Suppose that G1 and Go are graphs with |V (G;)| = n; , i = 1,2.
Then

LEE(Gy + G3) = €™ LEE(Gy) + €™ LEE(Gy) + ™™ — ™ e 11,

(¢) Suppose that G1,Ga, . ..,Gy are graphs with mutually disjoint vertex
sets. Then
k k
LEE (H Gi> =[ILEEG)) .
i=1 i=1
In particular, LEE(G*) = LEE(G)¥ .
(d) If G is an r-regular bipartite graph, then LEE(G) = ¢" EE(G) .

P roof (a) Proposition 6(a) is deduced in a manner analogous to the
proof of Proposition 1.

(b) Let pu1, po, .oy pn, and pil, ps, . .. ’“/"2 be the Laplacian eigenvalues
of G1 and Gg, respectively. Then by [3], the Laplacian eigenvalues of G1+G3
are of the form ny + u; , 2§i§n;n1+u; ,2<j<nor0orn;+ns.
This leads to the proof of (b).

(c) In order to prove Proposition 6(c), we assume that G; , 1 <i <k,
has n; vertices. Then by a result of Fiedler [8], the Laplacian eigenvalues of

(2

k k
G are of the form } p; (G;), 1 < j, < n;. Therefore,
=1 i=1 "'
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(d) Finally, we assume that G is an r-regular bipartite graph and A;, p; ,
1 <i < n, are its eigenvalues and Laplacian eigenvalues. Then p; = r — \;

and
n n n
LEE(G) = Z et = Z erN =l Z e N
i=1 i=1 i=1
Since G is bipartite, the eigenvalues of G are symmetric around zero. This
implies (d). O

Corollary 6.1. Let G1,Go,...,Gy be n-vertex graphs. Then

k k

LEE (Z Gi) =" NCLEE(G) + (k= 1) e — ke 41
i=1 i=1

In particular, LEE(kG) = ke * " DLEE(G) + (k — 1) e*" — ke 4 1.

P r o o f. follows by induction on k. O

Example 4. By Proposition 6(c), it is possible to compute the L-

Estrada index of a Hamming graph. To do this, note that LEE(K,,) =
1+ (n; —1)e™ and so

N
LEE(Hp, ny,..ny) = [ [[1 4 (ni — 1)e™] .
=1

In particular, for a hypercube Qn, LEE(Qn) = (1 + %)V = eV EE(Qy).
Example 5. Let R, S, and T be same as in Corollaries 5.2 and 5.3. In

order to apply Proposition 6(d), we first compute the L-Estrada indices of
P, and C),:

n—1 ) 1 )
LEE(P,) =Y s tm/n) / s (T 2/2) gy — 1, Jy (~ 16.84398368 n)
k=0 0

and
n

. r .
LEE(Cn) _ Z e4sm2(k7r/n) ~n / e4sm2(7r:c)dx =nJy.
k=1 0

By Proposition 6(c),
LEE(R) = LEE(P,) LEE(Cy,) ~ nm JE LEE(S) ~ km J?

and LEE(T) ~mn J?.
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Example 6. Let S,, be the n-vertex star. Then by Proposition 6(b),
LEE(S,)=LEE(K, + K, 1)=(n—2e+e" ™2 +1.

Example 7. Let W, be the n-vertex wheel. By Theorem 5(b),
LEE(W,11) = LEE(K, + Cp) = e LEE(C,) + ™ —e +1.

Example 8. LEE(K, ) = (n— 1)e™ + (m — 1)e™ + ™ + 1.

The Zagreb index (or more precisely: the first Zagreb group index) is de-

fined as [11, 19] Zg(G) = Y. deg(i)?. In what follows, relations between
1eV(G)
the L-Estrada and Zagreb indices are found.

Proposition 7. Let G be an (n,m)-graph. Then the L-Estrada index
of G is bounded as:

Vn(n—Detmin 4n+8m +22g(G) < LEE(G)

1
< n—1+62m+m—2m2+§Zg(G).

Equality on both sides of the above inequality is attained if and only if G =
K, .

P r o o f. Using a similar method as in [20], we have

ZCIED R W EE W 3 SN o
=1 i=1k=0 " =1 i=1 = i=1k>3
— ntsm iz @+ o smt Lzg(c LSk
= n+3m+ 5 Zg( )+Z: = 3m et S Zg(G) + HZ“Z
i=1k>3 >3 i=1
1 1/
< n+3m+-ZgG)+ > = (>
2 k23k! =1
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resulting in the upper bound.
n

On the other hand, LEE(G)? = Z 2ui 4 2 3 eMi et and so,

i=1 i<j

2/[n(n—1)]
226’” e > n(n—-1) He“le’“
1<j 1<j

2/(n—1)

n n—1
= n(n-1) {(H e“”) ] = n(n—1)e*™"

i=1

By means of a power—series expansion, we get

iem‘i = ZZ QM —l—4m+zz 2/%
i

i=1 k>0 i=1k>2

> n+8m+2Zg(G) .

Therefore, LEE(G)? > n(n —1)e*™™ +-n+8m +2Zg(G) . This implies the
lower bound.

If G = K, then obviously m = 0 and equality on both sides of the above
inequality holds. Conversely, we assume that

Vn(n—1)etm/m 4n 4+ 8m +2 Zg(G) = LEE(G) .

Then Y (2u;)¥/k! = 0, which implies that p; = 0,1 < i <n, as desired. If
k>4

1
LEE(G) :n—1—1—62m+m—2m2—|—§Zg(G)

then
n n k
St = () -
i=1 i=1
Thus p; =0, 2 < ¢ < n. This completes the proof. O

Corollary 7.1. If G is an r-regular bipartite graph, then

e"vVn?+2nr < LEE(G) <é"[n— 2+ 2cosh(y/nr)] .
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P r o o f. Apply Proposition 6(d) and Proposition 2 from [4]. O

Proposition 8. If G is an r-regular graph, then

r

-2
”(7“2 )62

In particular, for r-regular graphs, LEE(L(G)) = LEE(G) if and only if
r=2.

LEE(L(G)) = LEE(G) +

P r o o f is analogous to the proof of Proposition 2 [1]. O

Corollary 8.1. Let L(G) = L' (G) and fork <1, LFY(G) = L(L*(Q@)) .
If G is r-reqular then

LEE(L*Y(@)) = LEE(LF(G)) + ny, # 2

where L¥(G) is ri-regular with ny vertices,

k—1
Tk:(T—2)2k+2 and nk:%H(Qir_ziﬂ_i_z).
1=0

Proposition 9. If G is an r-regular graph with n vertices then

1+ \/n —2+42nr+4r —4r2 + e 2 + (n— 1)(n — 2)e2/(n=1)

< ¢ "LEE(G)<n—1-r°+ % +e".

Proof. Inorder to obtain the lower bound, we consider (e""LEE(G)—
1)? and proceed in the same manner as in Proposition 7. In this case,

2
(eT"LEE(G) —1)* = (Z 6&) =2 Y e NeNg Y e,

AT XiFETFEN; AT

Now,

2/[(n=1)(n-2)]
2 Z e e > (n—1)(n-2) ( H e e_’\j)

NFEr#EN, ] NFETENG, £
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2/(n—-1)
= (n—1)(n—2) ( 11 e_Ai)

NiFEr
= (n-1)(n - (O

= (n—1)(n—2)e¥/*"1

2N — Zzefm

Ai>0 N k>0

—9).)2 —92)\.)3
n—1+ Z(—%HZ( 22?) +Z( ?) +

NiFEr NiFT

v

= n—2+42rmm—4r¥+e T +4r .

Therefore,

LEE(G)

= >1+4+ \/n— 24 4dr +2nr —4r2 + =2 4 (n — 1)(n — 2)e2r/(n=1)

We now prove the right—hand side inequality:

_ 2 s k
e "LEE(G) =1+ Z e =T +Z (i) < n—1+2 12 4e" .
2 < k! 2
Nir k>3
|

Corollary 9.1. Let G be an r-regular bipartite graph. Then,

LEE(G)

2 cosh(r) + \/(n —2)242nr —4r?2 < o

— EE(G)

< n—4+2cosh(r)—|—200$h< n;—r?) :

P roof. Corollary 9.1 follows from Theorem 4 in [4] and Proposition
6(d). O
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Proposition 10. LEE(G) < >™/™(n — 1+ eE (@) with equality if and
only if G =2 K,

Proof.
. 2m/n)
LEE(G) _ e?m/n Zeul—2m/n _ 2m/n n4+ Z Z
; i=1k>1
2 i — 2m|k
i=1k>1
2m/ - i — 27 F
_ m/n
= e TL—i—LE(G)‘FZZTn
i=1k>2
1
= /" | n+ LE(G)+ Y —LE(G)
k!
k>2
— 2m/n (n + LEG) _ 1) '
Clearly, equality holds if and only if G is an empty graph. O
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