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Abstract

In this paper, contractions of complex Leibniz algebras are considered. A short summary of the
history, relationships of different definitions and comparisons of them are given. We focus on the
contractions of three-dimensional case of complex Leibniz algebras. A several contraction invariants
that are useful in determining whether one algebra can be obtained as an contraction of another
algebra are given.

1 Introduction

In 1951 I.E.Segal [18] introduced the notion of contractions of Lie algebras on physical grounds: if two
physical theories (like relativistic and classical mechanics) are related by a limiting process, then the
associated invariance groups (like the Poincare and Galilean groups) should also be related by some
limiting process. If the velocity of light is assumed to go to infinity, relativistic mechanics “transforms”
into classical mechanics. This also induces a singular transition from the Poincare algebra to the Galilean
one. Another example is a limiting process from quantum mechanics to classical mechanics under ~ −→ 0,
that corresponds to the contraction of the Heisenberg algebras to the abelian ones of the same dimensions
[4].

There are two approaches to the contraction problems of algebras. The first of them is based
on physical considerations that is mainly oriented to applications of contractions. Contractions were
used to establish connections between various kinematical groups and to shed a light on their physical
meaning. In this way relationships between the conformal and Schrodinger groups was elucidated and
various Lie algebras including a relativistic position operator were interrelated. Under dynamical group
description of interacting systems, contractions corresponding to the coupling constant going to zero give
noninteracting systems. Application of contractions allows to derive interesting results in the special
function theory and on the variable separation method.

The second consideration is pure algebraical dealing with abstract algebraic structures. We will
deal with this case and focus mainly to algebraic aspects of the contractions.

Let A be an n−dimensional algebra over a field K, (underlying vector space denoted V ) with the
binary operation λ : V × V −→ V. Consider a continuous function gt : (0, 1] −→ GL(V ). In other words,
gt is a nonsingular linear operator on V for all t ∈ (0, 1]. Define parameterized family of new isomorphic
to A algebra structures on V via the old binary operation λ as follows:

λt(x, y) = (gt ∗ λ)(x, y) = g−1
t λ(gt(x), gt(y)), x, y ∈ V.

Definition 1.1. If the limit lim
t→+0

λt = λ0 exists for all x, y ∈ V, then the algebraic structure λ0 defined

by this way on V is said to be a contraction of the algebra A.

Note 1.1. Obviously, the contractions can be considered in basis level, i.e., let {e1, e2, ..., en} be a basis
of an n−dimensional algebra A. If the limit lim

t→+0
λt(ei, ej) = λ0(ei, ej) exists then the algebra (V, λ0) is

a contraction of A.

Definition 1.2. A contraction from an algebra A to algebra A0 is said to be trivial if A0 is abelian and
improper if A0 is isomorphic to A.
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Note that both the trivial and the improper contractions always exist. Here an example of the
trivial and the improper contractions.

Example 1.1. Let A = (V, λ) be an n−dimensional algebra. If we take gt = diag(t, t, ..., t) then gt ∗ λ is
abelian and at gt = diag(1, 1, ..., 1) we get gt ∗ λ = A.

In this paper we mainly focus on the algebraic aspects of the contractions. In current usage in
algebra the word degeneration also is equally used instead of contraction.

Let V be a vector space of dimension n over an algebraically closed field K (charK=0). The
bilinear maps V ×V → V form a vector space Hom(V ⊗V, V ) of dimension n3, which can be considered
together with its natural structure of an affine algebraic variety over K and denoted by Algn(K). An
n-dimensional algebra A over K may be considered as an element λ(A) of Algn(K) via the bilinear
mapping λ : A⊗A → A defining an binary algebraic operation on A. The linear reductive group GLn(K)
acts on Algn(K) by (g ∗ λ)(x, y) = g(λ(g−1(x), g−1(y)))(“ transport of structure”). Two algebras λ1 and
λ2 are isomorphic if and only if they belong to the same orbit under this action. For given two algebras
λ and µ we say that λ degenerates to µ, if µ lies in the Zariski closure of the orbit λ. We denote this by
λ → µ.

Definition 1.3. An algebra L over a field K is called a Leibniz algebra if its binary operation λ satisfies
the following Leibniz identity:

λ((x, λ(y, z)) = λ(λ(x, y), z)− λ(λ(x, z), y).

The set of all n-dimensional Leibniz algebras over a field K will be denoted by Leibn(K).
The set Leibn(K) can be included in the above mentioned n3-dimensional affine space as follows: let
{e1, e2, . . . , en} be a basis of the Leibniz algebra L. Then the table of multiplication of L is represented
by point (γk

ij) of this affine space as follows:

λ(ei, ej) =
n∑

k=1

γk
ijek.

Thus, the algebra L corresponds to the point (γk
ij). γk

ij are called structure constants of L. The
Leibniz identity gives polynomial relations among γk

ij . Hence we regard Leibn as a subvariety of Kn3
.

Definition 1.4. A Leibniz algebra λ is said to degenerate to a Leibniz algebra µ, if µ is represented by
a structure which lies in the Zariski closure of the GLn(K)-orbit of the structure which represents λ.

In this case entire orbit Orb(µ) lies in the closure of Orb(λ). We denote this, as has been mentioned
above, by λ → µ, i.e., µ ∈ Orb(λ).

Note 1.2. Degeneration is transitive, that is if λ → µ and µ → ν then λ → ν.

Note 1.3. There are algebras the orbits of which are open in Leibn(K). These algebras are called rigid.
The orbits of the rigid algebras give irreducible components of the variety Leibn(K). Hence to describe
the variety Leibn(K) it is sufficient to describe all the rigid and rigid family of Leibniz algebras. By the
Noetherian consideration they are finite number.

From now on all algebras considered are supposed to be over the field of complex numbers C. We
make use of a few useful facts from the algebraic groups theory, concerning the degenerations. The first
of them is on constructive subsets of algebraic varieties over C, the closures of which relative to Euclidean
and Zariski topologies coincide. Since GLn(C)-orbits are constructive sets, the usual Euclidean topology
on Cn3

leads to the same degenerations as does the Zariski topology. Now we may express the concept
of degeneration in a slightly different way, that is the following condition will imply that λ → µ :

∃gt ∈ GLn(C(t)) such that lim
t→0

gt ∗ λ = µ,

where C(t) is the field of fractions of the polynomial ring C[t].
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The second fact concerns the closure of GLn(C)-orbits stating that the boundary of each orbit
is a union of finitely many orbits with dimensions strictly less than dimension of the given orbit. It
follows that each irreducible component of the variety, on which algebraic group acts, contains only one
open orbit that has a maximal dimension. It is obvious that in the content of variety of algebras the
representatives of this kind orbits are rigid.

It is an interesting but difficult problem to determine the number of irreducible components of
an algebraic variety. In this note we study the variety of 3-dimensional Leibniz algebras. As for other
classes of algebras the known cases as follows: for associative algebras algn(C) : alg4(C) [8], alg5(C) [16]
and [14]; for nilpotent associative algebras case (see [16]); for nilpotent Lie algebras NLn(C) : at n ≤ 5
it can be found in [11], [3] and NL6 was described by G.Seeley [17], NL7 and NL8 were investigated
by Goze M., Ancochea Bermudez J.M. [9] and Goze M., Khakimdjanov Yu.B.[10]; the variety of filiform
Lie Algebras were investigated by Goze M., Khakimdjanov Yu.B. [10]; for nilpotent Leibniz algebras in
dimension less than 5 the geometric classification can be found in [1]. A slightly different approach to
the geometric classification problem of algebras can be found in [5], [6] and [7].

2 Invariance Arguments

For a given Leibniz algebra L we define:

• <(L) = {x ∈ L|λ(L, x) = 0}− the right annihilator of L;

• =(L) = {x ∈ L|λ(x, L) = 0}− the left annihilator of L;

• Z(L) = {x ∈ L|λ(x, L) = λ(L, x) = 0}− the center of L;

• Aut(L)− the group of automorphisms of L;

• Lk = λ(Lk−1, L)− the k-th degree of L, k ∈ N;

• SA(L)− the maximal abelian subalgebra of L;

• Com(L)− the maximal commutative subalgebra of L;

• SLie(L)− the maximal Lie subalgebra of L;

• HLi(L,L)− the ith Leibniz cohomology group.

Invariance Argument 1.

Theorem 2.1. [1] For any m, r ∈ N the following subsets of Leibn are closed relative to the Zariski
topology:

1) {L ∈ Leibn | dimLm ≤ r} 2) {L ∈ Leibn | dim<(L) ≥ m}
3) {L ∈ Leibn | dim=(L) ≥ m} 4) {L ∈ Leibn | dimZ(L) ≥ m}
5) {L ∈ Leibn | dimAut(L) > m} 6) {L ∈ Leibn | dimSA(L) ≥ m}
7) {L ∈ Leibn | dimCom(L) ≥ m} 8) {L ∈ Leibn | dimSLie(L) ≥ m}
9) {L ∈ Leibn | dimHLi(L, L) ≥ m}
The proof is an easy consequence of the following fact from algebraic group theory. Let G be a

complex reductive algebraic group acting rationally on an algebraic set X. Let B be a Borel subgroup of
G. Then G = G ∗B [11].

Corollary 2.1. An algebra L does not degenerate to algebra L′ if one of the following conditions is valid:
1) dimLm < dimL′m for some m, 2) dim<(L) > dim<(L′),
3) dim=(L) > dim=(L′), 4) dimZ(L) > dimZ(L′),
5) dimAut(L) ≥ dimAut(L′), 6) dimSA(L) > dimSA(L′),
7) dimCom(L) > dimCom(L′), 8) dimSLie(L) > dimSLie(L′).
9) dimHLi(L,L) > dimHLi(L′, L′).
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The Invariance Arguments below are stated in general sitting and Leibniz algebras case is deduced
from these as a special case.

Invariance Argument 2.
Let A be an n-dimensional algebra over a field K and e1, e2, ..., en be a basis on it. Then the element

x = x1

⊗
e1 + x2

⊗
e2 + ... + xn

⊗
en ∈ K[x1, x2, ..., xn]

⊗
K A, where x1, x2, ..., xn are independent

variables, is called the generic element of A. Denote by fA(Rx) a Cayley-Hamilton polynomial of the
right-multiplication operator to the generic element x in the algebra Â = K[x1, x2, ..., xn]

⊗
K K. It is

known that fA(Rx) doesn’t depend on choosing of a basis in A.

Proposition 2.1. If an algebra A degenerates to algebra B then fA(Rx) = 0 in B.

Invariance Argument 3.
Let {e1, e2, ..., en} be a basis of A and tr(Rei

) = 0 for all i. If there exists a basis {f1, f2, ..., fn} of
B such that tr(Rfi) 6= 0 for some i then A does not degenerate to B.

Invariance Argument 4.
Let A be given by the structure constants γ1, γ2, ..., γr and (i, j) be pair of positive integers such

that

cij =
tr(Rx)itr(Ry)j

tr((Rx)i ◦ (Ry)j)
.

cij is a polynomial of γ1, γ2, ..., γr and it does not depend on the elements x, y of A.

If neither of these polynomials is zero, we call cij an (i, j)-invariant of A. Suppose that A has an
(i, j)− invariant cij . Then all B ∈ O(A) have the same (i, j)− invariant.

Invariance Argument 5.
Let assume that in the previous invariance argument either tr(Rx)itr(Ry)j = 0 or

tr((Rx)i ◦ (Ry)j) = 0 for all x, y ∈ A and some pair (i, j). Then these equations hold for all B ∈ O(A).

3 Variety of 3-dimensional complex Leibniz algebras

In two dimensional Leibniz algebras case one has the following table.

L1 e1e2 = e1, e2e2 = e1 Solvable Leibniz algebra
L2 e2e2 = e1 Nilpotent Leibniz algebra
L3 e1e2 = −e2e1 = e2 Solvable Lie algebra
L3 - Abelian

It is easy to see here that the algebras L1 and L3 are rigid. Hence, Leib2(C) has two irreducible compo-
nents generated by L1 and L3, respectively.

Theorem 3.1. Up to isomorphism, there exist four one parametric families and fourteen explicit repre-

sentatives of complex Leibniz algebras of dimension three.

Proof. The proof can be obtained by combining algebraic classification of Lie (see.[12]) and Leibniz

algebras (see.[2]) in dimension three.

In the following two tables we give all isomorphic types of 3-dimensional complex Leibniz algebras
and their volumes of invariants (the names in column 1 correspond to the increasing of the automorphisms
group’s dimension ).
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L1(α)
α 6= 0, α ∈ C

e1e3 = αe1, e2e3 = e1 + e2,
e3e3 = e1

Solvable Leibniz algebra

L2
e3e3 = e1,
e2e3 = e1 + e2

Solvable Leibniz algebra

L3

e1e2 = e3, e1e3 = −2e3,
e2e1 = −e3, e2e3 = 2e3,
e3e1 = 2e3, e3e2 = −2e3

Simple Lie algebra

L4(α) e1e3 = αe1, e2e3 = −e2,
e3e2 = e2, e3e3 = e1

Solvable Leibniz algebra

L5
e1e3 = e1, e2e3 = e1,
e3e3 = e1

Solvable Leibniz algebra

L6
e1e3 = e2,
e3e3 = e1

Nilpotent Leibniz algebra

L7
e1e2 = e1, e1e3 = e1,
e3e2 = e1, e3e3 = e1

Solvable Leibniz algebra

L8
e1e1 = e2,
e2e1 = e2

Solvable Leibniz algebra

L9(α)
α 6= 0, 1; α ↔ α−1

e1e2 = e2, e1e3 = αe3,
e2e1 = −e2, e3e1 = −αe3

Solvable Lie algebra

L10
e1e2 = e2,
e2e1 = −e2

Solvable Lie algebra

L11
e1e2 = e2, e1e3 = e2 + e3,
e2e1 = −e2, e3e1 = −e2 − e3

Solvable Lie algebra

L12(α)
α ∈ C

e2e2 = e1, e2e3 = e1,
e3e3 = αe1

Nilpotent Leibniz algebra

L13
e2e2 = e1, e2e3 = e1,
e3e2 = e1

Associative, commutative,
nilpotent Leibniz algebra

L14
e1e3 = e1, e2e3 = e2,
e3e3 = e1

Solvable Leibniz algebra

L15 e1e1 = e2
Associative, commutative,
nilpotent Leibniz algebra

L16
e1e2 = e2, e1e3 = e3,
e2e1 = −e2, e3e1 = −e3

Solvable Lie algebra

L17
e1e2 = e3,
e2e1 = −e3

Nilpotent Lie algebra

L18 - Abelian

L dL2 d<(L) d=(L) dZ(L) dAut(L) dSA(L) dCom(L) dLie(L)
L1(α)

α 6= 0, α ∈ C 2 2 1 0 2 2 2 2

L2 2 2 1 1 2 2 2 2
L3 1 1 1 1 3 1 1 3

L4(α = 0) 2 1 1 1 3 2 2 2
L4(α 6= 0) 2 1 0 0 3 2 2 2

L5 1 2 1 0 3 2 2 2
L6 2 2 1 0 3 2 2 2
L7 1 2 2 1 3 2 2 2
L8 1 2 2 1 3 2 2 2

L9(α)
α 6= 0, 1; α ↔ α−1 2 0 0 0 4 2 2 3

L10 1 1 1 1 4 2 2 3
L11 2 0 0 0 4 2 2 3

L12(α = 0) 1 2 2 1 4 2 2 2
L12(α 6= 0) 1 1 1 1 4 1 2 2

L13 1 1 1 1 4 2 3 2
L14 2 2 2 1 4 2 2 2
L15 1 2 2 2 5 2 3 2
L16 2 0 0 0 6 2 2 3
L17 1 1 1 1 6 2 2 3
L18 0 3 3 3 9 3 3 3
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In the table below Rx and Lx stand for the right and the left multiplication operators, respectively and
I stands for the identity operator.

L The characteristic polynomial of Rx in L The characteristic polynomial of Lx in L
L1(α)

α 6= 0,−1, α ∈ C Rx(R2
x − (trRx)Rx + α

(α+1)2 (trRx)2I) L3
x

L1(α = −1) Rx(R2
x − 1

2 trR2
xI) L3

x

L2 R2
x(Rx − trRxI) L3

x

L3 R2
x(Rx − trRxI) L2

x(Lx − trLxI)
L4(α 6= 1) Rx{R2

x − (trRx)Rx − α
(α−1)2 (trRx)2I} L2

x(Lx − trLxI)
L4(α = 1) Rx(R2

x − 1
2 trR2

xI) L2
x(Lx − trLxI)

L5 R2
x(Rx − trRxI) L3

x

L6 R3
x L3

x

L7 R2
x(Rx − trRxI) L3

x

L8 R2
x(Rx − trRxI) L3

x

L9(α)
α 6= 0, 1; α ↔ α−1 Rx(R2

x − (trRx)Rx − α
(α−1)2 (trRx)2I) Lx(L2

x − (trLx)Lx − α
(α−1)2 (trLx)2I)

L9(α = −1) Rx(R2
x − 1

2 trR2
xI) Lx(L2

x − 1
2 trL2

xI)
L10 R2

x(Rx − trRxI) L2
x(Lx − trLxI)

L11 Rx(Rx − 1
2 trRxI)2 Lx(Lx − 1

2 trLxI)2

L12(α)
α ∈ C R3

x L3
x

L13 R3
x L3

x

L14 Rx(Rx − 1
2 trRxI)2 L3

x

L15 R3
x L3

x

L16 Rx(Rx − 1
2 trRxI)2 Lx(Lx − 1

2 trLxI)2

L17 R3
x L3

x

L18 R3
x L3

x



I.S. Rakhimov, K.A.M. Atan 7

N
L

Â
N

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

1
L

1

α
6=

0,
−1

,α
∈
C

A
2

1
R

R
R

R
2

2
2

1
R

R
R

2
R

R
2

2
R

R
1

2
L

1
(α

=
−1

)
A

A
1

R
R

R
R

2
2

2
1

R
R

R
2

R
R

2
2

R
R

1
3

L
2

A
A

A
R

R
R

R
2

2
2

1
R

R
R

2
R

R
2

1
R

R
1

4
L

3
A

A
A

A
D

D
D

L
IE

D
L
IE

1
D

2
D

SL
IE

SL
IE

SL
IE

D
SL

IE
D

2
1

5
L

4
(α

=
0)

A
A

A
A

A
2

2
2

2
2

1
R

2
R

2
2

2
2

0
R

2
1

6
L

4
(α
6=

0,
1)

A
A

A
A

A
A

2
2

2
2

1
R

R
2

2
2

0
R

2
1

7
L

4
(α

=
1)

A
A

A
A

A
A

A
2

2
2

1
R

2
R

SA
SA

2
0

R
2

1
8

L
5

A
A

A
A

A
A

A
A

D
2

1
D

R
D

2
R

R
D

2
D

R
1

9
L

6
A

A
A

A
A

A
A

A
A

1
R

R
R

2
R

R
2

2
R

R
1

10
L

7
A

A
A

A
A

A
A

A
A

A
1

D
R

D
2

R
R

D
2

D
R

1
11

L
8

A
A

A
A

A
A

A
A

A
A

A
D

R
D

2
R

R
D

2
D

R
1

12
L

9
(α

)
α
6=

0,
1;

α
↔

α
−

1
A

A
A

A
A

A
A

A
A

A
A

A
2

2
2

SA
SL

IE
SL

IE
SL

IE
0

2
1

13
L

9
(α

=
−1

)
A

A
A

A
A

A
A

A
A

A
A

A
A

A
D

SA
SL

IE
D

SL
IE

D
1

15
L

1
0

A
A

A
A

A
A

A
A

A
A

A
A

A
A

D
2

SA
SL

IE
D

SL
IE

D
2

1
14

L
1
1

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
2

SA
2

2
2

0
2

1
16

L
1
2
(α

=
0)

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

R
R

D
2

D
R

1
17

L
1
2
(α
6=

0)
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

2
D

2
D

2
1

18
L

1
3

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

D
2

D
C

O
M

1
19

L
1
4

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
2

R
R

1
20

L
1
5

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

D
R

1
21

L
1
6

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
2

1
22

L
1
7

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

1
23

L
1
8

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

Using the Invariance Arguments we find all possible degenerations of 3-dimensional complex Leib-
niz algebras.

L1 → L2, L5, L6, L7, L8, L12(α = 0), L14, L15, L18;
L2 → L7, L8, L12(α = 0), L14, L15, L18;
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L3 → L10, L17, L18;
L4(α = 0) → L7, L8, L10, L12(α = 0), L13, L14, L15, L17, L18;
L4(α 6= 0) → L4(α = 0), L5, L6, L7, L8, L10, L12(α = 0), L13, L14, L15, L17, L18;
L5 → L7, L8, L10, L12(α = 0), L15, L18;
L6 → L7, L8, L12(α = 0), L14, L15, L18

L7 → L8, L12(α = 0), L15, L18;
L8 → L8, L12(α = 0), L15, L18;
L9 → L10, L11, L16, L17, L18;
L10 → L17, L18;
L11 → L16, L17, L18;
L12(α = 0) → L15, L18

L12(α 6= 0) → L12(α = 0), L15, L18;
L13 → L15, L17, L18;
L14 → L17, L18;
L15 → L18

L16 → L17, L18

L17 → L18

L18 → L18

The following algebras do not take appear on the right hand side of this list after arrows, this
means that the algebras L2, L3, L11, L16 are rigid and the group of algebras L1(α), L4(α), L9(α), L12(α),
form rigid families of algebras, i.e., they are not degeneration of other Leibniz structures in dimension
three.

For the Leibniz algebras that can not be excluded from the rigidity class by these invariance
arguments we apply the following additional arguments:

1. A Leibniz algebra can not be degenerated by a Lie algebra.
2. Use existing 3-dimensional Lie algebras degenerations ([11], [3], [17]).
3. Use existing 3-dimensional nilpotent Leibniz algebras degenerations ([1]).
4. Use Associative algebras degenerations ([16]).
The final result can be spelled out as follows:

Theorem 3.2. 1. The algebras L2, L3, L11, L16 are rigid and L1(α), (α 6= 0), L4(α),

L9(α), (|α| < 1, α 6= 0), L12(α), (α 6= 0) are rigid family of algebras in Leib3(C).

2. Leib3(C) consists of eight irreducible components:

Leib3(C) = ∪αOrb(L1(α))
⋃

Orb(L2)
⋃

Orb(L3)
⋃
∪αOrb(L4(α))

⋃
∪|α|<1,α6=0Orb(L9(α))

⋃
Orb(L11)

⋃
∪α 6=0Orb(L12(α))

⋃
Orb(L16),

with the dimensions: dim∪αOrb(L1(α)) = 7, dimOrb(L2) = 7, dimOrb(L3) = 6, dim∪αOrb(L4(α)) = 6,

dim∪|α|<1,α 6=0Orb(L9(α)) = 5, dimOrb(L11) = 5, dim∪α 6=0Orb(L12(α)) = 5, dimOrb(L16) = 3 and

dimLeib3(C) = 7.
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