The Artinianness Of Formal Local Cohomology Modules Yan Gu

Department of Mathematics, Soochow University, Suzhou 215006, P.R. China, E-mail: guyan@suda.edu.cn

Abstract: Let I be an ideal of a commutative Noetherian local ring (R, \mathfrak{m}) , M a finitely generated R-module and $\varprojlim^n H^i_{\mathfrak{m}}(M/I^nM)$ the *i*-th formal local cohomology module of M with respect to I. We prove some results concerning artinianness of $\varprojlim^n H^i_{\mathfrak{m}}(M/I^nM)$. We discuss the maximum and minimum integers such that $\varprojlim^n H^i_{\mathfrak{m}}(M/I^nM)$ is artinian.

Keywords: Local cohomology; artinian.

2010 Mathematics Subject Classification: 13D45, 13E10, 13E15.

1. INTRODUCTION

Throughout this paper, we assume that (R, \mathfrak{m}) is a commutative Noetherian local ring with non-zero identity, I is an ideal of R and M a finitely generated R-module.

Schenzel [9] has called $\mathfrak{F}_{I}^{i}(M) := \underset{n}{\underset{m}{\underset{m}{\longleftarrow}}} H^{i}_{\mathfrak{m}}(M/I^{n}M)$ the *i*-th formal local cohomology module of M with respect to I and investigated their structure extensively.

Let t be an integer. It is shown that the local cohomology module $H_I^i(M)$ is finitely generated for all i < t if and only if there is some integer r > 0 such that $I^r H_I^i(M) = 0$ for all i < t. Recently, in [7, Theorem 2.8], it is proved that a similar result, that is, $\mathfrak{F}_I^i(M)$ is artinian for all i < t if and only if there is some integer r > 0 such that $I^r \mathfrak{F}_I^i(M) = 0$ for all i < t.

In this paper, we get the following result.

Theorem 1.1. Let $t \ge 0$ be an integer. Then the following statements are equivalent:

(a) $\mathfrak{F}^i_I(M)$ is artinian for all i > t;

(b) $I \subseteq Rad(0:\mathfrak{F}_I^i(M))$ for all i > t.

Set $q(I, M) := \sup\{i \mid \mathfrak{F}_{I}^{i}(M) \text{ is not artinian}\} = \sup\{i \mid I \nsubseteq \operatorname{Rad}(0 : \mathfrak{F}_{I}^{i}(M))\}.$ We prove that if $\operatorname{Supp} L \subseteq \operatorname{Supp} M$, then $q(I, L) \leq q(I, M)$. In particular, if

This research was supported by The Natural Science Foundation of Jiangsu Province(BK2011276), the Natural Science Foundation for Colleges and Universities in Jiangsu Province(No. 10KJB110007, 11KJB110011), and the Pre-research Project of Soochow University(No. Q3107803, Q310703910).

 $\operatorname{Supp} L = \operatorname{Supp} M$, then q(I, L) = q(I, M).

In [3] and [8], the artinianness of local cohomology modules is considered. In [7, Theorem 2.9], it is shown that if $\mathfrak{F}_{I}^{i}(M)$ is artinian for all i < t, then $\mathfrak{F}_{I}^{t}(M)/I\mathfrak{F}_{I}^{t}(M)$ is artinian.

As the dual case of the above result, we get another main result of this paper.

Theorem 1.2. Let t be an integer such that $\mathfrak{F}_{I}^{i}(M)$ is artinian for all i < t. Then $Hom_{R}(R/I, \mathfrak{F}_{I}^{t}(M))$ is artinian.

2. Main Results

First, we give the following definition.

Definition 2.1. For an ideal I of R, we define the formal filter depth, ff-depth(I, M), by ff-depth $(I, M) := inf\{i \mid \mathfrak{F}_{I}^{i}(M) \text{ is not artinian}\}.$

Proposition 2.2. Let I and J be ideals of R and Rad(I) = Rad(J). Then we have that ff-depth(I, M) = ff-depth(J, M).

Proof. By [9, Proposition 3.3], we have $\mathfrak{F}_{I}^{i}(M) \cong \mathfrak{F}_{I\widehat{R}}^{i}(\widehat{M})$ for all $i \geq 0$. Therefore, we may assume that R is complete. Then, by Cohen's Structure Theorem, R is a homomorphic image of a regular complete local ring (T, \mathfrak{n}) such that R = T/J for some ideal J of T. Set $b_1 := I \cap T$ and $b_2 := J \cap T$. In view of [1, Lemma 2.1], we have that

$$\mathfrak{F}^i_I(M) \cong \mathfrak{F}^i_{b_1}(M) \cong \operatorname{Hom}_T(H^{\dim T-i}_{b_1}(M,T), E_T(T/\mathfrak{n}))$$

and

$$\mathfrak{F}^{i}_{J}(M) \cong \mathfrak{F}^{i}_{b_{2}}(M) \cong \operatorname{Hom}_{T}(H^{\dim T-i}_{b_{2}}(M,T), E_{T}(T/\mathfrak{n}))$$

for all $i \geq 0$. Since $\operatorname{Rad}(I) = \operatorname{Rad}(J)$, then $\operatorname{Rad}(b_1) = \operatorname{Rad}(b_2)$. Let E^{\bullet} be a minimal injective resolution of T. We know that $H_{b_1}^{\dim T-i}(M,T) = H^{\dim T-i}(\operatorname{Hom}_T(M,\Gamma_{b_1}(E^{\bullet})))$ and $H_{b_2}^{\dim T-i}(M,T) = H^{\dim T-i}(\operatorname{Hom}_T(M,\Gamma_{b_2}(E^{\bullet})))$. Now the result follows by $\operatorname{Rad}(b_1) = \operatorname{Rad}(b_2)$.

Proposition 2.3. $ff\text{-}depth(I, M) = ff\text{-}depth(I\widehat{R}, \widehat{M}).$

Proof. Since $\mathfrak{F}^i_I(M) \cong \mathfrak{F}^i_{I\widehat{R}}(\widehat{M})$ for all $i \ge 0$. The result is clear.

Proposition 2.4. Let $I \subseteq J$ be ideals of R. Then we have that $ff\text{-depth}(I, M) \leq ff\text{-depth}(J, M) + ara(J/I)$.

Proof. By Proposition 2.2, we may assume that there are $x_1, x_2, \ldots, x_n \in R$ such that $J = I + (x_1, x_2, \ldots, x_n)$. By induction on n, it suffices to treat only the case n = 1. So, let J = I + (x) for some $x \in R$. By [9, Theorem 3.15], there is the following long exact sequence

$$\cdots \to \operatorname{Hom}(R_x, \mathfrak{F}^i_I(M)) \to \mathfrak{F}^i_I(M) \to \mathfrak{F}^i_J(M) \to \operatorname{Hom}(R_x, \mathfrak{F}^{i+1}_I(M)) \to \cdots$$

For all i < ff-depth(I, M) - 1, $\mathfrak{F}_{I}^{i}(M)$ and $\mathfrak{F}_{I}^{i+1}(M)$ are artinian, then $\text{Hom}(R_{x}, \mathfrak{F}_{I}^{i}(M))$ is artinian by the above exact sequence, and so $\text{ff-depth}(I, M) \leq \text{ff-depth}(J, M) + 1$.

In [1, Proposition 4.4], it is proved that if L is a pure submodule of M. Then $\inf\{i \mid \mathfrak{F}_I^i(L) \neq 0\} \ge \inf\{i \mid \mathfrak{F}_I^i(M) \neq 0\}$. Next, we give a similar result.

Proposition 2.5. Let L be a pure submodule of M. Then ff-depth $(I, M) \leq ff$ -depth(I, L).

Proof. Since L is a pure submodule of M, we have that the natural map $L/I^n L \rightarrow M/I^n M$ is pure for all n > 0. [6, Corollary 3.2(a)] implies the exact sequence

$$0 \to H^i_{\mathfrak{m}}(L/I^nL) \to H^i_{\mathfrak{m}}(M/I^nM)$$

for all $i \ge 0$ and $n \ge 0$. This induces the exact sequence $0 \to \mathfrak{F}_I^i(L) \to \mathfrak{F}_I^i(M)$ and so ff-depth $(I, M) \le$ ff-depth(I, L).

Lemma 2.6. Let (R, \mathfrak{m}) is a local ring possessing a dualizing complex D_R^{\cdot} and let p denote a prime ideal and i be an integer such that $\mathfrak{F}_{IR_p}^i(M_p)$ is not artinian. Then $\mathfrak{F}_{I}^{i+\dim R/p}(M)$ is not artinian.

Proof. The proof is similar to the one of [9, Corollary 3.7], here we omit it.

Proposition 2.7. (1) Let $x \in \mathfrak{m}$ be an *M*-filter regular element. Then we have that $ff\text{-}depth(I, M/xM) \geq ff\text{-}depth(I, M) - 1$.

(2) Suppose that f-depth $M < \infty$. Then ff-depth $(I, M) \le \min\{f\text{-depth}M, \dim M/IM\}$.

(3) Suppose that R possesses a dualizing complex. Then

 $ff\text{-}depth(I, M) \leq ff\text{-}depth(IR_p, M_p) + dimR/p$

for all $p \in Supp M \cap V(I)$.

Proof. (1) It is easy to prove by [9, Theorem 3.14].

(2) Since f-depthM = f-depth \widehat{M} and dimM/IM = dim $\widehat{M}/I\widehat{M}$, we can assume that R is complete by Proposition 2.3. Note that

$$\begin{aligned} \text{ff-depth}(I,M) &\leq \sup\{i \mid \mathfrak{F}_{I}^{i}(M) \text{ is not artinian } \} \\ &\leq \sup\{i \mid \mathfrak{F}_{I}^{i}(M) \neq 0\} = \dim M / IM. \end{aligned}$$

Now we prove $\text{ff-depth}(I, M) \leq \text{f-depth}M$ by induction on t = ff-depth(I, M). When t = 0, the claim holds. Let $t \geq 1$. Then $\mathfrak{F}_I^0(M)$ is artinian. It follows that $\dim R/(I+p) > 0$ for all $p \in \text{Ass}M \setminus \{\mathfrak{m}\}$ by [5, Proposition 2.2]. Then we can choose $x \in \mathfrak{m}$ which forms a parameter of R/(I,p) for all $p \in \text{Ass}M \setminus \{\mathfrak{m}\}$, so $x \in \mathfrak{m}$ be an *M*-filter regular element. Thus

 $t-1 \leq \text{ff-depth}(I, M/xM) \leq \text{f-depth}(M/xM) = \text{f-depth}M - 1$

by (1) and the inductive hypothesis. So $t \leq \text{f-depth}M$.

(3) We get the result by Lemma 2.6.

Theorem 2.8. Let M be a non-zero finitely generated R-module and let $t \ge 1$ be an integer. Then the following four conditions are equivalent:

- (1) $\mathfrak{F}^i_I(M) = 0$ for all $i \ge t$;
- (2) $\mathfrak{F}^i_I(M)$ is finitely generated for all $i \geq t$;

(3) $\mathfrak{F}_{I}^{i}(R/p) = 0$ for all $i \geq t, p \in SuppM$;

(4) $\mathfrak{F}^i_I(R/p)$ is finitely generated for all $i \ge t$, for all $i \ge t$, $p \in SuppM$.

Proof. $(1) \Rightarrow (2)$. It is clear.

(2) \Rightarrow (1). We use induction on $d = \dim M$. For d = 0, then $\mathfrak{F}_I^i(M) = 0$ for all $i \ge 1$.

Now let d > 0 and $\mathfrak{F}_{I}^{i}(M) = 0$ for all i > t. Now we will prove that $\mathfrak{F}_{I}^{t}(M) = 0$. First, we assume that depthM > 0, then there is an element $x \in \mathfrak{m}$ which is M-regular. From the short exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$, we can get the long exact sequence

$$\cdots \to \mathfrak{F}^i_I(M) \xrightarrow{x} \mathfrak{F}^i_I(M) \to \mathfrak{F}^i_I(M/xM) \to \mathfrak{F}^{i+1}_I(M) \to \cdots,$$

then $\mathfrak{F}_{I}^{t}(M/xM) = 0$ for all $i \geq t$. By the inductive hypothesis, we get that $\mathfrak{F}_{I}^{t}(M/xM) = 0$, then $x\mathfrak{F}_{I}^{t}(M) = \mathfrak{F}_{I}^{t}(M)$. Since $\mathfrak{F}_{I}^{t}(M)$ is finitely generated, then $\mathfrak{F}_{I}^{t}(M) = 0$.

Now let depth M = 0 and $N = H^0_{\mathfrak{m}}(M)$, then $\mathfrak{F}^0_I(N) = \underset{i}{\underset{n}{\underset{M}{\underset{M}{\longrightarrow}}}} H^0_{\mathfrak{m}}(N/I^nN) = N$ and $\mathfrak{F}^i_I(N) = 0$ for all $i \ge 1$. From the short exact sequence $0 \to N \to M \to M/N \to 0$, we get that $\mathfrak{F}^i_I(M) = \mathfrak{F}^i_I(M/N)$ for all $i \ge 1$. Since depth M/N > 0, the desired result follows the above argument.

 $(1) \Rightarrow (3)$. Note that $\dim M/IM = \sup\{i \mid \mathfrak{F}_I^i(M) \neq 0\}$. For all $p \in \operatorname{Supp} M$, $\dim R/(I+p) \leq \dim M/IM$, hence $\mathfrak{F}_I^i(R/p) = 0$ for all $i \geq t$.

 $(3) \Rightarrow (1)$. It is enough for us to prove that $\mathfrak{F}_{I}^{t}(M) = 0$. There is a prime filtration $0 = M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{s} = M$ of submodules of M such that $M_{j}/M_{j-1} \cong R/p_{j}$, where $p_{j} \in \operatorname{Supp}M$, $1 \leq j \leq s$. From the exact sequence $\mathfrak{F}_{I}^{t}(M_{j-1}) \to \mathfrak{F}_{I}^{t}(M_{j}) \to \mathfrak{F}_{I}^{t}(R/p_{j})$, we obtain that $\mathfrak{F}_{I}^{t}(M) = 0$ by the assumption and induction on j.

The proof of $(3) \Leftrightarrow (4)$ is similar to the proof of $(1) \Leftrightarrow (2)$.

Next corollary is proved in [1, Theorem 2.6 (ii)]. Here we provide an easy method.

Corollary 2.9. Assume that dimM/IM = c > 0. Then $\mathfrak{F}_{I}^{c}(M)$ is not finitely generated.

Proof. If $\mathfrak{F}_{I}^{c}(M)$ is finitely generated, then $\mathfrak{F}_{I}^{i}(M)$ is finitely generated for all $i \geq c$. Hence $\mathfrak{F}_{I}^{i}(M) = 0$ for all $i \geq c$ by Theorem 2.8. In fact, $\mathfrak{F}_{I}^{c}(M) \neq 0$. It is a contradiction.

Now, we will present one of the main results in this paper.

Theorem 2.10. Let t be a non-negative integer such that $\mathfrak{F}_{I}^{i}(M)$ is artinian for all i < t. Then $Hom_{R}(R/I, \mathfrak{F}_{I}^{t}(M))$ is artinian.

Proof. Since $\mathfrak{F}^i_I(M) \cong \mathfrak{F}^i_{I\widehat{R}}(\widehat{M})$ and

$$\begin{split} \operatorname{Hom}_{\widehat{R}}(\widehat{R}/I\widehat{R},\mathfrak{F}_{I\widehat{R}}^{t}(\widehat{M}) &\cong \operatorname{Hom}_{\widehat{R}}(R/I\otimes\widehat{R},\mathfrak{F}_{I}^{t}(M)) \\ &= \operatorname{Hom}_{R}(R/I,\operatorname{Hom}_{\widehat{R}}(\widehat{R},\mathfrak{F}_{I}^{t}(M))) \\ &= \operatorname{Hom}_{R}(R/I,\mathfrak{F}_{I}^{t}(M)). \end{split}$$

Hence, we can assume that R is complete. Next, we use induction on t. When t = 0, we get that $\operatorname{Ass}_R(\mathfrak{F}_I^0(M)) = \{p \in \operatorname{Ass} M : \dim R/(I+p) = 0\}$ by [9, Lemma 4.1], then $V(I) \cap \operatorname{Supp}(\mathfrak{F}_I^0(M)) \subseteq \{\mathfrak{m}\}$, it turns out that $\operatorname{Hom}_R(R/I, \mathfrak{F}_I^0(M))$ is artinian.

Now we suppose that t > 0, and the result holds for all values less than t. From the short exact sequence $0 \to H^0_I(M) \to M \to M/H^0_I(M) \to 0$, one has the following long exact sequence

$$\cdots \to H^i_{\mathfrak{m}}(H^0_I(M)) \to \mathfrak{F}^i_I(M) \to \mathfrak{F}^i_I(M/H^0_I(M)) \to H^{i+1}_{\mathfrak{m}}(H^0_I(M)) \to \cdots$$

by [1, Lemma 2.3], so $\mathfrak{F}^i_I(M/H^0_I(M))$ is artinian for all i < t. We split the exact sequence

$$H^t_{\mathfrak{m}}(H^0_I(M)) \to \mathfrak{F}^t_I(M) \xrightarrow{f} \mathfrak{F}^t_I(M/H^0_I(M)) \xrightarrow{g} H^{t+1}_{\mathfrak{m}}(H^0_I(M))$$

to the following exact sequences

$$0 \to \ker f \to \mathfrak{F}_I^t(M) \to \operatorname{im} f \to 0$$

and

$$0 \to \operatorname{im} f \to \mathfrak{F}_I^t(M/H_I^0(M)) \to \operatorname{im} g \to 0.$$

Then we have the following exact sequences

$$0 \to \operatorname{Hom}_{R}(R/I, \operatorname{ker} f) \to \operatorname{Hom}_{R}(R/I, \mathfrak{F}_{I}^{t}(M))$$

$$\to \operatorname{Hom}_{R}(R/I, \operatorname{im} f) \to \operatorname{Ext}_{R}^{1}(R/I, \operatorname{ker} f) \to \cdots,$$

$$0 \to \operatorname{Hom}_{R}(R/I, \operatorname{im} f) \to \operatorname{Hom}_{R}(R/I, \mathfrak{F}_{I}^{t}(M/H_{I}^{0}(M)))$$

Note that ker
$$f$$
 and im g are artinian, it is enough to show that $\operatorname{Hom}_R(R/I, \mathfrak{F}_I^t(M/H_I^0(M)))$
is artinian. So, we may assume that $H_I^0(M) = 0$. Then there is an M -regular ele-
ment $x \in I$. The short exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$ provides the
long exact sequence

 $\rightarrow \operatorname{Hom}_R(R/I, \operatorname{im} g) \rightarrow \cdots$

$$\cdots \to \mathfrak{F}_{I}^{i}(M) \xrightarrow{x} \mathfrak{F}_{I}^{i}(M) \to \mathfrak{F}_{I}^{i}(M/xM) \to \mathfrak{F}_{I}^{i+1}(M) \xrightarrow{x} \mathfrak{F}_{I}^{i+1}(M) \to \cdots .$$
 (*)

This induces that $\mathfrak{F}_{I}^{i}(M/xM)$ is artinian for all i < t-1. So $\operatorname{Hom}_{R}(R/I, \mathfrak{F}_{I}^{t-1}(M/xM))$ is artinian by the inductive hypothesis. From (*) we get the exact sequence

$$0 \to \mathfrak{F}_I^{t-1}(M)/x\mathfrak{F}_I^{t-1}(M) \to \mathfrak{F}_I^{t-1}(M/xM) \to (0:_{\mathfrak{F}_I^t(M)} x) \to 0,$$

which induces the exact sequence

$$\operatorname{Hom}_{R}(R/I, \mathfrak{F}_{I}^{t-1}(M/xM)) \to \operatorname{Hom}_{R}(R/I, (0:_{\mathfrak{F}_{I}^{t}(M)} x)) \\ \to \operatorname{Ext}_{R}^{1}(R/I, \mathfrak{F}_{I}^{t-1}(M)/x\mathfrak{F}_{I}^{t-1}(M)).$$

It follows that $\operatorname{Hom}_R(R/I, (0:_{\mathfrak{F}_I}(M) x))$ is artinian. Since $x \in I$, we have that

$$\operatorname{Hom}_{R}(R/I, (0:_{\mathfrak{F}_{I}^{t}(M)} x)) \cong \operatorname{Hom}_{R}(R/I \otimes R/xR, \mathfrak{F}_{I}^{t}(M))$$
$$\cong \operatorname{Hom}_{R}(R/I, \mathfrak{F}_{I}^{t}(M)),$$

and so $\operatorname{Hom}_R(R/I, \mathfrak{F}_I^t(M))$ is artinian.

Theorem 2.11. Let M be a non-zero finitely generated R-module and let t be a non-negative integer. Then the following statements are equivalent:

(a) $\mathfrak{F}^i_I(M)$ is artinian for all i > t;

(b) $I \subseteq Rad(0: \mathfrak{F}_{I}^{i}(M))$ for all i > t.

Proof. $(a) \Rightarrow (b)$. Let i > t. Since $\mathfrak{F}_{I}^{i}(M)$ is artinian, we get that $I^{s}\mathfrak{F}_{I}^{i}(M) = 0$ for some positive integer s by [7, Proposition 2.1]. So $I \subseteq \operatorname{Rad}(0:\mathfrak{F}_{I}^{i}(M))$ for all i > t.

 $(b) \Rightarrow (a)$. We use induction on $d = \dim M$. For d = 0, $\mathfrak{F}_{I}^{i}(M) = 0$ for all i > 0. So, in this case the claim holds. Now, let d > 0 and assume that the claim holds for all values less than d. One has the following long exact sequence

$$\cdots \to H^i_{\mathfrak{m}}(H^0_I(M)) \to \mathfrak{F}^i_I(M) \to \mathfrak{F}^i_I(M/H^0_I(M)) \to H^{i+1}_{\mathfrak{m}}(H^0_I(M)) \to \cdots \quad (*)$$

by [1, Lemma 2.3]. So, it is enough to prove that $\mathfrak{F}_{I}^{i}(M/H_{I}^{0}(M))$ is artinian for all i > t. From (*) we can see that $I \subseteq \operatorname{Rad}(0:\mathfrak{F}_{I}^{i}(M/H_{I}^{0}(M)))$ for all i > t. Thus, we may assume that $H_{I}^{0}(M) = 0$. Then there is an *M*-regular element $x \in I$. For all i > t, there exists a positive integer s_{i} such that $x^{s_{i}}\mathfrak{F}_{I}^{i}(M) = 0$ by hypothesis. The short exact sequence $0 \to M \xrightarrow{x^{s_{i}}} M \to M/x^{s_{i}}M \to 0$ provides the exact sequence

$$0 \to \mathfrak{F}^i_I(M) \to \mathfrak{F}^i_I(M/x^{s_i}M) \to \mathfrak{F}^{i+1}_I(M)$$

for all i > t. This induces that $I \subseteq \operatorname{Rad}(0 : \mathfrak{F}_I^i(M/x^{s_i}M))$ is artinian and by the inductive hypothesis $\mathfrak{F}_I^i(M/x^{s_i}M)$ is artinian for all i > t. Hence $\mathfrak{F}_I^i(M)$ is artinian for all i > t.

Assume that M and N are finitely generated R-modules. Set $q(I, M) := \sup\{i \mid \mathfrak{F}_{I}^{i}(M) \text{ is not artinian}\} = \sup\{i \mid I \not\subseteq \operatorname{Rad}(0 : \mathfrak{F}_{I}^{i}(M))\}$ and $f_{I}(M, N) = \inf\{i \mid H_{I}^{i}(M, N) \text{ is not finitely generated}\}.$

Remark 2.12. [1, Example 4.3(i)] In general, SuppM = SuppN not necessarily lead to fgrade(I, M) = fgrade(I, N) for any finitely generated *R*-modules *M* and *N*. For example, let (R, \mathfrak{m}) be a 2-dimensional regular local ring and *I* an ideal with dimR/I = 1. The Hartshorne-Lichtenbaum Vanishing Theorem yields that cd(I, R) = 1, $cd(I, R/\mathfrak{m}) = 0$, fgrade(I, R) = 1 and $fgrade(I, R/\mathfrak{m}) = 0$. Set $M =: R \oplus R/\mathfrak{m}$. Then *M* is a 2-dimensional sequentially Cohen-Macaulay *R*-module and SuppM = SuppR, but $fgrade(I, M) = inf\{fgrade(I, R), fgrade(I, R/\mathfrak{m})\} = 0$. However, we have the following result.

Proposition 2.13. Let M and L be finitely generated R-modules and $SuppL \subseteq SuppM$. Then $q(I,L) \leq q(I,M)$. In particular, if SuppL = SuppM. Then q(I,M) = q(I,L).

Proof. Since $\mathfrak{F}_{I}^{i}(K) \cong \mathfrak{F}_{I\widehat{R}}^{i}(\widehat{K})$ for any *R*-module *K* and all $i \geq 0$. Therefore, we may assume that *R* is complete. Then, by Cohen's Structure Theorem, *R* is a homomorphic image of a regular complete local ring (T, \mathfrak{n}) such that R = T/J for some ideal *J* of *T*. Set $b := I \cap T$. In view of [1, Lemma 2.1], we have that

$$\mathfrak{F}^{i}_{I}(M) \cong \mathfrak{F}^{i}_{b}(M) \cong \operatorname{Hom}_{T}(H^{\dim T-i}_{b}(M,T), E_{T}(T/\mathfrak{n}))$$

and

$$\mathfrak{F}^i_I(L) \cong \mathfrak{F}^i_b(L) \cong \operatorname{Hom}_T(H_b^{\dim T-i}(L,T), E_T(T/\mathfrak{n}))$$

for all $i \ge 0$. It induces that

 $q(I, M) = \sup\{i \mid H_b^{\dim T - i}(M, T) \text{ is not finitely generated } \}$ = dim T - inf{i | $H_b^i(M, T)$ is not finitely generated } = dim T - f_b(M, T)

and $q(I, L) = \dim T - \inf\{i \mid H_b^i(L, T) \text{ is not finitely generated}\} = \dim T - f_b(L, T).$ The claim follows by [2, Theorem 2.1].

Next, we will give a proposition, before this, we give a lemma.

Lemma 2.14. Let $0 \to M_1 \to M_1 \oplus M_2 \to M_2 \to 0$ be an exact sequence of finitely generated *R*-modules. Then $q(I, M_1 \oplus M_2) = \sup\{q(I, M_1), q(I, M_2)\}$.

Proof. As formal local cohomology functor is additive, the result is clear.

Proposition 2.15. $q(I, M) = sup\{q(I, R/p) \mid p \in SuppM\}.$

Proof. Set $K := \bigoplus_{p \in AssM} R/p$. Then K is finitely generated and SuppK = SuppM. So we have that

$$q(I, M) = q(I, K)$$

= sup{q(I, R/p) | p \in AssM}
= sup{q(I, R/p) | p \in SuppM},

where the first equality is by Proposition 2.13, the second equality follows by Lemma 2.14.

Theorem 2.16. Let (R, \mathfrak{m}) be a commutative Noetherian local ring, I_1 and I_2 be two ideals of R such that $I_1 \subseteq I_2$, and M a finitely generated R-module of dimension n. Then there is a surjective homomorphism: $\mathfrak{F}_{I_1}^n(M) \to \mathfrak{F}_{I_2}^n(M)$.

Proof. Let $\overline{R} = R/\operatorname{Ann}_R M$. Note that $\mathfrak{F}_{I_1}^i(M) \cong \mathfrak{F}_{I_1\overline{R}}^i(M)$ and $\mathfrak{F}_{I_2}^i(M) \cong \mathfrak{F}_{I_2\overline{R}}^i(M)$. So we can assume that $\operatorname{Ann}_R M = 0$, and then $\dim R = n$. We may assume that R is complete by [9, Theorem 3.3]. Then, by Cohen's Structure Theorem, there exists a complete regular local ring (T, \mathfrak{n}) such that R = T/J for some ideal J of T. Set $J_1 = I_1 \cap J$ and $J_2 = I_2 \cap J$. Since $\dim_R M = \dim_T M$, $\mathfrak{F}_{I_1}^n(M) \cong \mathfrak{F}_{J_1}^n(M)$ and $\mathfrak{F}_{I_2}^n(M) \cong \mathfrak{F}_{J_2}^n(M)$. Thus we may assume that R = T. Then by [1, Lemma 2.1], it follows that

$$\mathfrak{F}_{I_1}^n(M) \cong \operatorname{Hom}_T(H^0_{J_1}(M,T), E_T(T/\mathfrak{n}))$$

and

$$\mathfrak{F}_{I_2}^n(M) \cong \operatorname{Hom}_T(H^0_{J_2}(M,T), E_T(T/\mathfrak{n})).$$

Since $H^0_{J_2}(M,T)$ is a submodule of $H^0_{J_1}(M,T)$, the result is follows.

Remark 2.17. In the above theorem, if $\mathfrak{F}_{I_1}^n(M) = \mathfrak{F}_{I_2}^n(M) = 0$, then the result always holds. Now, we construct an example such that $\mathfrak{F}_{I_1}^n(M) \neq 0$ and $\mathfrak{F}_{I_2}^n(M) \neq 0$. Let k be a field. Let R = k[[x, y]] denote the formal power series ring in two variables over k. Put $I_1 = (x^2)R$, $I_2 = (x)R$ and $M = R/I_2$. Then $I_1 \subseteq I_2$ and dimM = 1, $\mathfrak{F}_{I_1}^1(M) \neq 0$ and $\mathfrak{F}_{I_2}^1(M) \neq 0$.

Proposition 2.18. Let (R, \mathfrak{m}) be a commutative Noetherian local ring of dimension n and M a finitely generated R-module. Then $Coass\mathfrak{F}_I^n(M) \subseteq \{p \in SpecR \mid p \supseteq AnnM, dimR/p = n\}.$

Proof. Since $\text{Coass}\mathfrak{F}_I^n(M) = \text{Coass}(\mathfrak{F}_I^n(R) \otimes M) = \text{Supp} M \cap \text{Coass}\mathfrak{F}_I^n(R)$, let $p \in \text{Coass}\mathfrak{F}_I^n(M)$, we have that $p \supseteq \text{Ann} M$ and $p \in \text{Coass}\mathfrak{F}_I^n(R/p)$, then $\dim R/p = n$.

Remark 2.19. (1) In Proposition 2.18, if $\mathfrak{F}_{I}^{n}(M) = 0$, then the result is clear. Here, we give an example such that $\mathfrak{F}_{I}^{n}(M) \neq 0$. To this end, let R be a local domain of dimension 3, I = (0) and M = R. Then $\mathfrak{F}_{(0)}^{3}(R) \neq 0$.

(2) The inclusion in the above Proposition is not an equality in general. Let R be a local domain of dimension 3 and I an ideal of R of dimension 1. Then $Coass\mathfrak{F}_{I}^{3}(R) = \emptyset$, but $(0) \in \{p \in SpecR \mid p \supseteq AnnR, dimR/p = 3\}.$

ACKNOWLEDGEMENTS

The author thank the referee for his or her carefully reading of this manuscript. Also I would like to thank Professor Zhongming Tang for his helpful discussion.

References

- M. Asgharzadeh and K. Divaani-aazar, Finiteness properties of formal local cohomology modules and Cohen-Macaulayness, *Comm. Algebra* 39(2011), 1082-1103.
- [2] M. Asgharzadeh and K. Divaani-aazar and M. Tousi, The finiteness dimension of local cohomology modules and its dual notion, J. Pure. Appl. Algebra 213(2009), 321-328.
- [3] A. Bagheri, A non-vanishing theorem for local cohomology modules, to appear in *Bull. Malays. Math. Sci. Soc.*
- [4] M. Brodmann and R.Y. Sharp, Local cohomology- An algebraic introduction with geometric applications(Cambridge University Press, Cambridge, 1998).
- [5] L.-Z. Chu, Some results for formal local cohomology modules, Comm. Math. Res. 26(2010), 230-236.
- [6] G. Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math.J. 26(1979), 19-32.
- [7] A. Mafi, Results of formal local cohomology modules, to appear in *Bull. Malays. Math. Sci. Soc.*
- [8] Sh. Payrovi and M. L. Parsa, Artinianness of local cohomology modules defined by a pair of ideals, to appear in *Bull. Malays. Math. Sci. Soc.*
- [9] P. Schenzel, On foraml local cohomology and connectedness, J. Algebra 315(2007), 894-923.