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Abstract

In (n, d)-ring and n-coherent ring theory, n-presented modules plays
an important role. In this paper, we firstly give some new characteriza-
tions of n-presented modules and n-coherent rings. Then, we introduce
the concept of (n, 0)-projective dimension, which measures how far away
a finitely generated module is from being n-presented and how far away
a ring is from being Noetherian, for modules and rings. This dimen-
sion has nice properties when the ring in question is n-coherent. Some
known results are extended or obtained as corollaries.
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1 Introduction

Throughout this paper all rings are associative with identity and modules are
unitary. rD(R) stands for the right global dimension of a ring R. pd(M),
id(M) and fd(M) denote the projective, injective and flat dimension of an
R-module M , respectively.

Let n ≥ 0 be an integer. Following [2; 3; 11], we call a right R-module P
n-presented if there exists an exact sequence of right R-modules

Fn → Fn−1 → · · · → F1 → F0 → P → 0
where each Fi is finitely generated free (equivalently projective), i = 0, 1,
· · ·, n. An R-module is 0-presented (resp. 1-presented) if and only if it is
finitely generated (resp. finitely presented). Every m-presented R-module is
n-presented for m ≥ n. A ring R is called right n-coherent [3] in case every
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n-presented right R-module is (n + 1)-presented. It is easy to see that R is
right 0-coherent (resp. 1-coherent) if and only if R is right Noetherian (resp.
coherent), and every n-coherent ring is m-coherent for m ≥ n.

Let n and d be non-negative integers and M a right R-module. M is called
(n, d)-injective [12] if ExtR

d+1(N,M) = 0 for any n-presented right R-module
N . M is said to be (n, d)-projective [8] if Extd+1

R (M,N) = 0 for any (n, d)-
injective R-module N . It is easy to see that both (n, d)-injective modules and
(n, d)-projective modules are closed under direct summands and finite direct
sums. (1, 0)-injective (resp. (1, 0)-projective) modules are also called FP -
injective (resp. FP -projective) modules. It is clear that every (n, d)-injective
(resp. (m, d)-projective) module is (m, d)-injective (resp. (n, d)-projective) for
m ≥ n.

In (n, d)-ring and n-coherent ring theory (see [2; 3; 8; 12]), n-presented
modules plays an important role. For modules and rings, Mao and Ding [7]
defined a dimension, called an FP -projective dimension; Ng [15] introduced
the concept of finitely presented dimension. In this paper, we introduce a kind
of n-presented dimension of modules and rings.

Let n ≥ 1 be a fixed integer. In Section 2, we introduce the concept of
(n, 0)-projective dimension npd(M) for a right R-module M , and the concept
of right (n, 0)-projective dimension for a ring R, which measures how far away
a finitely generated right R-module M is from being n-presented, and how far
away a ring is from being right Noetherian, respectively. It is shown that a
finitely generated right R-module M is n-presented if and only if it is (n, 0)-
projective if and only if npD(M) = 0 (Theorem 2.3); R is an n-coherent ring if
and only if every (n, 0)-injective right R-module is (n, 1)-injective if and only
if every (n, 1)-projective right R-module is (n, 0)-projective (Theorem 2.6); R
is a right Noetherian ring if and only if rnpD(R) = 0 if and only if every
right R-module is (n, 0)-projective if and only if for a short exact sequence
0 → A → B → C → 0 of right R-modules, if both B and C are finitely
generated, then A is also finitely generated (Corollary 2.7).

Let n ≥ 1 be a fixed integer and R a right n-coherent ring. In Section
3, we prove that rnpD(R) = sup{npd(M): M is a cyclic right R-module}
= sup{id(M): M is an (n, 0)-injective right R-module} (Theorem 3.4). As
corollaries we obtain that R is right Noetherian if and only if rnpD(R) < ∞
and every injective right R-module is (n, 0)-projective if and only if every
(n, 0)-injective right R-module has an (n, 0)-projective cover with the unique
mapping property if and only if every (n, 0)-injective right R-module has
an injective envelope with the unique mapping property (Corollary 3.6). If
rnpD(R) ≤ m, then we have that R is a right m-coherent ring (Proposition
3.9). Let S and T be rings. If S⊕T is an right n-coherent ring, then we get that
rnpD(S⊕T ) = sup{rnpD(S), rnpD(T )} (Theorem 3.14). Let R be a commu-
tative n-coherent ring and P any prime ideal of R, then npD(RP) ≤ npD(R),
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where RP is the localization of R at P (Theorem 3.18).

2 Definition and General Results

Let R be a ring and m ≥ 0 an integer . Mao and Ding [7] defined the FP -
projective dimension fpd(M) of a rightR-moduleM as inf{m: Extm+1

R (M,N)
= 0 for any FP -injective right R-module N}, if no such m exists, set fpd(M)
=∞; and the right FP -projective dimension rfpD(R) of R as sup{fpd(M):
M is a finitely generated right R-module}. We generalize it as follows.

Definition 2.1 Let m ≥ 0, n ≥ 1 be integers, and R a ring. For a right
R-module M , set npd(M) = inf{m: Extm+1

R (M,N) = 0 for any (n, 0)-injective
right R-module N}, called the (n, 0)-projective dimension of M . If no such
m exists, set npd(M) = ∞.

Put rnpD(R) = sup{npd(M): M is a finitely generated right R-module},
and call rnpD(R) the right (n, 0)-projective dimension of R. The left (n,0)-
projective dimension lnpD(R) of R may be defined similarly. If R is a com-
mutative ring, we drop the unneeded letters r and l.

We list the following lemma proved in [8; Lemma 3.3] for convenient using.

Lemma 2.2 ([8; Lemma 3.3]) Let R be a ring, n ≥ 0 an integer and 0 →
A→ B → C → 0 a short exact sequence of right R-modules. If C is (n+1, 0)-
projective and B is (n, 0)-projective, then A is (n, 0)-projective.

It is clear that an n-presented right R-module is (n, 0)-projective. In gen-
eral, the converse is not true. Glaz (see [4; Theorem 2.1.10]) proved that
a finitely generated right R-module is finitely presented if and only if it is
FP -projective. We generalize it as the following

Theorem 2.3 Let n ≥ 0 be a fixed integer and R a ring. Then the following
are equivalent for a finitely generated right R-module P .

(1) P is n-presented.
(2) P is (n, 0)-projective.
(3) npd(P ) = 0.

Proof . (1)⇒ (2) is obvious, and (2)⇔ (3) holds by definition.
(2) ⇒ (1). We use induction on n. The case n = 0 is clear, and the

case n = 1 has been proven in [4; Theorem 2.1.10]. Assume n > 1, and P is
(n, 0)-projective. Then P is (n− 1, 0)-projective. So P is (n− 1, 0)-presented
by the induction hypothesis. Therefore there exists an exact sequence of right
R-modules

Fn−1 → Fn−2 → · · · → F1 → F0 → P → 0
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where each Fi is finitely generated projective (hence (m, 0)-projective, for any
non-negative integer m), i = 0, 1, . . . , n − 1. Write K1 = ker(F0 → P ), Km

= ker(Fm−1 → Fm−2), m = 2, 3, . . . , n− 1. Then we have the following short
exact sequences

0 −→ K1 −→ F0 −→ P −→ 0,
0 −→ K2 −→ F1 −→ K1 −→ 0,

...
0 −→ Kn−1 −→ Fn−2 −→ Kn−2 −→ 0.

Note that P is (n, 0)-projective and F0 is (n−1, 0)-projective, we obtain K1 is
(n−1, 0)-projective by Lemma 2.2. It follows that K2 is (n−2, 0)-projective a-
gain by Lemma 2.2. Continuing this way, we see that Kn−1 is (1, 0)-projective.
Clearly, Kn−1 is finitely generated. Thus Kn−1 is finitely presented by [4; Theo-
rem 2.1.10], and hence there exists an exact sequence F

′
n → F

′
n−1 → Kn−1 → 0

with F
′
n and F

′
n−1 finitely generated projective. So we get an exact sequence

F
′

n → F
′

n−1 → Fn−2 → · · · → F1 → F0 → P → 0.

It follows that P is n-presented, as required.
The following corollary is well-known.

Corollary 2.4 Let n ≥ 0 be a fixed integer and R a ring. Then the following
statements hold:

(1) Every finitely generated projective right R-module is n-presented.
(2) For a short exact sequence 0→ A→ B → C → 0 of right R-modules,

if both A and C are n-presented, then B is also n-presented.
(3) If B ∼= A⊕C, then B is n-presented if and only if both A and C are

n-presented.

Proof . (1). Note that every projective right R-module is (n, 0)-projective.
Thus (1) follows from Theorem 2.3.

(2). Since A and C are n-presented, we have both A and C are finitely
generated and (n, 0)-projective. Hence B is also finitely generated and (n, 0)-
projective. Therefore B is n-presented by Theorem 2.3.

(3). If B ∼= A ⊕ C, then it is easy to see that B is finitely generated
and (n, 0)-projective if and only if both A and C are finitely generated and
(n, 0)-projective. Thus (3) holds by Theorem 2.3, and we complete the proof.

Corollary 2.5 Let R be a ring, n ≥ 0 an integer and 0 → K → P →
M → 0 a short exact sequence of right R-modules, where P is finitely generated
projective. Then K is n-presented if and only if M is (n+ 1, 0)-presented.
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Proof . If K is n-presented, then clearly M is (n + 1)-presented. Con-
versely, if M is (n + 1)-presented (hence (n + 1, 0)-projective), then it is easy
to see that K is finitely generated. On the other hand, K is (n, 0)-projective
by Lemma 2.2. It follows that K is n-presented from Theorem 2.3.

Theorem 2.6 Let R be a ring, and n ≥ 0 a fixed integer. Then the follow-
ing are equivalent:

(1) R is a right n-coherent ring.
(2) Every (n+ 1, 0)-injective right R-module is (n, 0)-injective.
(3) Every (n, 0)-projective right R-module is (n+ 1, 0)-projective.
(4) For a short exact sequence 0 → A → B → C → 0 of right R-

modules with B finitely generated projective, if C is n-presented, then A is
also n-presented.

(5) For a short exact sequence 0→ A→ B → C → 0 of right R-modules,
if both B and C are n-presented, then A is also n-presented.

If n ≥ 1, then the above conditions are also equivalent to:
(6) Every (n, 0)-injective right R-module is (n, 1)-injective
(7) Every (n, 1)-projective right R-module is (n, 0)-projective.

Proof . (1)⇒ (2)⇒ (3). are obvious.
(3) ⇒ (1). Let M be an n-presented right R-modules. Then M is finitely

generated and (n, 0)-projective by Theorem 2.3. Note that M is (n + 1, 0)-
projective by (3). Thus M is (n+ 1)-presented again by Theorem 2.3.

(4)⇒ (1). Let M be any n-presented right R-module. Then there exits a
short exact sequence 0→ K → P →M → 0 of right R-modules with P finitely
generated projective and K n-presented by (4). Hence M is (n+ 1)-presented
by Corollary 2.5, and (1) follows.

(1) ⇒ (5). If C is n-presented, then C is (n + 1)-presented by (1). The
rest proof is similar to that of Corollary 2.5.

(5) ⇒ (4). By (5), it suffices to show that B is n-presented. But this
follows from Corollary 2.4.

Now suppose n ≥ 1.
(4) ⇒ (6). Let M be an (n, 0)-injective right R-module and C any n-

presented right R-module. Then we get a short exact sequence 0→ A→ B →
C → 0 of right R-modules with B finitely generated projective. By (4), A is
n-presented. Thus,

Ext2R(C,M) ∼= Ext1R(A,M) = 0.

Therefore, M is (n, 1)-injective.
(6)⇒ (7) is easy.
(7)⇒ (1). Let P be an n-presented right R-module. We get a short exact

sequence 0→ K → F → P → 0 of right R-modules with F finitely generated
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projective and K finitely generated. For any (n, 1)-injective right R-module
M , we have

Ext1R(K,M) ∼= Ext2R(P,M) = 0.

So K is (n, 1)-projective and hence (n, 0)-projective by (7). Thus, K is n-
presented by Theorem 2.3. Therefore, P is (n+ 1)-presented and (1) holds.

It is well known that a ring R is right Noetherian if and only if every right
R-module is FP -projective if and only if rfpD(R) = 0 (see [7; Proposition
2.6]). Now, we have the following

Corollary 2.7 Let n ≥ 1 be a fixed integer. Then the following are equiv-
alent for a ring R:

(1) R is right Noetherian.
(2) rnpD(R) = 0.
(3) Every finitely generated right R-module is n-presented.
(4) Every (n, 0)-injective right R-module is injective.
(5) Every right R-module is (n, 0)-projective.
(6) Every finitely generated right R-module is (n, 0)-projective.
(7) Every cyclic right R-module is (n, 0)-projective.
(8) For a short exact sequence 0→ A→ B → C → 0 of right R-modules,

if both B and C are finitely generated, then A is also finitely generated.
If R is right n-coherent , then the above conditions are also equivalent to:
(9) Every (n, 0)-injective right R-module is (n, 0)-projective.

Proof . (1)⇔ (3)⇒ (4) and (5)⇒ (6)⇒ (7) are trivial.
(4) ⇒ (5) Let M be any right R-module and N any (n, 0)-injective right

R-module. Then Ext1R(M,N) = 0 since N is injective by (4). Hence M is
(n, 0)-projective.

(7) ⇒ (4). Let N be any (n, 0)-injective right R-module, and I any right
ideal of R. By (7), R/I is (n, 0)-projective. So Ext1R(R/I,N) = 0. That is,
N is injective.

(2) ⇔ (6) holds by definition, (3) ⇔ (6) holds by Theorem 2.3, (1) ⇔ (8)
holds by Theorem 2.6, and (4)⇔ (9) has been proven in [8; Proposition 4.10].

Corollary 2.8 Let n ≥ 1 be an integer and R a ring. If rnpD(R) ≤ 1,
then rnpD(R) = rfpD(R).

Proof . This follows from the fact that rnpD(R) = 0 if and only if
rfpD(R) = 0 by Corollary 2.7 and [7; Proposition 2.6].

Remark 2.9 (1) From Theorem 2.3 and Corollary 2.7, we see that npd(M)
measures how far away a finitely generated right R-module M is from being
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n-presented, and rnpD(R) measures how far away a ring is from being right
Noetherian.

(2) It is clear that fpd(M) ≤ npd(M) ≤ pd(M), and rfpD(R) ≤
rnpD(R) ≤ rD(R). Since rfpD(R) = rD(R) if and only if R is von Neumann
regular [7; Remarks 2.2], we have rfpD(R) = rnpD(R) = rD(R) if and only
if R is von Neumann regular. It is also easy to see that rnpD(R) = rD(R) if
and only if R is a right (n, 0)-ring (see [12; Definition 2.5]).

(3) It is known that a right Noetherian ring need not be left Noetherian,
so rnpD(R) 6= lnpD(R) in general.

(4) The equivalence of (1) through (3) in Theorem 2.6 has been proven in
[8; Theorem 4.1]. Here we prove the equivalence in a different way.

(5) If n = 1, then Theorem 2.6 is just some characterizations of coherent
rings.

Recall that a ring R is called right self-(n, 0)-injective in case RR is (n, 0)-
injective. Stenström proved that if R is right coherent and right self-FP -
injective, then every flat right R-module is FP -injective (see [9; Lemma 4.1]).
We generalize it as the following

Proposition 2.10 Let n ≥ 1 be a fixed integer. If R is a right n-coherent
and right self-(n, 0)-injective ring, then every flat right R-module is (n, 0)-
injective.

Proof . Let M be a flat right R-module. Then, by [16; Theorem 4.85], we
get a pure short exact sequence 0 → K → F → M → 0 where F ∼=

⊕
I R

for a set I. Since R is right n-coherent and right self-(n, 0)-injective, we have
F is (n, 0)-injective by [12; Lemma 2.9]. Hence we obtain the following exact
sequence

0→ HomR(N,K)→ HomR(N,F )→ HomR(N,M)→ Ext1R(N,K)→ Ext1R(N,F ) = 0

for any n-presented (hence finitely presented) right R-module N . It follows
that Ext1R(N,K) = 0, and so K is (n, 0)-injective. Note that R is right n-
coherent, we have M is (n, 0)-injective by [8; Theorem 4.1], as desired.

3 (n, 0)-Projective Dimensions over n-Coherent

Rings

Proposition 3.1 Let n ≥ 1, m ≥ 0 be integers. If R is a right n-coherent
ring, then the following are equivalent for a right R-module M :

(1) npd(M) ≤ m.
(2) Extm+1

R (M,N) = 0 for any (n, 0)-injective right R-module N .
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(3) Extm+j
R (M,N) = 0 for any (n, 0)-injective right R-module N and

j ≥ 1.
(4) There exists an exact sequence 0→ Pm → Pm−1 → · · · → P1 → P0 →

M → 0, where each Pi is (n, 0)-projective.
(5) If · · · → Pm−1 → Pm−2 → · · · → P1 → P0 → M → 0 is a projective

resolution of M , then ker(Pm−1 → Pm−2) is (n, 0)-projective.

Proof . (1) ⇒ (2). We use induction on m. The case m = 0 is clear.
Let m ≥ 1. If npd(M) = m, then (2) holds by definition. Suppose npd(M) ≤
m − 1. For any (n, 0)-injective right R-module N , the short exact sequence
0→ N → E → L→ 0 with E injective induces an exact sequence

ExtmR (M,L)→ Extm+1
R (M,N)→ Extm+1

R (M,E) = 0.

Since R is n-coherent, we get L is (n, 0)-injective by [8; Theorem 4.1]. So
ExtmR (M,L) = 0 by the induction hypothesis. It follows that Extm+1

R (M,N) =
0, as desired.

(2)⇒ (3). Using induction on j, the proof is similar to that of (1)⇒ (2).
(3)⇒ (1), and (2)⇒ (5)⇒ (4) are obvious.
(4) ⇒ (2). Write K1 = ker(P0 → M), Ki = ker(Pi−1 → Pi−2), i = 2, 3,

. . . , m− 1. Then we have the following short exact sequences

0 −→ K1 −→ P0 −→M −→ 0,
0 −→ K2 −→ P1 −→ K1 −→ 0,

...
0 −→ Pm −→ Pm−1 −→ Km−1 −→ 0.

From the bottom exact sequence, we get the exactness of the sequence

0 = Ext1R(Pm, N)→ Ext2R(Km−1, N)→ Ext2R(Pm−1, N)

for any (n, 0)-injective right R-module N . Since Pm−1 is (n, 0)-projective, using
an argument similar to that of (1) ⇒ (2), we get Ext2R(Pm−1, N) = 0. Hence
Ext2R(Km−1, N) = 0. Continuing this way, we obtain Extm+1

R (M,N) = 0.
Thus (2) holds.

Proposition 3.2 Let R be a right n-coherent ring (n ≥ 1) and 0 → A →
B → C → 0 a short exact sequence of right R-modules. Then the following
are true:

(1) If two of npd(A), npd(B) and npd(C) are finite, so is the third.
(2) npd(A) ≤ sup{npd(B), npd(C)− 1}.
(3) npd(B) ≤ sup{npd(A), npd(C)}.
(4) npd(C) ≤ sup{npd(B), npd(A) + 1}.
(5) If B is (n, 0)-projective and 0 < npd(A) <∞, then npd(C) = npd(A)+

1.
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Proof . Easy to verify by Proposition 3.1.

Corollary 3.3 Let R be a right n-coherent ring (n ≥ 1), A, B and C right
R-modules. If B ∼= A⊕ C, then npd(B) = sup{npd(A), npd(C)}.

Proof . Since B ∼= A ⊕ C, we get two short exact sequences 0 → A →
B → C → 0 and 0 → C → B → A → 0. By Proposition 3.2 (3), it is
enough to show that npd(B) ≥ sup{npd(A), npd(C)}. Suppose npd(B) <
sup{npd(A), npd(C)}, then npd(B) < npd(A) or npd(B) < npd(C). We may
assume npd(B) < npd(A). By Proposition 3.2 (2), npd(C) ≤ sup{npd(B),
npd(A)−1}. So npd(C) ≤ npd(A)−1, that is, npd(C) < npd(A). In addition,
also by Proposition 3.2 (2), we have npd(A)≤ sup{npd(B), npd(C)−1}. Hence
npd(A) ≤ npd(C) − 1, since npd(B) < npd(A), and so npd(A) < npd(C), a
contradiction.

Let M be a right R-module. Recall that a a homomorphism φ : M →
F where F is a right (n, 0)-injective R-module, is called an (n, 0)-injective
preenvelope [5] of M if for any homomorphism f : M → F

′
with F

′
is (n, 0)-

injective, there is a homomorphism g : F → F
′

such that gφ = f . More-
over, if the only such g are automorphism of F when F

′
= F and f = φ,

then the (n, 0)-injective preenvelope φ is called an (n, 0)-injective envelope. A
monomorphic (n, 0)-injective preenvelope φ is said to be special [6; Definition
7.1.6] if cokerφ is (n, 0)-projective. (n, 0)-projective (pre)covers and special
(n, 0)-projective precovers can be defined dually. It is proved that every right
R-module has a special (n, 0)-projective precover and a special (n, 0)-injective
preenvelope (see [8; Theorem 3.9]).

Theorem 3.4 Let R be a right n-coherent ring (n ≥ 1), then the following
are identical:

(1) rnpD(R)
(2) sup{npd(M): M is a cyclic right R-module}
(3) sup{npd(M): M is any right R-module}
(4) sup{npd(M): M is an (n, 0)-injective right R-module}
(5) sup{id(M): M is an (n, 0)-injective right R-module}

Proof . (1) ≤ (2). We may assume sup{npd(M): M is a cyclic right
R-module}= m < ∞. Let A be any finitely generated right R-module. We
use induction on the number of generators of A. If A has l generators, let A

′

be a submodule generated by one of these generators. Then both A/A
′

and A
′

are finitely generated on less then l generators. Let N be any (n, 0)-injective
right R-module. Consider the short exact sequence 0→ A

′ → A→ A/A
′ → 0

which induces an exact sequence

Extm+1
R (A/A

′
, N)→ Extm+1

R (A,N)→ Extm+1
R (A

′
, N)
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where
Extm+1

R (A/A
′
, N) = Extm+1

R (A
′
, N) = 0

by induction hypothesis. Thus Extm+1
R (A,N) = 0. So npd(A) ≤ m.

(2) ≤ (3) is clear.
(3) ≤ (4). We may assume sup{npd(M): M is an (n, 0)-injective right

R-module}= m < ∞. Let A be any right R-module, then A has a special
(n, 0)-injective preenvelope by [8; Theorem 3.9], that is, there exists a short
exact sequence 0 → A → E → L → 0 with E (n, 0)-injective and L (n, 0)-
projective. Therefore, npd(A) ≤ npd(E) ≤ m by Proposition 3.2.

(4) ≤ (5). We may assume sup{id(M): M is an (n, 0)-injective right R-
module}= m < ∞. Let A and B be any (n, 0)-injective right R-modules.
Then Extm+1

R (A,B) = 0 since id(B) ≤ m. So npd(A) ≤ m by Proposition 3.1.
(5) ≤ (1). We may assume rnpD(R)= m < ∞. Let M be an (n, 0)-

injective right R-module. Then Extm+1
R (R/I,M) = 0 for any right ideal I of

R since npd(R/I) ≤ m by hypothesis. Hence id(M) ≤ m, this completes the
proof.

Corollary 3.5 Let n ≥ 1 be a fixed integer. Then the following are equiv-
alent for a right n-coherent ring R:

(1) rnpD(R) ≤ m.
(2) npd(M) ≤ m for any (n, 0)-injective right R-module M .
(3) npd(M) ≤ m for any injective right R-module M , and rnpD(R) <∞.
(4) id(M) ≤ m for any (n, 0)-injective right R-module M .
(5) id(M) ≤ m for all right R-module M that are both (n, 0)-injective

and (n, 0)-projective, and rnpD(R) <∞.

Proof . (1) ⇔ (2) ⇔ (4) holds by Theorem 3.4. (2) ⇒ (3) and (4) ⇒ (5)
are clear.

(5) ⇒ (4). Let M be any (n, 0)-injective right R-module. By (5) and
Theorem 3.4 (4), npd(M) = m for a non-negative integer m. Note that every
right R-module has a special (n, 0)-projective precover by [8; Theorem 3.9], we
obtain an exact sequence

0→ Pm → Pm−1 → · · · → P1 → P0 →M → 0

where each Pt is both (n, 0)-projective and (n, 0)-injective, t = 0, 1, . . ., m.
Hence id(Pt) ≤ m by (5), t = 0, 1, . . ., m. So id(M) ≤ m.

(3) ⇒ (2). Let M be any (n, 0)-injective right R-module. By (3) and
Theorem 3.4 (5), id(M) = t for a non-negative integer t. Hence we get an
injective resolution of M :

0→M → E0 → E1 · · · → Et−1 → Et → 0.
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By (3), npd(Ei) ≤ m, i = 0, 1, . . ., t. Hence we have npd(M) ≤ m by
Proposition 3.2, as desired.

Recall that an injective envelope φ : M → E(M) of M has the unique
mapping property [13] if for any homomorphism f : M → A with A injective,
there is a unique homomorphism g : E(M) → A such that gφ = f . The
concept of an (n, 0)-projective cover with the unique mapping property can be
defined similarly.

Corollary 3.6 Let n ≥ 1 be a fixed integer. Then the following are equiv-
alent for a right n-coherent ring R:

(1) R is right Noetherian.
(2) rnpD(R) <∞ and every injective right R-module is (n, 0)-projective.
(3) Every (n, 0)-injective right R-module is (n, 0)-projective.
(4) Every (n, 0)-injective right R-module has an (n, 0)-projective cover

with the unique mapping property.
(5) Every (n, 0)-injective right R-module has an injective envelope with

the unique mapping property.

Proof . (1)⇔ (2)⇔ (3) holds by Corollary 3.5 and Corollary 2.7.
(1) ⇒ (4) and (1) ⇒ (5). Let M be any (n, 0)-injective right R-module.

Then M is (n, 0)-projective and injective, since R is right Noetherian by (1).
Thus (4) and (5) follows.

(4) ⇒ (3). For any (n, 0)-injective right R-module M , let g : P → M
be the (n, 0)-projective cover of M with the unique mapping property, where
P is (n, 0)-projective. Write K = kerg. Then K is (n, 0)-injective by [6;
Corollary 7.2.3] and [8; Theorem 3.9]. Hence there exists an (n, 0)-projective
cover f : P

′ → K of K by (4). So, we obtain the following exact commutative
diagram:

P
′

f

↙ ↓ if ↘ 0

0 −→ K
i−→ P

g−→ M −→ 0

Since g(if) = 0, we have if = 0 by (4). Whence K = Imf ⊆ ker(i) = 0, that
is, M is (n, 0)-projective.

(5) ⇒ (1). Let M be any (n, 0)-injective right R-module. By Corollary
2.7, we need only to show that M is injective. Let f : M → E be the injective
envelope of M with the unique mapping property. Write L = cokerf . Since
R is n-coherent, L is (n, 0)-injective by [8; Theorem 4.1]. So there exists an
injective envelope g : L→ E

′
of L by (5). Therefore we get the following exact

commutative diagram:

0 −→ M
f−→ E

π−→ L −→ 0
0

↘ ↓ gπ ↙ g
E

′
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Since (gπ)f = 0, we have gπ = 0 by (5). Hence L = Imπ ⊆ ker(g) = 0. So M
is injective. This completes the proof.

Recall that a short exact sequence 0 → A → B → C → 0 is said to
be n-pure [8] if Hom(M,B)→ Hom(M,C)→ 0 is exact for any n-presented
module M . A submodule N of M is called an n-pure submodule if the sequence
0→ N →M →M/N → 0 is n-pure.

Proposition 3.7 Let n ≥ 1 be a fixed integer and R a right n-coherent
ring. Observe the following statements:

(1) rnpD(R) ≤ 1.
(2) For any n-pure submodule N of an injective right R-module E, the

quotient E/N is injective (i.e., id(N) ≤ 1).
(3) Every submodule of an (n, 0)-projective right R-module is (n, 0)-

projective.
(4) Every right ideal of R is (n, 0)-projective.
(5) For any pure submodule N of an injective right R-module E, the

quotient E/N is injective.
(6) Every submodule of an FP -projective right R-module is FP -projective.
(7) Every right ideal of R is FP -projective.
Then: (1)⇔ (2)⇔ (3)⇔ (4) and (2)⇒ (5)⇒ (6)⇒ (7).

Proof . (1) ⇒ (2). Let N be an n-pure submodule of an injective right
R-module E. Then it is easy to see that N is (n, 0)-injective. Hence id(N) ≤ 1
by Theorem 3.4 (5). So the short exact sequence 0 → N → E → E/N → 0
implies that E/N is injective.

(2) ⇒ (3). Let L be any (n, 0)-injective right R-module. Then it is
clear that L is an n-pure submodule of its injective envelope E(L), and hence
id(L) ≤ 1 by (2). If N is a submodule of an (n, 0)-projective right R-module
M , then the exactness of the sequence

0 = Ext1R(M,L)→ Ext1R(N,L)→ Ext2R(M/N,L) = 0

implies that Ext1R(N,L) = 0, and so N is (n, 0)-projective.
(4) ⇒ (1). Let I be an ideal of R. The exact sequence 0 → I → R →

R/I → 0 implies that npd(R/I) ≤ 1 by Proposition 3.1. So (1) holds by
Theorem 3.4 (2).

(2) ⇒ (5). It is easy to verify that every pure right R-module is n-pure.
So (5) follows.

(5) ⇒ (6) is similar to that of (2) ⇒ (3), (3) ⇒ (4) and (6) ⇒ (7) are
trivial.

It is known that if R is a right coherent ring, then fd(M) = pd(M) for any
finitely present right R-module M (see [10; Lemma 5]). Mao and Ding (see
[7; Proposition4.1]) proved that if R is also self-FP -injective, then fd(M) =
pd(M) for any FP -projective right R-module M . Here we have the following
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Proposition 3.8 Let n be a fixed positive integer. If R is a right n-coherent
and right self-(n, 0)-injective ring, then fd(M) = pd(M) for any (n, 0)-projective
right R-module M .

Proof . It is enough to show that fd(M) ≥ pd(M). We may assume that
fd(M) = m <∞. Then there exists an exact sequence

0→ Fm → Pm−1 → · · · → P1 → P0 →M → 0

with P0, P1, · · ·, Pm−1 projective and Fm flat. Consider the short exact se-
quence 0→ K → P → Fm → 0 where P is projective. By [16; Theorem 4.85],
the short exact sequence above is pure, and hence n-pure. By Proposition 2.10,
P is (n, 0)-injective. So K is (n, 0)-injective by [8; Proposition 3.6]. Since M
is (n, 0)-projective, so is Fm. Thus the exactness of the sequence

0→ HomR(Fm, K)→ HomR(P,K)→ HomR(K,K)→ Ext1R(Fm, K) = 0

implies that the sequence 0→ K → P → Fm → 0 is split exact, and so Fm is
projective, that is, pd(M) ≤ m. This completes the proof.

Proposition 3.9 Let n ≥ 1 be a fixed integer and R a right n-coherent
ring. If rnpD(R) ≤ m, then R is a right m-coherent ring.

Proof . The case m = 0 holds by Corollary 2.7. Suppose m ≥ 1. Let M
be an m-presented right R-module, then M has a free resolution

Fm → Fm−1 → · · · → F1 → F0 →M → 0

with each Fi finitely generated free. Write Km = ker(Fm−1 → Fm−2), then

Ext1R(Km, N) ∼= Extm+1
R (M,N) = 0

for any FP -injective right R-module N , since rnpD(R) ≤ m and every FP -
injective right R-module is (n, 0)-injective. Note that Km is finitely generated.
We obtain Km is finitely presented by Theorem 2.3. This implies that M is
(m+ 1)-presented, and so R is a right m-coherent ring.

To prove the next main result, we need four lemmas.

Lemma 3.10 Let f : R→ S be a surjective ring homomorphism. If MS is
a right S-module (hence a right R-module) and AR is a right R-module, then
the following statements hold:

(1) M ⊗R SS ∼= MS.
(2) If AR is a finitely generated right R-module, then A⊗RSS is a finitely

generated right S-module.
(3) MS is a finitely generated right S-module if and only if MR is a finitely

generated right R-module.
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Proof . (1). Easy.
(2). Clearly, S is a cyclic R-module. Suppose x1, x2, · · ·, xn are generators

of A. Then it is easy to verify that x1⊗1S, x2⊗1S, · · ·, xn⊗1S are generators
of A ⊗R SS, where 1S denotes the identity of S. Thus A ⊗R SS is a finitely
generated right S-module.

(3). If MS is a finitely generated right S-module, and suppose x1, x2,
· · ·, xn are generators of M , then M = x1S + x2S + · · · + xnS. So M =
x1R + x2R + · · · + xnR since f : R → S is surjective. Hence MR is a finitely
generated right R-module. The converse holds by (1) and (2).

Lemma 3.11 Let f : R→ S be a surjective ring homomorphism, n a non-
negative integer, and M a right S-module. If both SR and RS are projective,
then MS is an n-presented right S-module if and only if MR is an n-presented
right R-module. (Note that the case n = 1 has been proven in [7; Lemma
3.13].)

Proof . The case n = 0 follows by Lemma 3.10. So next we assume n > 0.
“⇒”. Suppose M is an n-presented right S-module. Then there exists an

exact sequence

0→ K → Pn−1 → · · · → P1 → P0 →M → 0

of right S-modules with K finitely generated, and Pi finitely generated projec-
tive, i = 0, 1, · · ·, n−1. By Lemma 3.10, each Pi and K are finitely generated
right R-modules. Since SR is projective, we have each Pi is a projective right
R-module. So, M is an n-presented right R-module.

“ ⇐”. Assume M is an n-presented right R-module. Then there exists an
exact sequence

0→ K → Pn−1 → · · · → P1 → P0 →M → 0

of right R-modules with K finitely generated, and Pi finitely generated pro-
jective, i = 0, 1, · · ·, n− 1. Since RS is projective, the sequence

0→ K ⊗R SS → Pn−1 ⊗R SS → · · · → P1 ⊗R SS → P0 ⊗R SS →M ⊗R SS → 0

is exact. By Lemma 3.10, M⊗RSS ∼= MS, and both K⊗RSS and each Pi⊗RSS
are finitely generated S-modules. Since each Pi is a projective right R-module,
we have each Pi⊗R SS is a projective right S-module. So M is an n-presented
right S-module.

Let n and d be non-negative integers. Recall that a left R-module A is
called (n, d)-flat [12], in case TorRd+1(B,A) = 0 for any n-presented right
R-module B.
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Lemma 3.12 Let f : R → S be a surjective ring homomorphism, MS a
right S-module and SA a left S-module. If both SR and RS are projective, then
the following statements hold for any non-negative integers n and d:

(1) MS is an (n, d)-injective right S-module if and only if MR is an
(n, d)-injective right R-module.

(2) SA is an (n, d)-flat left S-module if and only if RA is an (n, d)-flat
left R-module.

(3) If R is a right n-coherent ring, then S is a right n-coherent ring.

Proof . (1). “⇒”. Suppose MS is an (n, d)-injective right S-module. Let
NR be any n-presented right R-module. Then, using an argument similar to
that in Lemma 3.11, we get that N ⊗R SS is an n-presented right S-module.
By [14; Theorem 11.65], we have

Extd+1
R (NR,MR) ∼= Extd+1

S (N ⊗R SS,MS) = 0.

Therefore MR is an (n, d)-injective right R-module.
“⇐”. Assume MR is an (n, d)-injective right R-module. Let NS be any

n-presented right S-module. Then N ⊗R SS ∼= NS by Lemma 3.10 and NR is
an n-presented right R-module by Lemma 3.11. Again by [14; Theorem 11.65],
we have

Extd+1
S (NS,MS) ∼= Extd+1

S (N ⊗R SS,MS) ∼= Extd+1
R (NR,MR) = 0.

Therefore MS is an (n, d)-injective right S-module.
(2). “⇒”. If SA is an (n, d)-flat left S-module. Let BR be any n-presented

right R-module. Then B ⊗R SS is an n-presented right S-module. By [14;
Corollary 11.63] , we have

TorRd+1(BR,RA) ∼= TorSd+1(B ⊗R SS,S A) = 0.

Therefore RA is an (n, d)-flat left R-module.
“⇐”. If RA is an (n, d)-flat left R-module. Let BS be any n-presented right

R-module. Then B ⊗R SS ∼= BS by Lemma 3.10 and BR is an n-presented
right R-module by Lemma 3.11. By [14; Corollary 11.63] , we have

TorSd+1(BS,S A) ∼= TorSd+1(B ⊗R SS,S A) ∼= TorRd+1(BR,RA) = 0.

Therefore SA is an (n, d)-flat left S-module.
(3). Let MS be an n-presented right R-module, then MR is an n-presented

right R-module by Lemma 3.11. Thus MR is an (n + 1)-presented right R-
module since R is a right n-coherent ring. Therefore MS is an (n+1)-presented
right S-module again by Lemma 3.11, and so S is a right n-coherent ring.

We list the following lemma proved in [7; Lemma 3.14] for convenient using.
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Lemma 3.13 ([7; Lemma 3.14]). Let R and S be rings. Every right (R⊕
S)-module has a unique decomposition that M = A ⊕ B, where A = M(R, 0)
is a right R-module and B = M(0, S) is a right S-module via xr = x(r, 0) for
x ∈ A, r ∈ R, and ys = y(0, s) for y ∈ B, s ∈ S.

We are now in a position to prove the following main result.

Theorem 3.14 Let S and T be rings, and n ≥ 1 a fixed integer. If S ⊕ T
is a right n-coherent ring, then

rnpD(S ⊕ T ) = sup{rnpD(S), rnpD(T )

.

Proof . For convenience, we write R = S⊕T . Since R is a right n-coherent
ring, we have both S and T are right n-coherent rings by Lemma 3.12.

We first show that rnpD(R) ≤ sup{rnpD(S), rnpD(T )}. We may assume
sup{rnpD(S), rnpD(T )} = m < ∞. Let M be a right (R)-module and N
any (n, 0)-injective right (R)-module. Then N = A ⊕ B, where A is a right
S-module and B is a right T -module by Lemma 3.13. Note that both A and
B are (n, 0)-injective right (R)-modules. Hence A is an (n, 0)-injective right
S-module and B is an (n, 0)-injective right T -module by Lemma 3.12. By [14;
Theorem 11.65], we have

Extm+1
R (M,N) ∼= Extm+1

R (M,A)⊕ Extm+1
R (M,B)

∼= Extm+1
S (M ⊗R SS, A)⊕ Extm+1

T (M ⊗R TT , B)

= 0,

and hence rnpD(R) ≤ sup{rnpD(S), rnpD(T )}.
Next we prove that rnpD(R) ≥ sup{rnpD(S), rnpD(T )}. We may assume

rnpD(R) = m < ∞. Let M be a right S-module and N any (n, 0)-injective
right S-module. Then N is an (n, 0)-injective right (R)-module by Lemma
3.12. By Lemma 3.10, M ⊗R SS ∼= MS. Again by [14; Theorem 11.65], we
have

Extm+1
S (M,N) ∼= Extm+1

S (M ⊗R SS, N) ∼= Extm+1
R (M,N) = 0.

Therefore rnpD(R) ≥ rnpD(S). Similarly for rnpD(R) ≥ rnpD(T ), and hence
rnpD(R) ≥ sup{rnpD(S), rnpD(T )}. This completes the proof.

Remark 3.15 Let R1, R2, · · ·, Rm be rings and n a positive integer. The
theorem above shows that rnpD(

⊕m
i=1Ri) = sup{rnpD(R1), rnpD(R2), · · ·,

rnpD(Rm)} if
⊕m
i=1Ri is an n-coherent ring. In particular, we obtain the

known result that
⊕m

i=1Ri is right Noetherian if and only if each Ri is right
Noetherian. But in general rnpD(

⊕∞
i=1Ri) 6= supi≥1{rnpD(Ri)}. For exam-

ple, Z2 is a field of two elements, but
⊕∞

i=1Z2 is not Noetherian .
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Lemma 3.16 Assume n and d are non-negative integers, R is a commu-
tative ring, and P is any prime ideal of R. Let RP denote the localization of
R at P , M is an RP-module (M may be viewed as an R-module), and A is an
R-module. Then the following statements hold:

(1) If A is an n-presented R-module, then AP is an n-presented RP-module.
(2) If M is an (n, d)-injective RP-module, then M is an (n, d)-injective

R-module.
(3) If M is an (n, d)-flat RP-module, then M is an (n, d)-flat R-module.
(4) If A is an (n, d)-projective R-module, then AP is an (n, d)-projective

RP-module.

Proof . (1). Suppose A is an n-presented R-module. Then there exists an
exact sequence of R-modules

Fn → Fn−1 → · · · → F1 → F0 → A→ 0

where each Fi is finitely generated projective, i = 0, 1, · · ·, n. It gives rise to
the exactness of the sequence

(Fn)P → (Fn−1)P → · · · → (F1)P → (F0)P → AP → 0

of RP-modules. By [6; Remark 2.2.5], each (Fi)P is a finitely generated projec-
tive RP-module, i = 0, 1, · · ·, n. Hence AP is an n-presented RP-module.

(2). Assume M is an (n, d)-injective RP-module. Let N be any n-presented
R-module, then NP is an n-presented RP-module by (1). Note that RP is a flat
R-module and RP ⊗R N ∼= NP. By [14; Theorem 11.65], we have

Extd+1
R (N,M) ∼= Extd+1

RP
(RP ⊗R N,M) ∼= Extd+1

RP
(NP,M) = 0.

Therefore M is an (n, d)-injective R-module.
(3). Similar to that of (2).
(4). Suppose A is an (n, d)-projective R-module. Let B be any (n, d)-

injective RP-module, then B is an (n, d)-injective R-module by (2). Note that
AP
∼= RP ⊗R A. By [14; Theorem 11.65], we have

Ext1RP
(AP, B) ∼= Ext1RP

(RP ⊗R A,B) ∼= Ext1R(A,B) = 0.

Therefore AP is an (n, d)-projective RP-module.

Corollary 3.17 Let R be a commutative ring and P any prime ideal of R.
If M is an RP-module, then the following statements hold:

(1) M is an injective RP-module if and only if M is an injective R-module.
(2) M is a flat RP-module if and only if M is a flat R-module.
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Proof . (1). If M is an injective RP-module, then M is an injective R-
module by Lemma 3.16. If M is an injective R-module, then MP is an injective
RP-module by [14; Theorem 3.76]. Note that M ∼= MP as RP-modules. Thus
(1) follows.

(2). Similar to that of (1).

Theorem 3.18 Let n ≥ 1 be a fixed integer and R a commutative n-
coherent ring. If P is any prime ideal of R, then npD(RP) ≤ npD(R).

Proof . We may assume npD(R) = t < ∞. Let M be any RP-module.
Note that M may be viewed as an R-module. Thus npd(MR) ≤ t. If t = 0,
then M is an (n, 0)-projective R-module. Since M ∼= MP as RP-modules, we
have M is an (n, 0)-projective RP-module by Lemma 3.16, and so the theorem
follows. Next we assume t ≥ 1. By Proposition 3.1 (5), There exists an exact
sequence

0→ K → Ft−1 → · · · → F1 → F0 →M → 0

of R-modules, where each Fi is a projective R-module, i = 1, 2, · · ·, t − 1,
and K is an (n, 0)-projective R-module. The above sequence induces an RP-
module exact sequence

0→ KP → (Ft−1)P → · · · → (F1)P → (F0)P →MP → 0.

By [6; Remark 2.2.5], each (Fi)P is a projective RP-module, i = 1, 2, · · ·,
t− 1. Note that KP is an (n, 0)-projective RP-module by Lemma 3.16. Thus,
for any (n, 0)-injective RP-module N , we have

Extt+1
RP

(MP, N) ∼= Ext1RP
(KP, N) = 0

and so npd(MP)RP
≤ t by definition. Since M ∼= MP as RP-modules, npd(M) ≤

t. Therefore npD(RP) ≤ npD(R), and we complete the proof.

Remark 3.19 (1) The theorem above shows the well-known result that
any localization of a Noetherian ring is again Noetherian. But in general
npD(R) 6= sup{npD(RP): P is a prime ideal of R}. For example, take R to be
the direct product of countably many copies of Z2, then R is not Noetherian.
Thus npD(R) > 0. However, npD(RP) = 0 for any prime ideal of R.

(2) Let R be a commutative ring and P any prime ideal of R. Corollary
3.17 shows that if M is an RP-module, then M is a flat (resp. injective) RP-
module if and only if M is a flat (resp. injective) R-module. But, in general,
a projective RP-module need not be a projective R-module. For example, RP is
a projective RP-module, but RP need not be a projective R-module.
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