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Abstract: Let I be an ideal of a commutative Noetherian local ring (R,m), M a
finitely generated R-module and limH{ (M/I"M) the i-th formal local cohomology

n
module of M with respect to I. We prove some results concerning artinianness
of UmH (M/I"M). We discuss the maximum and minimum integers such that

limH: (M/I"M) is artinian.
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1. INTRODUCTION

Throughout this paper, we assume that (R, m) is a commutative Noetherian local
ring with non-zero identity, I is an ideal of R and M a finitely generated R-module.

Schenzel [9] has called §7(M) := limH{ (M/I"M) the i-th formal local cohomol-

n
ogy module of M with respect to I and investigated their structure extensively.

Let ¢ be an integer. It is shown that the local cohomology module H%(M) is
finitely generated for all ¢ < t if and only if there is some integer » > 0 such that
I"Hi{(M) = 0 for all i < t. Recently, in [7, Theorem 2.8], it is proved that a similar
result, that is, §;(M) is artinian for all + < ¢ if and only if there is some integer
r > 0 such that I"§,(M) = 0 for all i < ¢.

In this paper, we get the following result.

Theorem 1.1. Let t > 0 be an integer. Then the following statements are equiva-
lent:

(a) §+(M) is artinian for all i > t;
(b) I C Rad(0: §j(M)) for alli>t.

Set q(I,M) := sup{i | §;(M) is not artinian } = sup{i | I ¢ Rad(0 : §;(M))}.
We prove that if SuppL C SuppM, then ¢(I,L) < ¢(I,M). In particular, if
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SuppL = SuppM, then (I, L) = q(I, M).

In [3] and [8], the artinianness of local cohomology modules is considered. In [7,
Theorem 2.9], it is shown that if §¢ (M) is artinian for all ¢ < ¢, then Ft(M)/IF,(M)
is artinian.

As the dual case of the above result, we get another main result of this paper.

Theorem 1.2. Let t be an integer such that F4(M) is artinian for all i < t. Then
Hompgp(R/I,§4(M)) is artinian.

2. MAIN RESULTS

First, we give the following definition.

Definition 2.1. For anideal I of R, we define the formal filter depth, ff-depth(I, M),
by ff-depth(I, M) = inf{i | 5(M) is not artinian }.

Proposition 2.2. Let I and J be ideals of R and Rad(I) = Rad(J). Then we have
that ff-depth(I, M) = ff-depth(J, M).

Proof. By [9, Proposition 3.3], we have §(M) = SZ'IE(M) for all i« > 0. Therefore,
we may assume that R is complete. Then, by Cohen’s Structure Theorem, R is a
homomorphic image of a regular complete local ring (7',n) such that R = T'/J for
some ideal J of T. Set by := I NT and by := JNT. In view of [1, Lemma 2.1], we
have that

§1(M) = §,, (M) = Homy (H™ (M, T), Er(T/n))
and

35(M) = 3§, (M) = Homp(Hy™ (M, T), Er(T/n))
for all ¢ > 0. Since Rad(I) = Rad(/J), then Rad(b;) = Rad(b2). Let E* be a minimal
injective resolution of 7'. We know that HglimT_i(M, T) = HYT=(Homy (M, Ty, (E®)))
and Hy™ (M, T) = H™T~(Homy(M,Ty,(E*))). Now the result follows by
Rad(b;) = Rad(bs).

Proposition 2.3. ff-depth(I, M) = ff-depth(IR, M).

Proof. Since §4(M) = S%(M) for all ¢ > 0. The result is clear.

Proposition 2.4. Let I C J be ideals of R. Then we have that ff-depth(I, M) <
[f-depth(J, M) + ara(J/1).

Proof. By Proposition 2.2, we may assume that there are xy,zs,...,2, € R such
that J = I + (x1,29,...,x,). By induction on n, it suffices to treat only the case

n = 1. So, let J = I + (z) for some z € R. By [9, Theorem 3.15], there is the
following long exact sequence

-~ — Hom(R,, §7(M)) — Fr(M) — §5(M) — Hom(R,, g™ (M)) — - --

For alli < ff-depth(I, M)—1, F5(M) and F;* (M) are artinian, then Hom(R,,, §5(M))
is artinian by the above exact sequence, and so ff-depth(7, M) < fi-depth(J, M) + 1.

In [1, Proposition 4.4], it is proved that if L is a pure submodule of M. Then
inf{i | §*(L) # 0} > inf{i | F+(M) # 0}. Next, we give a similar result.
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Proposition 2.5. Let L be a pure submodule of M. Then ff-depth(I, M) < ff-depth(I, L).

Proof. Since L is a pure submodule of M, we have that the natural map L/I"L —
M/I"M is pure for all n > 0. [6, Corollary 3.2(a)] implies the exact sequence

0— HL(L/I"L) — H.(M/I"M)
for all i > 0 and n > 0. This induces the exact sequence 0 — F4(L) — F+(M) and
so fi-depth(I, M) < ff-depth(/, L).

Lemma 2.6. Let (R, m) is a local ring possessing a dualizing complex Dy, and let p

denote a prime ideal and i be an integer such that SZ'IRP(MP) s not artinian. Then

e /P(M) is not artinian.

Proof. The proof is similar to the one of [9, Corollary 3.7], here we omit it.

Proposition 2.7. (1) Let x € m be an M -filter reqular element. Then we have that
ff-depth(I, M /xM) > ff-depth(I, M) — 1.

(2) Suppose that f-depthM < oo. Then ff-depth(1, M) < min{f-depthM, dimM /IM }.

(8) Suppose that R possesses a dualizing complex. Then
[f-depth(I, M) < ff-depth(IR,, M,) + dimR/p
for all p € SuppM NV (I).
Proof. (1) It is easy to prove by [9, Theorem 3.14].

(2) Since f-depthM = f-depthM and dimM JIM = dimM /1 M, we can assume
that R is complete by Proposition 2.3. Note that

fi-depth(Z, M) < sup{i| F;(M) is not artinian }
< sup{i | F4(M) # 0} = dimM /I M.

Now we prove ff-depth(/, M) < f-depthM by induction on ¢ = ff-depth(Z, M).
When ¢t = 0, the claim holds. Let ¢ > 1. Then FY(M) is artinian. It follows that
dimR/(I+p) > 0 for all p € AssM\{m} by [5, Proposition 2.2]. Then we can choose
x € m which forms a parameter of R/(I,p) for all p € AssM\{m}, so z € m be an
M-filter regular element. Thus

t —1 < ff-depth(/, M/xM) < f-depth(M /zM) = f-depthM — 1
by (1) and the inductive hypothesis. So t < f-depthM.

(3) We get the result by Lemma 2.6.

Theorem 2.8. Let M be a non-zero finitely generated R-module and let t > 1 be
an integer. Then the following four conditions are equivalent:

(1) F+(M) =0 for all i >t;
(2) (M) is finitely generated for all i > t;
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(3) 31(R/p) =0 for all i > t, p € SuppM;
(4) T+(R/p) is finitely generated for all i > t, for alli >t, p € SuppM.

Proof. (1) = (2). It is clear.

(2) = (1). We use induction on d = dimM. For d = 0, then (M) = 0 for all
1> 1.

Now let d > 0 and F4(M) = 0 for all 4 > t. Now we will prove that F4(M) = 0.
First, we assume that depthM > 0, then there is an element x € m which is M-
regular. From the short exact sequence 0 — M % M — M/xM — 0, we can get
the long exact sequence

= § (M) S FH(M) — Fr(M /M) — FTH (M) — -

then §4(M/xM) = 0 for all i > t. By the inductive hypothesis, we get that
§t(M/xM) = 0, then 2§ (M) = §F4(M). Since F4(M) is finitely generated, then
87 (M) = 0.

Now let depthM = 0 and N = HQ(M), then FY(N) = li;an(N/["N) = N and

§+(N) =0 for all i > 1. From the short exact sequence 0 — N — M — M/N — 0,
we get that §(M) = F4(M/N) for all i > 1. Since depthM/N > 0, the desired
result follows the above argument.

Note that dimM/IM = sup{i | F5(M) # 0}. For all p € SuppM,

(1) = (3). |
+p) < dimM/IM, hence §4(R/p) = 0 for all i > t.

dimR/(I

(3) = (1). It is enough for us to prove that §%(M) = 0. There is a prime
filtration 0 = My, € M; C --- C M, = M of submodules of M such that
M;/M;_y = R/p;, where p; € SuppM, 1 < j < s. From the exact sequence
§h (M) — §4(M;) — F(R/pj), we obtain that F (M) = 0 by the assumption
and induction on j.

The proof of (3) < (4) is similar to the proof of (1) < (2).
Next corollary is proved in [1, Theorem 2.6 (ii)]. Here we provide an easy method.

Corollary 2.9. Assume that dimM/IM = ¢ > 0. Then §5(M) is not finitely
generated.

Proof. 1f §$(M) is finitely generated, then §%(M) is finitely generated for all 7 > c.
Hence §5(M) = 0 for all i > ¢ by Theorem 2.8. In fact, F$(M) # 0. It is a contra-
diction.

Now, we will present one of the main results in this paper.

Theorem 2.10. Let t be a non-negative integer such that F+(M) is artinian for all

i <t. Then Homg(R/I,§4(M)) is artinian.
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Proof. Since g4 (M) = SZH%(]\/J\) and
Homp(R/IR, § (M) = Homz(R/I® R,§.(M))
— Hompg(R/I,Homp(R, F(M)))
= Hompg(R/I,T"(M)).

Hence, we can assume that R is complete. Next, we use induction on . When ¢t = 0,
we get that Assg(FU(M)) = {p € AssM : dimR/(I + p) = 0} by [9, Lemma 4.1],
then V(I) N Supp(FAM)) C {m}, it turns out that Homgp(R/I, FU(M)) is artinian.

Now we suppose that ¢ > 0, and the result holds for all values less than ¢. From the
short exact sequence 0 — HY(M) — M — M/H?(M) — 0, one has the following
long exact sequence

- = Hy(H} (M) — §3(M) — §3(M/Hy (M) — H (H (M) — -+
by [1, Lemma 2.3], so §(M/H?(M)) is artinian for all 7 < ¢t. We split the exact
sequence

HE(H)(M)) — §(M) L §4(M/HY(M)) 2 HE(HY(M))
to the following exact sequences
0 — kerf — FH(M) — imf — 0
and
0 — imf — §(M/H}(M)) — img — 0.
Then we have the following exact sequences
0 — Homg(R/I,kerf) — Homg(R/I,F4"(M))
— Hompg(R/I,imf) — Exty(R/I, kerf) — ---

0 — Homg(R/I,imf) — Homg(R/I,F:(M/H}(M)))
— Homg(R/I,img) — --- .

Note that ker f and img are artinian, it is enough to show that Homp (R /I, F4(M/HY(M)))
is artinian. So, we may assume that H?(M) = 0. Then there is an M-regular ele-

ment x € I. The short exact sequence 0 — M % M — M/xM — 0 provides the
long exact sequence

= FHM) S FH (M) = 5 (M /M)
= FM) S FM) = (%)

This induces that F5(M/xM) is artinian for all i < t—1. So Homg(R/I,F; (M /xM))
is artinian by the inductive hypothesis. From (x) we get the exact sequence

0— F (M) /2F Y M) — FH(M/zM) — (0 5t ) ) — 0,
which induces the exact sequence
Hompg(R/I, 8 (M/xM)) — Hompg(R/I,(0 ) x))

- 5Ext}z(R/f,Sﬁ_l(M)/Ig'}_l(M))-



It follows that Homp(R/I, (0 :3:(as) @)) is artinian. Since x € I, we have that

Hompg(R/1, (0 300y ) = Hompg(R/I® R/zR, Sh(M))
Homp(R/1,§;(M)),

1%

and so Homg(R/I,§4(M)) is artinian.

Theorem 2.11. Let M be a non-zero finitely generated R-module and let t be a
non-negative integer. Then the following statements are equivalent:

(a) F4(M) is artinian for all i > t;

(b) I C Rad(0: §;(M)) for all i > t.

Proof. (a) = (b). Let i > t. Since §F;(M) is artinian, we get that I*F;(M) = 0 for
some positive integer s by [7, Proposition 2.1]. So I C Rad(0 : §5(M)) for all i > .

(b) = (a). We use induction on d = dimM. For d = 0, F;(M) = 0 for all 7 > 0.
So, in this case the claim holds. Now, let d > 0 and assume that the claim holds for
all values less than d. One has the following long exact sequence

c = Hoy(Hy (M) — §(M) — §(M/H](M)) — H (HY(M)) = -+ (%)

by [1, Lemma 2.3]. So, it is enough to prove that §4(M/HP(M)) is artinian for all
i > t. From (*) we can see that I C Rad(0: §4(M/H?(M))) for all i > t. Thus, we
may assume that H?(M) = 0. Then there is an M-regular element z € I. For all
i > t, there exists a positive integer s; such that x*F;(M) = 0 by hypothesis. The

short exact sequence 0 — M DM M Jx% M — 0 provides the exact sequence
0 — FH(M) — Fp(M /™M) — F (M)

for all ¢ > ¢. This induces that I C Rad(0 : (M /z%M)) is artinian and by the
inductive hypothesis §;(M/x* M) is artinian for all i > ¢. Hence §;(M) is artinian
for all 7 > ¢.

Assume that M and N are finitely generated R-modules. Set ¢(I, M) := sup{i |
§5(M) is not artinian } = sup{i | I ¢ Rad(0 : §;(M))} and f;(M,N) = inf{i |
Hi(M, N) is not finitely generated }.

Remark 2.12. [1, Example 4.3(i)] In general, SuppM = SuppN not necessar-
ily lead to fgrade(I,M) = fgrade(I,N) for any finitely generated R-modules M
and N. For example, let (R,m) be a 2-dimensional reqular local ring and I an
ideal with dimR/I = 1. The Hartshorne-Lichtenbaum Vanishing Theorem yields
that cd(I,R) = 1, cd(I, R/m) = 0, fgrade(I,R) = 1 and fgrade(I, R/m) = 0. Set
M =: R®&R/m. Then M is a 2-dimensional sequentially Cohen-Macaulay R-module
and SuppM = SuppR, but fgrade(I, M) = inf{fgrade(I, R), fgrade(I, R/m)} = 0.
However, we have the following result.

Proposition 2.13. Let M and L be finitely generated R-modules and SuppL C
SuppM. Then q(I,L) < q(I,M). In particular, if SuppL = SuppM. Then
q(I, M) =q(I,L).
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Proof. Since §4(K) = SjE(K) for any R-module K and all ¢ > 0. Therefore,
we may assume that R is complete. Then, by Cohen’s Structure Theorem, R is a
homomorphic image of a regular complete local ring (7, n) such that R = T/J for
some ideal J of T. Set b:= I NT. In view of [1, Lemma 2.1], we have that

§1(M) = §,(M) = Homy (H;™ (M, T), Er(T/n))
and
§1(L) = (L) = Homp(Hy™ (L, T), Er(T/n))
for all 7+ > 0. It induces that
q(I, M) = sup{i| HI"™"~"(M,T)is not finitely generated }
= dimT —inf{i | H{(M,T) is not finitely generated } = dimT" — f,(M, T)

and ¢(I, L) = dimT — inf{i | H{(L,T) is not finitely generated} = dim7 — f,(L,T).
The claim follows by [2, Theorem 2.1].

Next, we will give a proposition, before this, we give a lemma.

Lemma 2.14. Let 0 — My — M; & My — My — 0 be an exact sequence of finitely
generated R-modules. Then q(I, My & Ms) = sup{q(I, M), q(I, Ms)}.

Proof. As formal local cohomology functor is additive, the result is clear.
Proposition 2.15. q(I, M) = sup{q(I,R/p) | p € SuppM}.

Proof. Set K := @peassmR/p. Then K is finitely generated and SuppK = SuppM.
So we have that

q(I,M) = q(I,K)
= sup{q(l, R/p) | p € AssM}
= sup{q(/,R/p) | p € SuppM},

where the first equality is by Proposition 2.13, the second equality follows by Lemma
2.14.

Theorem 2.16. Let (R,m) be a commutative Noetherian local ring, I and Iy be
two ideals of R such that I} C I, and M a finitely generated R-module of dimension
n. Then there is a surjective homomorphism: §p (M) — 7, (M).

Proof. Let R = R/AnngpM. Note that §; (M) = gZE(M) and §, (M) = SZ}QE(M)'
So we can assume that AnngM = 0, and then dimR = n. We may assume that R
is complete by [9, Theorem 3.3]. Then, by Cohen’s Structure Theorem, there exists
a complete regular local ring (7',n) such that R = T'/J for some ideal J of T. Set
Ji=LNJand J, = LN J. Since dimgM = dimpM, §} (M) = §7 (M) and
S7, (M) = 3§75, (M). Thus we may assume that R = T. Then by [1, Lemma 2.1], it
follows that

7, (M) = Homg (Hj, (M, T), Ez(T/n))
and

2 (M) = Homq (S, (M, T), Ey(T/w).
Since HY, (M, T) is a submodule of Hj (M, T'), the result is follows.
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Remark 2.17.  In the above theorem, if §7, (M) = F},(M) = 0, then the result
always holds. Now, we construct an example such that 7 (M) # 0 and F7,(M) # 0.
Let k be a field. Let R = kl[[x,y]] denote the formal power series ring in two variables
over k. Put I, = (2*)R, I, = (x)R and M = R/I,. Then I, C Iy and dimM = 1,
31 (M) # 0 and §1,(M) £0.

Proposition 2.18. Let (R, m) be a commutative Noetherian local ring of dimension
n and M a finitely generated R-module. Then Coass§}(M) C {p € SpecR | p 2
AnnM, dimR/p = n}.

Proof. Since Coass§} (M) = Coass(F}(R) ® M) = SuppM N CoassF}(R), let p €
CoassgT (M), we have that p O AnnM and p € Coass§}(R/p), then dimR/p = n.

Remark 2.19. (1) In Proposition 2.18, if §7(M) = 0, then the result is clear.
Here, we give an example such that ¢ (M) # 0. To this end, let R be a local domain
of dimension 3, I = (0) and M = R. Then 3?0)(]?,) # 0.

(2) The inclusion in the above Proposition is not an equality in general. Let
R be a local domain of dimension 8 and I an ideal of R of dimension 1. Then
Coass§i(R) = 0, but (0) € {p € SpecR | p 2 AnnR, dimR/p = 3}.
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