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Abstract. In this study, we research geodesics of tubular surfaces which is

founded by using two-parameter spatial motion along a curve in Minkowski

3-space. To do this, we solve differential equation DT T = 0 of parametric
curves on the tubular surface where D is the connection of tubular surface and−→
T is the unit vector field of two parametric curves on the tubular surface in

particular. It is shown that for fixed s, all of parametric curves of the tubular
surface M = ϕ(s, t) are geodesics and for fixed t only the curves ϕt = 0(s) are

geodesics.
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1. Introduction

Let R3 = {(r1, r2, r3) | r1, r2, r3 ∈ R} be a 3-dimensional vector space, r = (r1, r2, r3)
and s = (s1, s2, s3) be two vectors in R3. The Lorentz scalar product of the vectors
r and s is defined by

〈r, s〉L = −r1s1 + r2s2 + r3s3.

The space R3
1 =

(
R3, 〈 , 〉L

)
is called 3-dimensional Lorentz space, or Minkowski

3-space. The Lorentz vector product of the vectors r and s is defined by

r ∧L s = (r2s3 − r3s2, r1s3 − r3s1, r2s1 − r1s2) .

The vector r in R3
1 is called a spacelike vector, a lightlike (null) vector or a time-

like vector if 〈r, r〉L > 0, 〈r, r〉L = 0 or 〈r, r〉L < 0 respectively. The norm of the
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vector r is defined by ‖r‖L =
√
|〈r, r〉L| and r is called a unit vector if ‖r‖L = 1

[4]. Semi-orthogonal matrix providing rotation the angle (hyperbolic) t around the
vector −→c . Denote by {T (s), N(s), B(s)} the moving Frenet frame along the curve
α(s). Then T,N and B are the tangent, the principal normal and the binormal
vector of the curve α(s) respectively.

If α(s) is a spacelike:
Case 1. Let T be spacelike, N spacelike and B timelike. This set of orthogonal
unit vectors, known as the Frenet-Serret frame, has the following properties

〈T, T 〉L = 〈N,N〉L = 1, 〈B,B〉L = −1,

〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0

and

T
′
= κN,N

′
= −κT + τB,B

′
= τB.

where κ and τ curvature of the curve α(s) respectively. Given this set of coordinates,
let α(s) be a curve parameterized by the arc length (s) and let T (s) be the vector
T (s) = α

′
(s) where the prime indicates differentiation with respect to s. While

there might be other canonical parameterizations, only a parameterization by the
arc length leads to a normalized vector T (s).

Case 2. Let T be spacelike, N timelike and B spacelike. This set of orthogonal
unit vectors, known as the Frenet-Serret frame, has the following properties [4]:

〈T, T 〉L = 〈B,B〉L = 1, 〈N,N〉L = −1

〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0

and

T
′
= κN, N

′
= κT + τB,B

′
= τB.

The shape of the matrix depends on the type of the vector −→c as the following [2].

i. If
−−→
c(s) is a spacelike vector, then

(1.1) A1(s, t) = I + C · sinh t + C2 · (−1 + cosh t)

ii. If
−−→
c(s) is a timelike vector, then

(1.2) A2(s, t) = I + C · sin t + C2 · (1− cos t)

If C is a semi-skew symmetric matrix, then

C(3, 1) =


C ∈ R 3

3 | , CT = −εCε,C =

 0 c3 −c2

c3 0 −c1

−c2 c1 0

 ,

ci ∈ R, ε =

 −1 0 0
0 1 0
0 0 1




.

Then, let −→p denote the ground vector and P denote the column matrix form of
the point. The equations
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(1.3) C · P = −→c ∧L
−→p

and

(1.4) −→c ∧L (−→c ∧L
−→p ) = −〈−→c ,−→p 〉L + 〈−→c ,−→c 〉−→p L

are valid. Therefore, from equation (1.1) and if
−−→
c(s) is a spacelike vector, then

A1(s, t)P =
[
I + C · sinh t + C2 · (−1 + cosh t)

]
P.

From the equation (1.2) and if
−−→
c(s) is a timelike vector, then

A2(s, t)P =
[
I + C · sin t + C2 · (1− cos t)

]
P.

Using the equations (1.3) and (1.4), we get

A1(s, t)P = −→p cosh t + 〈−→c ,−→p 〉L−→c (1− cosh t) + (−→c ∧L
−→p ) sinh t(1.5)

and

A2(s, t)P = −→p cos t− 〈−→c ,−→p 〉L−→c (1− cos t) + (−→c ∧L
−→p ) sin t.(1.6)

Let α be a space curve given by

α : I → R3
1 , s → α(s)

be differentiable as for s ∈ I ⊂ R. In additional, let a vector field defined C(s) along
the curve α(s) be given as

c : α(I) →
⋃
s∈I

TR3
1

s → c(s) =
(
α(s),

−−→
c(s)

)
=
−−→
c(s)

∣∣
α(s) .

Let C(s) be a semi-skew symetric matrix defined by the vector −→c for all s ∈ I. The
matrices A1(s, t) andA2(s, t) are semi-orthogonal matrices defined by C(s). The
moving Frenet frame defined along the curve α(I) is

{
α(s),

−−→
T (s),

−−−→
N(s),

−−→
B(s)

}
and p

is a fixed point according to the frame. With these notations and assumptions, we
can give the following definition:

Definition 1.1. The motion ϕ(s, t)(P ) = A1,2(s, t)P+α(s) is called the two parame-
ter motion defined along the curve in Minkowski 3−space [1]. Here ϕ(s, t)(P ) indicates
a trajectory level.
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Let us give some properties of the ϕ(s, t)(P ). We will always use the
{−→

T ,
−→
N,

−→
B
}

instead of the Frenet frame
{−−→

T (s),
−−−→
N(s),

−−→
B(s)

}
for the rest of our work. We will

also choose the tangent vector field
−→
T instead of the vector field −→c . A trajectory of

the point P indicates a surface under the two parameter motion. The equation of
this surface is

i. If −→c is a spacelike vector, then from equations (1.1) and (1.5), we have

(1.7) ϕ1(s, t)(P ) = −→p cosh t + 〈
−→
T ,−→p 〉L(1− cosh t)

−→
T + sinh t · (

−→
T ∧L

−→p ) + α(s).

ii. If −→c is a timelike vector, then from equations (1.2) and (1.6), we have

(1.8) ϕ2(s, t)(P ) = −→p cos t− 〈
−→
T ,−→p 〉L(1− cos t)

−→
T + sin t(

−→
T ∧L

−→p ) + α(s).

2. Helices on tubular surfaces

In this section, we will use frame
{−→

T ,
−→
E1,

−→
E2

}
instead of Frenet frame of the curve

and our calculations will be constructed on this case, where E1 and E2 are indepen-
dent from choosing of the curve.

i. If α(s) is a spacelike curve, then tangent
−→
T is a spacelike and we have the

following cases:
Let’s take −→p = λ

−→
E1, λ ∈ R in two parameter motion (1.7).

(a)
−→
T spacelike,

−→
E1 timelike and

−→
E2 spacelike. We have

(2.1) ϕ1(s, t)(p) = λ
−→
E1 cosh t + λ

−→
E2 sinh t + α(s)

which is parametric equation of tubular surface in Minkowski 3-space
defined along the curve α(s). If we take as α(s) = (0, 0, s),

−→
T = (0, 0, 1)

and another frame
−→
E1 = (1, 0, 0),

−→
E2 = (0, 1, 0), and substitute in equa-

tion (2.1), then we have

ϕ1(s, t)(p) = (λ cosh t, λ sinh t, s)

which is a Lorentz cylinder.

(b)
−→
T spacelike,

−→
E1 spacelike and

−→
E2 timelike. We have

(2.2) ϕ1(s, t)(p) = λ
−→
E1 cosh t− λ

−→
E2 sinh t + α(s)

which is parametric equation of tubular surface in Minkowski 3-space
defined along the curve α(s) . If we take as α(s) = (0, 0, s),

−→
T =

(0, 0, 1),
−→
E1 = (0, 1, 0),

−→
E2 = (1, 0, 0), and substitute in equation (2.2),

then we have

ϕ1(s, t)(p) = (−λ sinh t, λ cosh t, s)

which is a Lorentz cylinder.
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ii. If α(s) is a timelike curve:
Let’s take −→p = λ

−→
E1, λ ∈ R in two parameter motion (1.8). We have

(2.3) ϕ2(s, t)(p) = λ
−→
E1 cos t + λ

−→
E2 sin t + α(s)

which is parametric equation of tubular surface in Minkowski 3-space de-
fined along the curve α(s). If we take as α(s) = (s, 0, 0),

−→
T = (1, 0, 0),

−→
E1 =

(0, 1, 0),
−→
E2 = (0, 0, 1), and substitute in equation (2.3), then we have

ϕ2(s, t)(p) = (s, λ cos t, λ sin t)

which is a Lorentz cylinder.
Let’s take t = s. Then a curve on the tubular surface is obtained. The equation

of this curve from equation (2.1) is

(2.4) β(s) = λ
−→
E1 cosh s + λ

−→
E2 sinh s + α(s).

From equation (2.2), it is

(2.5) β(s) = λ
−→
E1 cosh s− λ

−→
E2 sinh s + α(s).

From equation (2.3), it is

(2.6) β(s) = λ
−→
E1 cosh s− λ

−→
E2 sinh s + α(s).

These curves are helix curves on the tubular surfaces in Minkowski 3-space.
If α(s) = (0, 0, s) is a spacelike curve, then

(2.7) β(s) = (cosh s, sinh s, s)

is obtained from equation (2.4), where
−→
T = (0, 0, 1),

−→
E1 = (1, 0, 0),

−→
E2 = (0, 1, 0) and

λ = 1.

(2.8) β(s) = (− sinh s, cosh s, s)

is obtained from equation (2.5), where
−→
T = (0, 0, 1),

−→
E1 = (0, 1, 0),

−→
E2 = (1, 0, 0) and

λ = 1.
If α(s) = (s, 0, 0) is a timelike curve, then

(2.9) β(s) = (s, cos s, sin s)

is obtained from equation (2.6), where
−→
T = (1, 0, 0),

−→
E1 = (0, 1, 0),

−→
E2 = (0, 0, 1) and

λ = 1.
These curves are helix curves on the cylinder in Minkowski 3-space with z-axis or

x-axis.

3. Tubular surfaces defined by β(s)

In this section, we investigate tubular surfaces by using β(s) curves in equations
(2.4), (2.5) and (2.6). Furthermore, we can use Frenet frame of the curve. For the
equations of tubular surfaces from equation (1.7),

(3.1) ϕ∗(s, t)(P ∗) = λ
−−−→
N∗(s) cosh t + λ

−−−→
B∗(s) sinh t + β(s)

and

(3.2) ϕ∗(s, t)(P ∗) = λ
−−−→
N∗(s) cosh t− λ

−−−→
B∗(s) sinh t + β(s)
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are obtained, where
−→
p∗ = λ

−→
N∗. Furthermore, from equation (1.8)

(3.3) ϕ∗(s, t)(p∗) = λ
−−−→
N∗(s) cos t + λ

−−−→
B∗(s) sin t + β(s)

is also obtained. We can find the equations of tubular surfaces with the helping of
β(s) curves on the surfaces of the equations (2.1), (2.2) and (2.3).

(a) Tubular surface defined by β(s) = (cosh s, sinh s, s).
By using the curve β(s) , then

−→
T ∗ =

1√
2
(sinh s, cosh s, 1)

−→
N∗ = (− cosh s,− sinh s, 0)
−→
B∗ =

1√
2
(sinh s, cosh s,−1)

are obtained. If we substitute these values in equation (3.1), where

−→
p∗ = λ

−→
N∗ = λ(− cosh s,− sinh s, 0), λ ∈ R,

then

ϕ∗(s, t)(p∗) =



−λ cosh s cosh t + λ sinh s sinh t√
2

+ cosh s,

−λ sinh s cosh t + λ cosh s sinh t√
2

+ sinh s,

−λ sinh t√
2

+ s


(3.4)

is obtained. This shows the characterization of tubular surface.

(b) Tubular surface defined by β(s) = (− sinh s, cosh s, s).
Since

−→
T ∗ = β

′
(s) = (− cosh s, sinh s, 1), the curve is a null curve. Let’s

choose binormal vector field of the curve such that
−→
B∗ = W1 = β

′′
(s) = (− sinh s, cosh s, 0).

We need to find the vector field
−→
N∗ such that〈

−→
N∗,

−→
N∗〉L = 0and 〈

−→
T ∗,

−→
N∗〉L =

1. For that reason, we can find V vector such that 〈
−→
T ∗, V 〉L 6= 0. If we take

V = (1, 0, 0), then 〈
−→
T ∗, V 〉L 6= 0. If we substitute

−→
T ∗ and V in equation

−→
N∗ =

1

〈
−→
T ∗, V 〉L

(
V − 〈V, V 〉L

2〈
−→
T ∗, V 〉L

−→
T ∗

)
,

then
−→
N∗ =

(
1

2 cosh s
,

sinh s

2 cosh2 s
,

1
2 cosh2 s

)
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is obtained. So, Frenet frame of null curve in Minkowski 3-space is obtained.
If we substitute these values in equation (3.2), then

(3.5) ϕ∗(s, t)(p∗) =



λ cosh t
2 cosh s

+ λ sinh s sinh t− sinh s,

λ sinh s cosh t
2 cosh2 s

− λ cosh s sinh t + cosh s,

λ cosh t
2 cosh2 s

+ s


is obtained. This shows the characterization of tubular surface.

(c) Tubular surface defined by β(s) = (s, cos s, sin s).
Since

−→
T ∗ = β

′
(s) = (1,− sin s, cos s),the curve is a null curve. Let’s choose

binormal vector field of the curve such that
−→
B∗ = W1 = β

′′
(s) = (0,− cos s,− sin s).

We need to find the vector field
−→
N∗ such that 〈

−→
N∗,

−→
N∗〉L = 0 and 〈

−→
T ∗,

−→
N∗〉L

= 1. For that reason, we can find V vector such that 〈
−→
T ∗, V 〉L 6= 0. If we

take V = (1, 0, 0), then 〈
−→
T ∗, V 〉L 6= 0. If we substitute

−→
T ∗ and V in equation

−→
N∗ =

1

〈
−→
T ∗, V 〉L

(
V − 〈V, V 〉L

2〈
−→
T ∗, V 〉L

−→
T ∗

)
,

then
−→
N∗ =

(
−1

2
,− sin s

2
,
cos s

2

)
is obtained. So, Frenet frame of null curve in Minkowski 3-space is obtained.
If we substitute these values in equation (3.3), then

(3.6) ϕ∗(s, t)(p∗) =


−λ cos t

2 + s,

−λ sin s cos t
2 − λ cos s sin t,

λ cos s cos t
2 − λ sin s sin t



is obtained. This shows the characterization of tubular surface.

4. Geodesic curves of tubular surfaces

Definition 4.1. Let α : I → M be a curve such that DT T = 0, where D and T are
connection of M and unit tangent vector field of α respectively. Then α is called a
geodesics curve on M [3].

Now we are ready to state the following theorem.

Theorem 4.1. Let γ : I → M be a curve. Then DT T = 0 if and only if γ one of
the following curves.
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i. For any fixed s, the corresponding curve.
ii. The curves ηt=0(s) which corresponds to t = 0 where M is tubular surface

given by equation (3.4).

Proof. If we denote the connections of R3
1 and M , by D and D respectively, then we

can write the Gauss equation

(4.1) DXY = DXY + ε〈S(X), Y 〉LU

X, Y ∈ χ(M), 〈U,U〉L = ε, ε = ∓1 [3]. Where χ(M) is vector space of tangential
vector fields on M and U is the unit normal vector field of M and S denotes the
Weingarten map of M . If we have X = Y = T , then (4.1) reduces to

(4.2) DT T = DT T + ε〈S(T ), T 〉LU

on the geodesics curves, DT T = 0, for this kind of curve we have

(4.3) DT T + ε〈S(T ), T 〉LU = 0.

On the other hand, since

〈T,U〉L = 0
or

〈DT T,U〉L + 〈T,DT U〉L = 0
or

DT U = S(T ),

the last equation gives us

〈T, S(T )〉L = 〈S(T ), T 〉L = −〈DT T,U〉L
and equation (4.3) reduces to

(4.4) DT T − ε〈DT T,U〉LU = 0.

i. In equation (3.4), choose those curves such that s = constant. Then for
these curves we have

(4.5) γ(t) = ϕs(t) =



−λ cosh s cosh t + λ sinh s sinh t√
2

+ cosh s,

−λ sinh s cosh t + λ cosh s sinh t√
2

+ sinh s,

−λ sinh t√
2

+ s


,

T =
dγ
dt∥∥∥dγ
dt

∥∥∥
L

T =
(
− cosh s sinh t +

cosh t sinh s√
2

,− sinh t sinh s +
cosh t cosh s√

2
,−cosh t√

2

)
and
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DT T =
(
− cosh t cosh s +

sinh s sinh t√
2

,− cosh t sinh s +
sinh t cosh s√

2
,− sinh t√

2

)
.

(4.6)

On the other hand, for the unit vector field U we have
(4.7)

U =
dϕ
ds

∧L
dϕ
dt∥∥∥dϕ

ds
∧L

dϕ
dt

∥∥∥
L

=
1√∣∣sinh2 t− cosh2 t

∣∣



− cosh t cosh s + sinh s sinh t√
2

,

− cosh t sinh s + sinh t cosh s√
2

,

− sinh t√
2


or

DT T = U
∣∣

γ(t)

or

〈DT T,U〉L = 〈U,U〉L = ε = −1

and from (4.4) we have

DT T − (−1)〈DT T,U〉LU = DT T + 〈DT T,U〉LU = 0

and so, the equation (4.2) give us DT T = 0 which implies that each of s =
constant parameter curve, lies on M is a geodesic.

ii. Now we take the curves η such that t = constant on M then we can obtain
the parametric representation of η from (3.4) as

(4.8) η(s) = ϕt(s) =



−λ cosh s cosh t + λ sinh s sinh t√
2

+ cosh s,

−λ sinh s cosh t + λ cosh s sinh t√
2

+ sinh s,

−λ sinh t√
2

+ s


.

In this case, the unit tangent vector field T of η is

T =
dη
ds∥∥∥dη
ds

∥∥∥
L

T =
1√

1 + (1− λ cosh t)2 − λ2 sinh2 t
2


−λ sinh s cosh t + λ sinh t cosh s√

2
+ sinh s,

−λ cosh t cosh s + λ sinh t sinh s√
2

+ cosh s,

1


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and
(4.9)

DT T =
1

1 + (1− λ cosh t)2 − λ2 sinh2 t
2


−λ cosh s cosh t + λ sinh t sinh s√

2
+ cosh s,

−λ cosh t sinh s + λ sinh t cosh s√
2

+ sinh s,

0

 ,

〈DT T,U〉L =
1

1 + (1− λ cosh t)2 − λ2 sinh2 t
2

(
−λ cosh2 t +

λ sinh2 t

2
+ cosh t

)
.

If we write the equation (4.7) and (4.9) in equation,

DT T − (−1)〈DT T,U〉LU = DT T + 〈DT T,U〉LU = 0,

we obtain three algebric differential equations and since one of these equation in
being

− 1√
2

sinh t = 0,

the solution of this equation are t = 0. If we put this value of t in (3.4), we have

η(s) = ϕt=0(s) = ((1− λ) cosh s, (1− λ) sinh s, s)

which implies that only geodesic curves among the parameter curves t = constant
are parametric curve which corresponds to t = 0. The converse of the proof of this
theorem in obvious. Since parameter curves in the equations (3.5) and (3.6) of the
surfaces are not getting the equation DT T = 0. Parameter curves are not geodesic
curves. This completes the proof.
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