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Abstract. In this paper, we present a fixed point method to prove generalized Hyers–

Ulam stability of the generalized Jensen functional equation f(rx+ sy) = rg(x) + sh(x)

in modular spaces.

1. Introduction

The concept of stability for a functional equation arises when one replaces a functional

equation by an inequality which acts as a perturbation of the equation. Recall that the

problem of stability of functional equations was motivated by a question of Ulam being

asked in 1940 [28] and Hyers answer to it was published in [4]. Hyers’s theorem was

generalized by Aoki [1] for additive mappings and by Rassias [23] for linear mappings by

considering an unbounded Cauchy difference. During the past decades, a number of results

concerning the stability of various functional equations have been obtained [7, 3, 25, 8].

The result on the stability of the classical Jensen functional equation was first given

by Kominek [11]. The author who presumably investigated the stability problem on a

restricted domain for the first time was Skof [26]. The stability of the Jensen equation and

its generalizations were studied by a number of mathematicians (cf., e.g., [6, 2, 18, 9, 20]).

In this paper, by using some ideas of [9], we investigate the generalized Hyers–Ulame

stability of a generalized Jensen functional equation for mappings from linear spaces into

modular spaces. The theory of modulars on linear spaces and the corresponding theory

of modular linear spaces were founded by Nakano [21] and were intensively developed

by Amemiya, Koshi, Shimogaki, Yamamuro [12, 29] and others. Further and the most

complete development of these theories are due to Orlicz, Mazur, Musielak, Luxemburg,

Turpin [14, 27, 19] and their collaborators. In the present time the theory of modulars

and modular spaces is extensively applied, in particular, in the study of various Orlicz
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spaces [22] and interpolation theory [13, 15], which in their turn have broad applications

[19]. The importance for applications consists in the richness of the structure of modular

function spaces, that–besides being Banach spaces (or F–spaces in more general setting)–

are equipped with modular equivalent of norm or metric notions.

Definition 1.1. Let X be an arbitrary vector space.

(a) A functional ρ : X → [0,∞] is called a modular if for arbitrary x, y ∈ X ,

(i) ρ(x) = 0 if and only if x = 0,

(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,

(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α + β = 1 and α, β ≥ 0,

(b) if (iii) is replaced by

(iii)
′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α + β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .

Let ρ be a convex modular, the modular space Xρ can be equipped with a norm called

the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 ; ρ

(x
λ

)
≤ 1
}
.

A function modular is said to satisfy the ∆2–condition if there exists κ > 0 such that

ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

Definition 1.2. Let {xn} and x be in Xρ. Then

(i) the sequence {xn}, with xn ∈ Xρ, is ρ–convergent to x and write xn
ρ−→ x if ρ(xn−x)→

0 as n→∞.

(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn−xm)→ 0 as n,m→∞.

(iii) A subset S of Xρ is called ρ–complete complete if and only if any ρ–Cauchy sequence

is ρ–convergent to an element of S.

The modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn) whenever

the sequence {xn} is ρ–convergent to x.

Remark 1.3. Note that ρ is an increasing function. Suppose 0 < a < b, then property (iii)

of Definition 1.1 with y = 0 shows that ρ(ax) = ρ
(
a
b
bx
)
≤ ρ(bx) for all x ∈ X . Moreover,

if ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also ρ(x) ≤ 1
2
ρ(2x)

for all x ∈ X .
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A convex function ϕ defined on the interval [0,∞), nondecreasing and continuous for

α ≥ 0 and such that ϕ(0) = 0, ϕ(α) > 0 for α > 0, ϕ(α) → ∞ as α → ∞, is called an

Orlicz function. The Orlicz function ϕ satisfies the ∆2–condition if there exists κ > 0

such that ϕ(2α) ≤ ϕ(α) for all α > 0. Let (Ω,Σ, µ) be a measure space. Let us consider

the space L0(µ) consisting of all measurable real–valued (or complex–valued) functions

on Ω. Define for every f ∈ L0(µ) the Orlicz modular ρϕ(f) by the formula

ρϕ(f) =

∫
Ω

ϕ(|f |)dµ.

The associated modular function space with respect to this modular is called an Orlicz

space, and will be denoted by Lϕ(Ω, µ) or briefly Lϕ . In other words,

Lϕ = {f ∈ L0(µ) | ρϕ(λf)→ 0 as λ→ 0}

or equivalently as

Lϕ = {f ∈ L0(µ) | ρϕ(λf) <∞ for some λ > 0}.

It is known that the Orlicz space Lϕ is ρϕ–complete. Moreover, (Lϕ, ‖.‖ρϕ) is a Banach

space, where the Luxemburg norm ‖.‖ρϕ is defined as follows

‖f‖ρϕ = inf

{
λ > 0 :

∫
Ω

ϕ

(
|f |
λ

)
dµ ≤ 1

}
.

Moreover, if L is the space of sequences x = {xi}∞i=1 with real or complex terms xi,

ϕ = {ϕi}∞i=1, ϕi are Orlicz functions and %ϕ(x) = Σ∞i=1ϕi(|xi|), we shall write `ϕ in place

of Lϕ. The space `ϕ is called the generalized Orlicz sequence space. The motivation

for the study of modular spaces (and Orlicz spaces) and many examples are detailed in

[21, 19, 22, 15].

2. Stability of a generalized Jensen functional equation

Throughout this paper, we assume that ρ is a convex modular on X with the Fatou

property such that satisfies the ∆2–condition with 0 < κ ≤ 2. In addition, we assume

that r, s constant positive integer numbers. In this section, we use some ideas from [9]

and we establish the conditional stability of a generalized Jensen functional equation.

Theorem 2.1. Let E be a real or complex linear space and let Xρ be a ρ–complete modular

space. Suppose f : E → Xρ satisfies the condition f(0) = 0 and an inequality of the form

ρ (f(x+ y)− f(x)− f(y)) ≤ φ(x, y) (2.1)
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for all x, y ∈ E, where φ : E × E → [0,∞) is a given function such that

φ(2x, 2x) ≤ 2Lφ(x, x)

for all x ∈ E and has the property

lim
n→∞

φ(2nx, 2ny)

2n
= 0 (2.2)

for all x, y ∈ E and a constant 0 < L < 1. Then there exists a unique additive mapping

j : E → Xρ such that

ρ(j(x)− f(x)) ≤ 1

2(1− L)
φ(x, x) (2.3)

for all x ∈ E.

Proof. We consider the set

M = {g : E → Xρ, g(0) = 0}

and introduce the convex modular ρ̃ on M as follows,

ρ̃(g) = inf{c > 0 : ρ(g(x)) ≤ cφ(x, x)}.

It is sufficient to show that ρ̃ satisfies the following condition

ρ̃(αg + βh) ≤ αρ̃(g) + βρ̃(h)

if α + β = 1 and α, β ≥ 0. Let ε > 0 be given. Then there exist c1 > 0 and c2 > 0 such

that

c1 ≤ ρ̃(g) + ε; ρ(g(x)) ≤ c1φ(x, x)

and

c2 ≤ ρ̃(h) + ε; ρ(h(x)) ≤ c2φ(x, x).

If α + β = 1 and α, β ≥ 0, then we get

ρ(αg(x) + βh(x)) ≤ αρ(g(x)) + βρ(h(x)) ≤ (αc1 + βc2)φ(x, x),

whence

ρ̃(αg + βh) ≤ αρ̃(g) + βρ̃(h) + (α + β)ε.

Hence, we have

ρ̃(αg + βh) ≤ αρ̃(g) + βρ̃(h).

Moreover, ρ̃ satisfies the ∆2–condition with 0 < κ < 2.
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Let {gn} be a ρ̃–Cauchy sequence inMρ̃ and let ε > 0 be given. There exists a positive

integer n0 ∈ N such that ρ̃(gn − gm) ≤ ε for all n,m ≥ n0. Now by considering the

definition of the modular ρ̃, we see that

ρ(gn(x)− gm(x)) ≤ εφ(x, x) (2.4)

for all x ∈ E and n,m ≥ n0. If x is any given point of E , (2.4) implies that {gn(x)} is a

ρ–Cauchy sequence in Xρ. Since Xρ is ρ–complete, so {gn(x)} is ρ–convergent in Xρ, for

each x ∈ E . Hence, we can define a function g : E → Xρ by

g(x) = lim
n→∞

gn(x)

for any x ∈ E . Let m increase to infinity, then (2.4) implies that

ρ̃(gn − g) ≤ ε

for all n ≥ n0, since ρ has the Fatou property. Thus {gn} is ρ̃–convergent sequence in

Mρ̃. Therefore Mρ̃ is ρ̃–complete.

Now, we consider the function T :Mρ̃ →Mρ̃ defined by

T g(x) :=
1

2
g(2x)

for all g, h ∈ Mρ̃. Let g, h ∈ Mρ̃ and let c ∈ [0,∞] be an arbitrary constant with

ρ̃(g − h) ≤ c. From the definition of ρ̃, we have

ρ(g(x)− h(x)) ≤ cφ(x, x)

for all x ∈ E . By the assumption and the last inequality, we get

ρ

(
g(2x)

2
− h(2x)

2

)
≤ 1

2
ρ(g(2x)− h(2x)) ≤ 1

2
cφ(2x, 2x) ≤ Lcφ(x, x)

for all x ∈ E . Hence, ρ̃(T g − T h) ≤ Lρ̃(g − h), for all g, h ∈ Mρ̃ that is, T is a ρ̃–strict

contraction. We show that the ρ̃–strict mapping T satisfies the conditions of Theorem

3.4 of [10].

Letting x = y in (2.1), we get

ρ(f(2x)− 2f(x)) ≤ φ(x, x) (2.5)

for all x ∈ E . If we replace x by 2x in (2.5) we get

ρ(f(4x)− 2f(2x)) ≤ φ(2x, 2x)
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for all x ∈ E . Since ρ is convex modular and satisfies the ∆2–condition, we obtain

ρ

(
f(4x)

2
− 2f(x)

)
≤ 1

2
ρ(f(4x)− 2f(2x)) +

1

2
ρ(2f(2x)− 4f(x))

≤ 1

2
φ(2x, 2x) +

κ

2
φ(x, x)

for all x ∈ E . Moreover,

ρ

(
f(22x)

22
− f(x)

)
≤ 1

2
ρ

(
2
f(4x)

22
− 2f(x)

)
≤ 1

22
φ(2x, 2x) +

κ

22
φ(x, x).

for all x ∈ E . By mathematical induction, we can easily see that

ρ

(
f(2nx)

2n
− f(x)

)
≤ 1

2n

n∑
i=1

κn−iφ(2i−1x, 2i−1x) ≤ 1

2(1− L)
φ(x, x) (2.6)

for all x ∈ E . Next, we assert that δρ̃(f) = sup {ρ̃ (T n(f)− T m(f)) ;n,m ∈ N)} <∞. It

follows from inequality (2.6) that

ρ

(
f(2nx)

2n
− f(2mx)

2m

)
≤ 1

2
ρ

(
2
f(2nx)

2n
− 2f(x)

)
+

1

2
ρ

(
2
f(2mx)

2m
− 2f(x)

)
≤ κ

2
ρ

(
f(2nx)

2n
− f(x)

)
+
κ

2
ρ

(
f(2mx)

2m
− f(x)

)
≤ 1

1− L
φ(x, x),

for every x ∈ E and n,m ∈ N, which implies that

ρ̃ (T n(f)− T m(f)) ≤ 1

1− L
,

for all n,m ∈ N. By the definition of δρ̃(f), we have δρ̃(f) <∞. Lemma 3.3 of [10] shows

that {T n(f)} is ρ̃–converges to j ∈Mρ̃. Since ρ has the Fatou property inequality (2.6),

gives ρ̃(T j − f) <∞.

If we replace x by 2nx in inequality (2.5), then we obtain

ρ̃
(
f(2n+1x)− 2f(2nx)

)
≤ φ(2nx, 2nx),

for all x ∈ E . Whence

ρ

(
f(2n+1x)

2n+1
− f(2nx)

2n

)
≤ 1

2n+1
ρ
(
f(2n+1x)− 2f(2nx)

)
≤ 1

2n+1
φ(2n, 2nx)

≤ 1

2n+1
2nLnφ(x, x) ≤ Ln

2
ϕ(x, x) ≤ φ(x, x)
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for all x ∈ E . Therefore ρ̃(T (j)− j) <∞. It follows from [10, Theorem 3.4] that ρ̃–limit

of {T n(f)} i.e., j ∈ Mρ̃ is fixed point of map T . If we replace x by 2nx and y by 2ny in

inequality (2.1), then we obtain

ρ (f(2n(x+ y))− f(2nx)− f(2ny)) ≤ φ(2x, 2ny)

for all x, y ∈ E . Hence,

ρ

(
f(2n(x+ y))

2n
− f(2nx)

2n
− f(2ny)

2n

)
≤ 1

2n
ρ (f(2n(x+ y))− f(2nx)− f(2ny))

≤ φ(2x, 2ny)

2n

for all x, y ∈ E . Taking the limit, we deduce that j(x + y) = j(x) + j(y) for all x, y ∈ E .

It follows from inequality (2.6) that

ρ̃(j − f) ≤ 1

2(1− L)
.

If j∗ is another fixed point of T , then

ρ̃(j − j∗) ≤ 1

2
ρ̃(2T (j)− 2f) +

1

2
ρ̃(2T (j∗)− 2f)

≤ κ

2
ρ̃(T (j)− f) +

κ

2
ρ̃(T (j∗)− f) ≤ κ

2(1− L)
<∞.

Since T is ρ̃–strict contraction, we get

ρ̃(j − j∗) = ρ̃(T (j)− T (j∗)) ≤ Lρ̃(j − j∗),

which implies that ρ̃(j−j∗) = 0 or j = j∗, since ρ̃(j−j∗) <∞. This prove the uniqueness

of j. �

Corollary 2.2. Let E be a normed space and let F be a Banach space. Suppose f : E → F

is a mapping with f(0) = 0 and there exist constants ε, θ ≥ 0 and p ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε+ θ(‖x‖p + ‖y‖p),

for all x, y ∈ E. Then there exists a unique additive mapping j : E → F such that

‖f(x)− j(x)‖ ≤ ε

2− 2p
+

2θ

2− 2p
‖x‖p

for all x, y ∈ E.

Proof. It is known that every normed space is modular space with the modular ρ(x) = ‖x‖
and κ = 2. Define φ(x, y) = ε+ θ(‖x‖p + ‖y‖p) and apply Theorem 2.1. �
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Now, we are ready to prove stability the functional equation f(rx+sy) = rg(x)+sh(y).

Theorem 2.3. Let f, g, h : E → Xρ be mappings with f(0) = g(0) = h(0) = 0 satisfying

ρ(f(rx+ sy)− rg(x)− sh(y)) ≤ φ(x, y) (2.7)

for all x, y ∈ E, where φ : E × E → [0,∞) is given function. If there exists 0 < L < 1

such that

φ(2x, 2x) ≤ 2Lφ(x, x)

and has the property

lim
n→∞

φ(2nx, 2ny)

2n
= 0 (2.8)

for all x, y ∈ E. Then there exists a unique additive mapping A : E → Xρ such that

ρ(f(x)−A(x)) ≤ ψ(x, x)

ρ(g(x)−A(x)) ≤ κ

2r
(φ(x, 0) + ψ(rx, rx))

ρ(h(x)−A(x)) ≤ κ

2s
(φ(0, x) + ψ(sx, sx))

for all x ∈ E, where ψ(x, x) = 1
2(1−L)

[
κ
2
φ(x

r
, x
r
) + κ2

4

(
φ(x

r
, 0) + φ(0, x

s
)
)]

.

Proof. Letting y = 0 in (2.7) we get

ρ(f(rx)− rg(x) ≤ φ(x, 0)

for all x ∈ E . Letting x = 0 in (2.7) we get

ρ(f(sy)− sh(y)) ≤ φ(0, y)

for all y ∈ E . Then

ρ(f(rx+ sy)− f(rx)− f(sy)) ≤ 1

2
ρ (2(f(rx+ sy)− rg(x)− sh(y))

+
1

2
ρ (2(rg(x)− f(rx)− f(sy) + sh(y))

≤ κ

2
ρ (f(rx+ sy)− rg(x)− sh(y))

+
κ

2
ρ (rg(x)− f(rx)− f(sy) + sh(y))

≤ κ

2
φ(x, y) +

κ2

4
(φ(x, 0) + φ(0, y)).
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Replacing x by 1
r
x and y by 1

s
y in the above inequality, we obtain

ρ(f(x+ y)− f(x)− f(y)) ≤ κ

2
φ
(x
r
,
y

s

)
+
κ2

4

[
φ
(x
r
, 0
)

+ φ
(

0,
y

s

)]
for all x, y ∈ E . By Theorem 2.1, there exists a unique additive mapping A : E → Xρ
given by A(x) = limn→∞

f(2nx)
2n

such that

ρ(f(x)−A(x)) ≤ ψ(x, x) (2.9)

for all x ∈ E . Since A is a additive, we have A(qx) = qA(x) for all rational numbers q

and x ∈ E . It follows from inequalities (2.7) and (2.9) that

ρ(g(x)−A(x)) ≤ 1

2
ρ

(
2

[
g(x)− 1

r
f(rx)

])
+

1

2
ρ

(
2

[
1

r
f(rx)−A(x)

])
≤ κ

2r
(ρ(rg(x)− f(rx))) +

κ

2r
(ρ(f(rx)−A(rx))

≤ κ

2r
φ(x, 0) +

κ

2r
ψ(rx, rx)

for all x ∈ E . Similarly, we obtain the following inequality

ρ(g(x)−A(x)) ≤ κ

2s
φ(x, 0) +

κ

2s
ψ(sx, sx)

for all x ∈ E . �

Corollary 2.4. Let E be a normed space and let Xρ be a ρ–complete. Suppose f : E → Xρ
is a mapping with f(0) = 0 and there exist constants ε, θ ≥ 0 and p ∈ [0, 1) such that

ρ(f(rx+ sy)− rf(x)− sf(y)) ≤ ε+ θ(‖x‖p + ‖y‖p),

for all x, y ∈ E. Then there exists a unique additive mapping A : E → Xρ such that

ρ(f(x)−A(x)) ≤ κ+ κ2

2(2− 2p)
ε+

[
κ

rp
+

κ2

2rp
+

κ2

2sp

]
θ‖x‖p

2− 2p
.

Proof. Define φ(x, y) = ε+ θ(‖x‖p + ‖y‖p) and apply Theorem 2.3. �

Corollary 2.5. Let E be a normed space and let F be a Banach space. Suppose f : E → F

is a mapping with f(0) = 0 and there exist constants ε, θ ≥ 0 and p ∈ [0, 1) such that

‖f(rx+ sy)− rf(x)− sf(y)‖ ≤ ε+ θ(‖x‖p + ‖y‖p),

for all x, y ∈ E. Then there exists a unique additive mapping A : E → F such that

‖f(x)−A(x)‖ ≤ 3

2− 2p
ε+

[
2

rp
+

1

sp

]
θ‖x‖p

2− 2p
.



10 GHADIR SADEGHI

The following example shows that our results in this paper differ form some results of

[9].

Example 2.6. Let ϕ be an Orlicz function and satisfy the ∆2–condition with 0 < κ < 2.

Let f, g, h : E → Lϕ be mappings with f(0) = g(0) = h(0) = 0 satisfying∫
Ω

φ(|f(rx+ sy)− rg(x)− sh(y)|)dµ ≤ φ(x, y) (2.10)

for all x, y ∈ E , where φ : E ×E → [0,∞) is given function. If there exists 0 < L < 1 such

that

φ(2x, 2x) ≤ 2Lφ(x, x)

and has the property

lim
n→∞

φ(2nx, 2ny)

2n
= 0 (2.11)

for all x, y ∈ E . Then there exists a unique additive mapping A : E → Xρ such that∫
Ω

ϕ(|f(x)−A(x)|)dµ ≤ ψ(x, x)∫
Ω

ϕ(|g(x)−A(x)|)dµ ≤ κ

2r
(φ(x, 0) + ψ(rx, rx))∫

Ω

ϕ(|h(x)−A(x)|)dµ ≤ κ

2s
(φ(0, x) + ψ(sx, sx))

for all x ∈ E , where ψ(x, x) = 1
2(1−L)

[
κ
2
φ(x

r
, x
r
) + κ2

4

(
φ(x

r
, 0) + φ(0, x

s
)
)]

.

3. Stability of generalized Jensen functional equation on restricted domains

In this section, we investigate the stability of our generalized Jensen equation on re-

stricted domains. The idea and methods used in this section is taken from the paper by

Jung et al [9].

Theorem 3.1. Let (E , %) be a modular space and let Xρ be a ρ–complete modular space.

Let d > 0, ε > 0, and f : E → Xρ with f(0) = 0 such that

ρ(f(rx+ sy)− rf(x)− sf(y)) ≤ ε (3.1)

for all x, y ∈ E with %(x) + %(y) ≥ d. Then there exists a unique additive mapping

A : E → Xρ such that

ρ(f(x)−A(x)) ≤ κ+ κ2

2

(
κ

2
+
κ2

22
+
κ3

23
+
κ4

24
+
κ4

24

)
ε
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for all x ∈ E.

Proof. Let x, y ∈ E with %(x) + %(y) < d. Suppose that, for x = y = 0, z is an element of

E with %(z) ≥ d. Furthermore, for x 6= 0 or y 6= 0, let

z :=


(

1 + d
%(x)

)
x if %(x) ≥ %(y)(

1 + d
%(y)

)
y if %(x) ≤ %(y).

Clearly, we see that

%
([

2 +
s

r

]
z +

s

r
y
)

+ %

([
1 +

2r

s

]
z − r

s
x

)
≥ d,

%(x) + %(z) ≥ d,

%
(

2
[
1 +

s

r

]
z
)

+ %(y) ≥ d,

%
(

2
[
1 +

s

r

]
z
)

+ %

([
1 +

2r

s

]
z − a

b
x

)
≥ d,

%
([

2 +
s

r

]
z +

s

r
y
)

+ %(z) ≥ d.

Next, we show that the first inequality holds and other inequalities are trivial. To this

end, let %(x) ≥ %(y), we put α =
[
2 + s

r

]
z + s

r
y, β =

[
1 + 2r

s

]
z − r

s
x, γ = − s

r
y and

η = − r
s
x. Then we obtain

%(α) + %(β) ≥ 2%

(
α + γ

2

)
− %(γ) + 2%

(
β + η

2

)
− %(η)

= 2%

(
1

2

[
2 +

s

r

]
z

)
− %

(s
r
y
)

+ 2%

(
1

2

[
1 +

2r

s

]
z

)
− %

(r
s
x
)

≥ %(z) + %
( s

2r
z
)
− %

(s
r
y
)

+ %
(z

2

)
+ %

(r
s
z
)
− %

(r
s
x
)

≥ %(z) + %
(s
r
x
)
− %

(s
r
y
)

+ %
(z

2

)
+ %

(r
s
x
)
− %

(r
s
x
)

≥ d.

(3.2)

Now, we set

θ = f(rx+ sy)− rf
([

2 +
s

r

]
z +

s

r
y
)
− sf

([
1 +

2r

s

]
z − r

s
x

)
,

λ = f(rx+ sz)− rf(x)− sf(z),

µ = f(2(r + s)z + sy)− rf
(

2
[
1 +

s

r

]
z
)
− sf(y),
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ν = −f(rx+ sz) + rf
(

2
[
1 +

s

r

]
z
)

+ sf

([
1 +

2r

s

]
z − r

s
x

)
and

ϑ = −f(2(r + s)z + sy) + rf
([

2 +
s

r

]
z +

s

r
y
)

+ sf(z).

It follows from (3.1) and (3.2) that

ρ(f(rx+ sy)− rf(x)− sf(y)) = ρ(θ + λ+ µ+ ν + ϑ) ≤ 1

2
ρ(2θ) +

1

2
ρ(2(λ+ µ+ ν + ϑ))

≤ κ

2
ρ(θ) +

κ

2
ρ(λ+ µ+ ν + ϑ)

...

≤ κ

2
ρ(θ) +

κ2

22
ρ(λ) +

κ3

23
ρ(µ) +

κ4

24
ρ(ν) +

κ4

24
ρ(θ)

≤
(
κ

2
+
κ2

22
+
κ3

23
+
κ4

24
+
κ4

24

)
ε

for all x, y ∈ E . We thus obtain

ρ(f(rx+ sy)− rf(x)− sf(y)) ≤
(
κ

2
+
κ2

22
+
κ3

23
+
κ4

24
+
κ4

24

)
ε

for all x, y ∈ E . Now the result asserted by the above Theorem can be deduced fairly

easily from Corollary 2.4 with θ = p = 0. �

Corollary 3.2. Let E be a normed space and let F be a Banach space. Let d > 0 , ε > 0,

and f : E → F be a mapping with f(0) = 0 such that

‖f(rx+ sy)− rf(x)− sf(y)‖ ≤ ε

for all x, y ∈ E with ‖x‖+‖y‖ ≥ d. Then there exists a unique additive mapping A : E → F

such that

‖f(x)−A(x)‖ ≤ 15ε

for all x ∈ E.

Corollary 3.3. Let (E , %) be a modular space and let Xρ be a ρ–complete modular space.

Let f : E → Xρ be a mapping with f(0) = 0. Then f is additive if and only if

ρ(f(rx+ sy)− rf(x)− sf(y))→ 0 as %(x) + %(y)→∞. (3.3)

Proof. The proof of this corollary is similar to [9, Corollary 3.2]. �
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Example 3.4. Let ϕ̂ = {ϕi} be a sequence of Orlicz functions and let (`ϕ̂, %ϕ̂) be a

generalized Orlicz sequence space associated to ϕ̂ = {ϕi}. Let (Lϕ, ρϕ) be an Orlicz space

and ϕ satisfy the ∆2–condition with 0 < κ ≤ 2. Suppose d > 0, ε > 0 and f : `ϕ̂ → Lϕ

with f(0) = 0 such that ∫
Ω

ϕ (|f(rx+ sy)− rf(x)− sf(y)|) ≤ ε

for all x, y ∈ `ϕ̂ with %ϕ(x) + %ϕ(y) = Σ∞i=1ϕi(|xi|) + Σ∞i=1ϕi(|yi|) ≥ d. Then there exists a

unique additive mapping A : `ϕ̂ → Lϕ such that∫
Ω

ϕ (|f(x)−A(x)|) ≤ κ+ κ2

2

(
κ

2
+
κ2

22
+
κ3

23
+
κ4

24
+
κ4

24

)
ε

for all x ∈ `ϕ̂.
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