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Abstract: Let I be an ideal of a commutative Noetherian local ring (R,m), M a
finitely generated R-module and lim←−

n

H i
m(M/InM) the i-th formal local cohomology

module of M with respect to I. We prove some results concerning artinianness
of lim←−

n

H i
m(M/InM). We discuss the maximum and minimum integers such that

lim←−
n

H i
m(M/InM) is artinian.
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1. Introduction

Throughout this paper, we assume that (R,m) is a commutative Noetherian local
ring with non-zero identity, I is an ideal of R and M a finitely generated R-module.

Schenzel [9] has called Fi
I(M) := lim←−

n

H i
m(M/InM) the i-th formal local cohomol-

ogy module of M with respect to I and investigated their structure extensively.

Let t be an integer. It is shown that the local cohomology module H i
I(M) is

finitely generated for all i < t if and only if there is some integer r > 0 such that
IrH i

I(M) = 0 for all i < t. Recently, in [7, Theorem 2.8], it is proved that a similar
result, that is, Fi

I(M) is artinian for all i < t if and only if there is some integer
r > 0 such that IrFi

I(M) = 0 for all i < t.

In this paper, we get the following result.

Theorem 1.1. Let t ≥ 0 be an integer. Then the following statements are equiva-
lent:

(a) Fi
I(M) is artinian for all i > t;

(b) I ⊆ Rad(0 : Fi
I(M)) for all i > t.

Set q(I,M) := sup{i | Fi
I(M) is not artinian } = sup{i | I * Rad(0 : Fi

I(M))}.
We prove that if SuppL ⊆ SuppM , then q(I, L) ≤ q(I,M). In particular, if
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SuppL = SuppM , then q(I, L) = q(I, M).

In [3] and [8], the artinianness of local cohomology modules is considered. In [7,
Theorem 2.9], it is shown that if Fi

I(M) is artinian for all i < t, then Ft
I(M)/IFt

I(M)
is artinian.

As the dual case of the above result, we get another main result of this paper.

Theorem 1.2. Let t be an integer such that Fi
I(M) is artinian for all i < t. Then

HomR(R/I,Ft
I(M)) is artinian.

2. Main Results

First, we give the following definition.

Definition 2.1. For an ideal I of R, we define the formal filter depth, ff-depth(I,M),
by ff-depth(I, M) := inf{i | Fi

I(M) is not artinian }.
Proposition 2.2. Let I and J be ideals of R and Rad(I) = Rad(J). Then we have
that ff-depth(I, M) = ff-depth(J, M).

Proof. By [9, Proposition 3.3], we have Fi
I(M) ∼= Fi

IR̂
(M̂) for all i ≥ 0. Therefore,

we may assume that R is complete. Then, by Cohen’s Structure Theorem, R is a
homomorphic image of a regular complete local ring (T, n) such that R = T/J for
some ideal J of T . Set b1 := I ∩ T and b2 := J ∩ T . In view of [1, Lemma 2.1], we
have that

Fi
I(M) ∼= Fi

b1
(M) ∼= HomT (HdimT−i

b1
(M, T ), ET (T/n))

and
Fi

J(M) ∼= Fi
b2

(M) ∼= HomT (HdimT−i
b2

(M, T ), ET (T/n))

for all i ≥ 0. Since Rad(I) = Rad(J), then Rad(b1) = Rad(b2). Let E• be a minimal
injective resolution of T . We know that HdimT−i

b1
(M, T ) = HdimT−i(HomT (M, Γb1(E

•)))

and HdimT−i
b2

(M, T ) = HdimT−i(HomT (M, Γb2(E
•))). Now the result follows by

Rad(b1) = Rad(b2).

Proposition 2.3. ff-depth(I, M) = ff-depth(IR̂, M̂).

Proof. Since Fi
I(M) ∼= Fi

IR̂
(M̂) for all i ≥ 0. The result is clear.

Proposition 2.4. Let I ⊆ J be ideals of R. Then we have that ff-depth(I, M) ≤
ff-depth(J, M) + ara(J/I).

Proof. By Proposition 2.2, we may assume that there are x1, x2, . . . , xn ∈ R such
that J = I + (x1, x2, . . . , xn). By induction on n, it suffices to treat only the case
n = 1. So, let J = I + (x) for some x ∈ R. By [9, Theorem 3.15], there is the
following long exact sequence

· · · → Hom(Rx, F
i
I(M))→ Fi

I(M)→ Fi
J(M)→ Hom(Rx, F

i+1
I (M))→ · · · .

For all i < ff-depth(I, M)−1, Fi
I(M) and Fi+1

I (M) are artinian, then Hom(Rx, F
i
I(M))

is artinian by the above exact sequence, and so ff-depth(I, M) ≤ ff-depth(J, M)+1.

In [1, Proposition 4.4], it is proved that if L is a pure submodule of M . Then
inf{i | Fi

I(L) 6= 0} ≥ inf{i | Fi
I(M) 6= 0}. Next, we give a similar result.
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Proposition 2.5. Let L be a pure submodule of M . Then ff-depth(I, M) ≤ ff-depth(I, L).

Proof. Since L is a pure submodule of M , we have that the natural map L/InL→
M/InM is pure for all n > 0. [6, Corollary 3.2(a)] implies the exact sequence

0→ H i
m(L/InL)→ H i

m(M/InM)

for all i ≥ 0 and n ≥ 0. This induces the exact sequence 0 → Fi
I(L) → Fi

I(M) and
so ff-depth(I,M) ≤ ff-depth(I, L).

Lemma 2.6. Let (R,m) is a local ring possessing a dualizing complex D·
R and let p

denote a prime ideal and i be an integer such that Fi
IRp

(Mp) is not artinian. Then

F
i+dimR/p
I (M) is not artinian.

Proof. The proof is similar to the one of [9, Corollary 3.7], here we omit it.

Proposition 2.7. (1) Let x ∈ m be an M-filter regular element. Then we have that
ff-depth(I,M/xM) ≥ ff-depth(I, M)− 1.

(2) Suppose that f-depthM <∞. Then ff-depth(I, M) ≤ min{f-depthM, dimM/IM}.

(3) Suppose that R possesses a dualizing complex. Then

ff-depth(I, M) ≤ ff-depth(IRp, Mp) + dimR/p

for all p ∈ SuppM ∩ V (I).

Proof. (1) It is easy to prove by [9, Theorem 3.14].

(2) Since f-depthM = f-depthM̂ and dimM/IM = dimM̂/IM̂ , we can assume
that R is complete by Proposition 2.3. Note that

ff-depth(I,M) ≤ sup{i | Fi
I(M) is not artinian }

≤ sup{i | Fi
I(M) 6= 0} = dimM/IM.

Now we prove ff-depth(I,M) ≤ f-depthM by induction on t = ff-depth(I, M).
When t = 0, the claim holds. Let t ≥ 1. Then F0

I(M) is artinian. It follows that
dimR/(I +p) > 0 for all p ∈ AssM\{m} by [5, Proposition 2.2]. Then we can choose
x ∈ m which forms a parameter of R/(I, p) for all p ∈ AssM\{m}, so x ∈ m be an
M -filter regular element. Thus

t− 1 ≤ ff-depth(I,M/xM) ≤ f-depth(M/xM) = f-depthM − 1

by (1) and the inductive hypothesis. So t ≤ f-depthM .

(3) We get the result by Lemma 2.6.

Theorem 2.8. Let M be a non-zero finitely generated R-module and let t ≥ 1 be
an integer. Then the following four conditions are equivalent:

(1) Fi
I(M) = 0 for all i ≥ t;

(2) Fi
I(M) is finitely generated for all i ≥ t;
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(3) Fi
I(R/p) = 0 for all i ≥ t, p ∈ SuppM ;

(4) Fi
I(R/p) is finitely generated for all i ≥ t, for all i ≥ t, p ∈ SuppM .

Proof. (1)⇒ (2). It is clear.

(2) ⇒ (1). We use induction on d = dimM . For d = 0, then Fi
I(M) = 0 for all

i ≥ 1.
Now let d > 0 and Fi

I(M) = 0 for all i > t. Now we will prove that Ft
I(M) = 0.

First, we assume that depthM > 0, then there is an element x ∈ m which is M -
regular. From the short exact sequence 0 → M

x→ M → M/xM → 0, we can get
the long exact sequence

· · · → Fi
I(M)

x→ Fi
I(M)→ Fi

I(M/xM)→ Fi+1
I (M)→ · · · ,

then Fi
I(M/xM) = 0 for all i ≥ t. By the inductive hypothesis, we get that

Ft
I(M/xM) = 0, then xFt

I(M) = Ft
I(M). Since Ft

I(M) is finitely generated, then
Ft

I(M) = 0.
Now let depthM = 0 and N = H0

m(M), then F0
I(N) = lim←−

n

H0
m(N/InN) = N and

Fi
I(N) = 0 for all i ≥ 1. From the short exact sequence 0→ N →M →M/N → 0,

we get that Fi
I(M) = Fi

I(M/N) for all i ≥ 1. Since depthM/N > 0, the desired
result follows the above argument.

(1) ⇒ (3). Note that dimM/IM = sup{i | Fi
I(M) 6= 0}. For all p ∈ SuppM ,

dimR/(I + p) ≤ dimM/IM , hence Fi
I(R/p) = 0 for all i ≥ t.

(3) ⇒ (1). It is enough for us to prove that Ft
I(M) = 0. There is a prime

filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ms = M of submodules of M such that
Mj/Mj−1

∼= R/pj, where pj ∈ SuppM , 1 ≤ j ≤ s. From the exact sequence
Ft

I(Mj−1) → Ft
I(Mj) → Ft

I(R/pj), we obtain that Ft
I(M) = 0 by the assumption

and induction on j.

The proof of (3)⇔ (4) is similar to the proof of (1)⇔ (2).

Next corollary is proved in [1, Theorem 2.6 (ii)]. Here we provide an easy method.

Corollary 2.9. Assume that dimM/IM = c > 0. Then Fc
I(M) is not finitely

generated.

Proof. If Fc
I(M) is finitely generated, then Fi

I(M) is finitely generated for all i ≥ c.
Hence Fi

I(M) = 0 for all i ≥ c by Theorem 2.8. In fact, Fc
I(M) 6= 0. It is a contra-

diction.

Now, we will present one of the main results in this paper.

Theorem 2.10. Let t be a non-negative integer such that Fi
I(M) is artinian for all

i < t. Then HomR(R/I,Ft
I(M)) is artinian.
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Proof. Since Fi
I(M) ∼= Fi

IR̂
(M̂) and

HomR̂(R̂/IR̂,Ft
IR̂

(M̂) ∼= HomR̂(R/I ⊗ R̂,Ft
I(M))

= HomR(R/I, HomR̂(R̂,Ft
I(M)))

= HomR(R/I,Ft
I(M)).

Hence, we can assume that R is complete. Next, we use induction on t. When t = 0,
we get that AssR(F0

I(M)) = {p ∈ AssM : dimR/(I + p) = 0} by [9, Lemma 4.1],
then V (I) ∩ Supp(F0

I(M)) ⊆ {m}, it turns out that HomR(R/I,F0
I(M)) is artinian.

Now we suppose that t > 0, and the result holds for all values less than t. From the
short exact sequence 0 → H0

I (M) → M → M/H0
I (M) → 0, one has the following

long exact sequence

· · · → H i
m(H0

I (M))→ Fi
I(M)→ Fi

I(M/H0
I (M))→ H i+1

m (H0
I (M))→ · · ·

by [1, Lemma 2.3], so Fi
I(M/H0

I (M)) is artinian for all i < t. We split the exact
sequence

H t
m(H0

I (M))→ Ft
I(M)

f→ Ft
I(M/H0

I (M))
g→ H t+1

m (H0
I (M))

to the following exact sequences

0→ kerf → Ft
I(M)→ imf → 0

and

0→ imf → Ft
I(M/H0

I (M))→ img → 0.

Then we have the following exact sequences

0→ HomR(R/I, kerf) → HomR(R/I,Ft
I(M))

→ HomR(R/I, imf)→ Ext1
R(R/I, kerf)→ · · · ,

0→ HomR(R/I, imf) → HomR(R/I,Ft
I(M/H0

I (M)))

→ HomR(R/I, img)→ · · · .

Note that kerf and img are artinian, it is enough to show that HomR(R/I,Ft
I(M/H0

I (M)))
is artinian. So, we may assume that H0

I (M) = 0. Then there is an M -regular ele-

ment x ∈ I. The short exact sequence 0 → M
x→ M → M/xM → 0 provides the

long exact sequence

· · · → Fi
I(M)

x→ Fi
I(M) → Fi

I(M/xM)

→ Fi+1
I (M)

x→ Fi+1
I (M)→ · · · . (∗)

This induces that Fi
I(M/xM) is artinian for all i < t−1. So HomR(R/I,Ft−1

I (M/xM))
is artinian by the inductive hypothesis. From (∗) we get the exact sequence

0→ Ft−1
I (M)/xFt−1

I (M)→ Ft−1
I (M/xM)→ (0 :Ft

I(M) x)→ 0,

which induces the exact sequence

HomR(R/I,Ft−1
I (M/xM)) → HomR(R/I, (0 :Ft

I(M) x))

→ Ext1
R(R/I,Ft−1

I (M)/xFt−1
I (M)).
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It follows that HomR(R/I, (0 :Ft
I(M) x)) is artinian. Since x ∈ I, we have that

HomR(R/I, (0 :Ft
I(M) x)) ∼= HomR(R/I ⊗R/xR, Ft

I(M))

∼= HomR(R/I,Ft
I(M)),

and so HomR(R/I,Ft
I(M)) is artinian.

Theorem 2.11. Let M be a non-zero finitely generated R-module and let t be a
non-negative integer. Then the following statements are equivalent:

(a) Fi
I(M) is artinian for all i > t;

(b) I ⊆ Rad(0 : Fi
I(M)) for all i > t.

Proof. (a)⇒ (b). Let i > t. Since Fi
I(M) is artinian, we get that IsFi

I(M) = 0 for
some positive integer s by [7, Proposition 2.1]. So I ⊆ Rad(0 : Fi

I(M)) for all i > t.
(b) ⇒ (a). We use induction on d = dimM . For d = 0, Fi

I(M) = 0 for all i > 0.
So, in this case the claim holds. Now, let d > 0 and assume that the claim holds for
all values less than d. One has the following long exact sequence

· · · → H i
m(H0

I (M))→ Fi
I(M)→ Fi

I(M/H0
I (M))→ H i+1

m (H0
I (M))→ · · · (∗)

by [1, Lemma 2.3]. So, it is enough to prove that Fi
I(M/H0

I (M)) is artinian for all
i > t. From (∗) we can see that I ⊆ Rad(0 : Fi

I(M/H0
I (M))) for all i > t. Thus, we

may assume that H0
I (M) = 0. Then there is an M -regular element x ∈ I. For all

i > t, there exists a positive integer si such that xsiFi
I(M) = 0 by hypothesis. The

short exact sequence 0→M
xsi→M →M/xsiM → 0 provides the exact sequence

0→ Fi
I(M)→ Fi

I(M/xsiM)→ Fi+1
I (M)

for all i > t. This induces that I ⊆ Rad(0 : Fi
I(M/xsiM)) is artinian and by the

inductive hypothesis Fi
I(M/xsiM) is artinian for all i > t. Hence Fi

I(M) is artinian
for all i > t.

Assume that M and N are finitely generated R-modules. Set q(I,M) := sup{i |
Fi

I(M) is not artinian } = sup{i | I * Rad(0 : Fi
I(M))} and fI(M, N) = inf{i |

H i
I(M, N) is not finitely generated }.

Remark 2.12. [1, Example 4.3(i)] In general, SuppM = SuppN not necessar-
ily lead to fgrade(I, M) = fgrade(I,N) for any finitely generated R-modules M
and N . For example, let (R,m) be a 2-dimensional regular local ring and I an
ideal with dimR/I = 1. The Hartshorne-Lichtenbaum Vanishing Theorem yields
that cd(I, R) = 1, cd(I, R/m) = 0, fgrade(I, R) = 1 and fgrade(I, R/m) = 0. Set
M =: R⊕R/m. Then M is a 2-dimensional sequentially Cohen-Macaulay R-module
and SuppM = SuppR, but fgrade(I, M) = inf{fgrade(I, R), fgrade(I, R/m)} = 0.
However, we have the following result.

Proposition 2.13. Let M and L be finitely generated R-modules and SuppL ⊆
SuppM . Then q(I, L) ≤ q(I, M). In particular, if SuppL = SuppM . Then
q(I,M) = q(I, L).
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Proof. Since Fi
I(K) ∼= Fi

IR̂
(K̂) for any R-module K and all i ≥ 0. Therefore,

we may assume that R is complete. Then, by Cohen’s Structure Theorem, R is a
homomorphic image of a regular complete local ring (T, n) such that R = T/J for
some ideal J of T . Set b := I ∩ T . In view of [1, Lemma 2.1], we have that

Fi
I(M) ∼= Fi

b(M) ∼= HomT (HdimT−i
b (M, T ), ET (T/n))

and

Fi
I(L) ∼= Fi

b(L) ∼= HomT (HdimT−i
b (L, T ), ET (T/n))

for all i ≥ 0. It induces that

q(I, M) = sup{i | HdimT−i
b (M, T ) is not finitely generated }

= dimT − inf{i | H i
b(M, T ) is not finitely generated } = dimT − fb(M, T )

and q(I, L) = dimT − inf{i | H i
b(L, T ) is not finitely generated} = dimT − fb(L, T ).

The claim follows by [2, Theorem 2.1].

Next, we will give a proposition, before this, we give a lemma.

Lemma 2.14. Let 0→M1 →M1 ⊕M2 →M2 → 0 be an exact sequence of finitely
generated R-modules. Then q(I, M1 ⊕M2) = sup{q(I, M1), q(I, M2)}.

Proof. As formal local cohomology functor is additive, the result is clear.

Proposition 2.15. q(I, M) = sup{q(I, R/p) | p ∈ SuppM}.

Proof. Set K := ⊕p∈AssMR/p. Then K is finitely generated and SuppK = SuppM .
So we have that

q(I, M) = q(I, K)

= sup{q(I, R/p) | p ∈ AssM}
= sup{q(I, R/p) | p ∈ SuppM},

where the first equality is by Proposition 2.13, the second equality follows by Lemma
2.14.

Theorem 2.16. Let (R,m) be a commutative Noetherian local ring, I1 and I2 be
two ideals of R such that I1 ⊆ I2, and M a finitely generated R-module of dimension
n. Then there is a surjective homomorphism: Fn

I1
(M)→ Fn

I2
(M).

Proof. Let R = R/AnnRM . Note that Fi
I1

(M) ∼= Fi
I1R

(M) and Fi
I2

(M) ∼= Fi
I2R

(M).

So we can assume that AnnRM = 0, and then dimR = n. We may assume that R
is complete by [9, Theorem 3.3]. Then, by Cohen’s Structure Theorem, there exists
a complete regular local ring (T, n) such that R = T/J for some ideal J of T . Set
J1 = I1 ∩ J and J2 = I2 ∩ J . Since dimRM = dimT M , Fn

I1
(M) ∼= Fn

J1
(M) and

Fn
I2

(M) ∼= Fn
J2

(M). Thus we may assume that R = T . Then by [1, Lemma 2.1], it
follows that

Fn
I1

(M) ∼= HomT (H0
J1

(M, T ), ET (T/n))

and

Fn
I2

(M) ∼= HomT (H0
J2

(M, T ), ET (T/n)).

Since H0
J2

(M, T ) is a submodule of H0
J1

(M, T ), the result is follows.
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Remark 2.17. In the above theorem, if Fn
I1

(M) = Fn
I2

(M) = 0, then the result
always holds. Now, we construct an example such that Fn

I1
(M) 6= 0 and Fn

I2
(M) 6= 0.

Let k be a field. Let R = k[[x, y]] denote the formal power series ring in two variables
over k. Put I1 = (x2)R, I2 = (x)R and M = R/I2. Then I1 ⊆ I2 and dimM = 1,
F1

I1
(M) 6= 0 and F1

I2
(M) 6= 0.

Proposition 2.18. Let (R,m) be a commutative Noetherian local ring of dimension
n and M a finitely generated R-module. Then CoassFn

I (M) ⊆ {p ∈ SpecR | p ⊇
AnnM, dimR/p = n}.

Proof. Since CoassFn
I (M) = Coass(Fn

I (R) ⊗M) = SuppM ∩ CoassFn
I (R), let p ∈

CoassFn
I (M), we have that p ⊇ AnnM and p ∈ CoassFn

I (R/p), then dimR/p = n.

Remark 2.19. (1) In Proposition 2.18, if Fn
I (M) = 0, then the result is clear.

Here, we give an example such that Fn
I (M) 6= 0. To this end, let R be a local domain

of dimension 3, I = (0) and M = R. Then F3
(0)(R) 6= 0.

(2) The inclusion in the above Proposition is not an equality in general. Let
R be a local domain of dimension 3 and I an ideal of R of dimension 1. Then
CoassF3

I(R) = ∅, but (0) ∈ {p ∈ SpecR | p ⊇ AnnR, dimR/p = 3}.
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