G-FRAMES AND DIRECT SUMS
AMIR KHOSRAVI, M. MIRZAEE AZANDARYANI

ABSTRACT. In this paper we study g-frames on the direct sum of Hilbert spaces. We
generalize some of the results about g-frames on super Hilbert spaces to the direct sum of
a countable number of Hilbert spaces. Also we study the direct sum of g-frames, g-Riesz
bases and g-orthonormal bases for these spaces. Moreover we consider perturbations,
duals and equivalences for the direct sum of g-frames.

1. INTRODUCTION

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer (see [10]) in
1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986 by
Daubechies, Grossmann and Meyer (see [9]). Frames are very useful in characterization
of function spaces and other fields of applications such as filter bank theory (see [4]),
sigma-delta quantization (see [3]), signal and image processing (see [5]) and wireless com-
munications (see [11]). First we recall the definition of frames.

Let H be a Hilbert space and let I be a finite or countable subset of Z. A family
{fi}ier € H is a frame for H, if there exist 0 < A < B < 00, such that for each f € H,

AP < ST < £ 8> P < BIAIP
el
In this case we say that {f;};,cr is an (A, B) frame. A and B are the lower and upper
frame bounds, respectively. If only the right-hand side inequality is required, it is called a
Bessel sequence. A frame is tight, if A= B. If A= B =1, it is called a Parseval frame.
A family {f;}ier C H is complete if the span of {f;};cs is dense in H. We say that {f;}ier
is a Riesz basis for H, if it is complete in H and there exist two constants 0 < A < B < o0,
such that for each sequence of scalars {c;}icr € £2(1),

AN el < 1D ahl?<BY ol

icl iel iel
or equivalently
AN el < 1> ahil?<BY el
iEF ieF i€F

for each sequence of scalars {c¢;}icr, where F' is a finite subset of I. In this case we say
that {f;}ier is an (A, B) Riesz basis. For more results about frames see [8].

Sun in [16] introduced g-frames as a generalization of frames. He showed that oblique
frames, pseudo frames and fusion frames ([7], [2]) are special cases of g-frames. Let I be
a finite or countable subset of Z and H be a Hilbert space. For each i € I, let H; be a
Hilbert space and L(H, H;) be the set of all bounded, linear operators from H to H;. We
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2 G-FRAMES AND DIRECT SUMS

call A = {A; € L(H,H;) : 1 € I} a g-frame for H with respect to {H; : i € I} if there
exist two positive constants A and B such that

AIFIE < STIAIR < BISIP,
iel
for each f € H. In this case we say that A is an (A, B) g-frame. A and B are the lower
and upper g-frame bounds, respectively. We call A an A-tight g-frame if A = B and we
call it a Parseval g-frame if A = B = 1. If only the second inequality is required, we call
it a g-Bessel sequence. If A is an (A, B) g-frame, then the g-frame operator Sy is defined
by Saf = > ,e; AjAif, which is a bounded, positive and invertible operator such that
ATl <Sy<B.I The canonical dual g-frame for A is defined by {A; € L(H, H;) :i € I},
where A; = A; Sy, which is an (%, %) g-frame for H and for cach f € H, we have

=Y NAf =) ATAS
il iel
If A is a g-Bessel sequence, then the g-Bessel sequence {I'; € L(H, H;) : i € I} is called
an alternate dual or a dual of A if

=Y TiNf =) AT,
el iel

for each f € H. Now define

oy H, = {{fz}zeflfz € Hy [{fietll? = SIAI < oo}

el
@ierH; with pointwise operations and inner product as

<Afitier. {gitier >= Z < [i,9i >
iel

is a Hilbert space.
Let {H,}ier be a sequence of Hilbert spaces. Then by considering K = @;¢ IHZ, we can
assume that each H; is a closed subspace of K, therefore if f;, € H;, and f;, € H;,, for
11,12 € I, then < f;, fi, > is well-defined.
We say that {N; € L(H,H;) :i €1} is g-complete if {f : A\;f =0,Vi € I} = {0}, and we
call it a g-orthonormal basis for H, if

< A;;fipA:inQ >= 51'1,1'2 < fi1afi2 >, Z.1a7;2 € [7 fi1 € z17f12 127

and

S IASIE = 1A% VF e H

iel
A ={A\, € L(H,H;) : i € I} is a g-Riesz basis for H, if it is g-complete and there exist
two constants 0 < A < B < oo, such that for each finite subset F C I and f; € H;,i € F,

AZ 1P < | ZAffiHQ < BZ 1£:]1%.
ieF ieF ieF

In this case we say that A is an (A, B) g-Riesz basis.
Let H; and H be Hilbert spaces, for each i € I and let H = ®;c;H; and H' = @, H..
Recall that if T; € L(H;, H]), then T' = @;¢;7; which is defined by T'({ h; }ier) = {Ti(hi) }ier
is a bounded operator from H to H' if and only if sup{||7;|| : ¢ € I} < oo. In this case
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|7\l = sup{||T;|| : ¢ € I} and T* = @®;;7;". If H and K are Hilbert spaces, then H & K
is called a super Hilbert space.

Recently some authors were interested in g-frames on super Hilbert spaces, see Proposition
2.16 in [12], [17] and [1]. In this paper we consider g-frames on the direct sum of a finite
or countable number of Hilbert spaces.

In Section 2 we study g-frames, g-Riesz bases and g-orthonormal bases for the direct sum
of Hilbert spaces. We also construct the direct sum of g-frames (resp. g-Riesz bases,
g-orthonormal bases) for a finite or countable number of g-frames (resp. g-Riesz bases,
g-orthonormal bases).

In Section 3 we consider perturbations, duals and equivalences for the direct sum of
g-frames.

2. THE DIRECT SUM OF G-FRAMES

Throughout this note all of the Hilbert spaces are separable. I, J, K;’s, K;;’s are finite
or countable subsets of Z and H, H;’s, H;;’s are Hilbert spaces.
We start with the following proposition which is a generalization of Proposition 2.3 in [1]:

Proposition 2.1. Let {A;; € L(H,H;;) : i € I} be a sequence for each j € J and
{eijr : k € K;j} be an orthonormal basis for H;j. Suppose that ©; : H — @®;c H;; which
is defined by ©;(f) = {Aijf}jes is a bounded operator for each i € I, and suppose that
Yijg = Afj(eim). Then {1k :j € J,i € I,k € K;;} is a frame (resp. tight frame, Bessel
sequence, Riesz basis, orthonormal basis) for H if and only if {©; € L(H, ®je H;;) i € I}
is a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis).

Proof. For each f € H, we have
(1) DoleiflP=> > IAaflP =3 > I <fuy>
il iel jeJ jeJ i€l keK

This shows that {¢;r : j € Ji € I,k € K;;} is a frame (resp. tight frame, Bessel
sequence, complete set)if and only if {O;};es is a g-frame (resp. tight g-frame, g-Bessel
sequence, g-complete set).

Let {¢i;x : j € J,i € I,k € K;;} be a Riesz basis and F be a finite subset of I. Suppose
that f € H and {f;;};es € ®jesH;; for each i € F. We have

<O;{fitien) I > = <{filier {0l Yies >= D < fijs Nijf >
jeJ

= <ZA;jfij7f >

jedJ
therefore ©F ({fi;}ies) = ZjeJ A} fij, so
1> i {fidsen P = 1> Aifull.
1€l el jed
Suppose that fij = ZkGKU Cij,k€ijk, thus A;k](fz]) = ZkeKij Cij,kwij,k- Hence

(2) DY 0 fbieP =120 > ciintbigul®

ieF jeJ i€F keKj
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Since f;; = ZkeK Cij k€ijk, then
I fiidieal> =D 1fall> =D > leiul,
jed jET kEK;
for each ¢ € F, therefore
(3) SO el =203 el =D 0 > el
i€F i€F jeJ keK,; jEJ i€F keK;

Now by using (2) and (3), we have

A I FitiealP = AD DT el < DD D ciintbigul?
icF jeJ ieF keKy; jeJ ieF keK,
= 1D 0i{fitienIP,
ieF

similarly
IS0 ({fubienl? < B I fisbies P
i€k i€l
This means that {©;};c; is an (A, B) g-Riesz basis.
The converse is similar by choosing a finite sequence of scalars {c;; 1}, using (2), (3) and
the fact that {©;};cs is a g-Riesz basis.
Now let {¢;;x : j € J,i € I,k € K;;} be an orthonormal basis. Suppose that i,¢ € I,

{fij}jes € ®jesHy; and {ge}jes € DjesHy. We have f;; = Zkemj < fipreiin > €
= Zkem- < Gejs €k > €gjk- Then

< O;({fij}jer), ©7({ge)}jer) >=< ZA (fis), ZA@ (9¢7)

jeJ jeJ

=D > D> (< fupr i > Yigks < Gors €ara > Vira)

jGJ red k?EKi]' dEK@T

= ZZ Z Z < fij» €ijk >< €erd, Jor >< Vijr, Vora > -

jeJ red keK;; de Ky,

Now if 2 = ¢, then

Z Z Z Z < fij €ijk >< €oras Gor >< Vij ke, Yorg >=

jed red keK;; deKy,
Z Z < fij, €ijk >< €ijk, Gij >= Z < fij» 9ij >
jeJ kJEKij jeJ
=<{fij}ier{9ij}jes >,

so < O;({fij}jes), O;({gij}jes) >=<{fij}jer {9i}jes > i # L, then < yp, era >=
0. Therefore < ©f({fi;}jes), ©;({g¢j}) >= 0. The second condition of g-orthonormal
basis follows from (1). Conversely let {©;};c; be a g-orthonormal basis. Let iy,iy € I,
jl,jQ S J, k?l € K’iljl and ]{32 € Kigjg- Then
< wiljl,knwizjmk‘z > = < A;kljl(eiljl,k?l)7 A:ng (€i2j2,k’2) >

= < 9; (f11j17k1)7 GIQ(fi2j27k2) >,
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where fi, ik = {0j1,j€i51 0 ties and fiyjo ks = {075 5€inja ks }jes. Hence
< Vigjy ks Vingorks >= Oiyin < fivjikrs fingake >= 0i1i2051 42 Oky ke

which shows that {1y, :j € J,i € I,k € K;;} is an orthonormal basis. O

The converse of the above theorem is also true:

Proposition 2.2. Let {©; € L(H,®,c H;j) : i € I} be a g-frame (resp. tight g-frame,
g-Bessel sequence, g-Riesz basis, g-orthonormal basis). Then for each j € J, there exists
a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis)

{A;; € L(H, H;;) -1 € I} such that ©;(f) = {\ijf}jes, for eachi € I and f € H.

Proof. Define m; : @wesHy — Hi; by m;({ficlees) = fij and A;; = m; 0 ©;, for each
i €I and j € J. It is clear that ©;(f) = {A;;f}jes, for each i € I and f € H, so
by Proposition 2.1, {¢ijr = Ajj(eijn) 1 J € Ji € Ik € Ky} is a frame (resp. tight
frame, Bessel sequence, Riesz basis, orthonormal basis) for H, where {e;s}rer,; is an
orthonormal basis for H;;, now the result follows from Theorem 3.1 in [16]. O

In the rest of this note, ®; and V; are {A;; € L(H;, H;;) : i € I} and {I';; € L(H,, H;;) :
i € I}, respectively, for each j € J. We say that {®;},c; is an (A, B)-bounded family
of g-frames (resp. g-Riesz bases), if ®; is an (A;, B;) g-frame (resp. g-Riesz basis) such
that A =inf{A;:j e J} >0and B = sup{B; : j € J} < oco. Also we call {®;};c; a
B-bounded family of g-Bessel sequences, if ®; is a g-Bessel sequence for each j € J with
upper bound B; such that B = sup{B; : j € J} < cc.

Theorem 2.3. {®;}c; is an (A, B)-bounded (resp. a B-bounded) family of g-frames
(resp. g-Bessel sequences) if and only if ©jc;P; = {Pjeslij € L(®jesH;, BjesHij) 11 €
I} is an (A, B) g-frame (resp. a g-Bessel sequence with upper bound B) for @ H;. In
this case the g-frame operator of ©jc;P; is DjesSs;, where Sg, is the g-frame operator of
O, for each j € J.

Proof. First suppose that {®;};c; is a B-bounded family of g-Bessel sequences. For each
je€J,iel and f; € H;, we have

1AGHIP <Y I fI1P < BillSIP < BIAI? = llAul < VB.
kel

Thus for each ¢ € I, we have sup{||A;|| : 7 € J} < oo. This means that for each i € I,
@®;es\i; is a bounded operator from @,c H; to @jesH;j. Now for each f = {f;}jes €

®jesH;, we have
Dol @serhi) FIP =3 IAu (I

icl iel jeJ
Hence
S IAGUP = DD D IAGUDIP <D BillfIP
i€l jed jedJ el jeJ

< BYI5I° = BIfI.

jeJ
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so @jecsP; is a g-Bessel sequence for @jc;H; with upper bound B. Conversely suppose
that ©;c;®; is a g-Bessel sequence with upper bound B. Let jo € J and fj, € Hj,. Then

S i fiol? = DN @ieshi) {055 io tien) I
i€l iel
< B|{dj0ifjo yieall” = Bl fioll*

This means that ®;, is a g-Bessel sequence with upper bound B. Now suppose that {®,} e,
is an (A, B)-bounded family of g-frames. For each f = {f;};cs € ®jesH;, we have

D@ I = D> MAGUDIP =D > IAs(U)I?

el el jeJ jed el
2 2
> D AL = AlFIP,
jeJ

so @jesP; is an (A, B) g-frame. The converse is also easy to verify.
Note that since Sp, < B.I, then by Theorem 2.2.5 in [14], ||Se,|| < B, for each j € J, so
@®jecsSe, is a bounded operator. For each f = {f;}jcs € ©jcsH;, we have

< Seyeso, (> = <D (®5eshy)(@jeshi){ fi}ien): {fities >

el
= D D < AN fi >
iel jeJ
= D> D IAGUEDIP =D MG ()P
iel jeJ jeJ el
= Y <D AN £ >
jeJ el
= Z < Sa,;(f), [; >=< (DjesSs,) [, [ >,
jeJ
therefore Sg. 6, = ®jecsS%;- O

Recall that a g-frame is called exact if it ceases to be a g-frame whenever any of its
elements is removed. For more results about exact g-frames, see [13]. Now we have the
following result:

Corollary 2.4. Let {®;};c; be a bounded family of g-frames. If ®;, is an exact g-frame,
for some jo € J, then @jc;P; is exact.

Proof. Suppose that iy € I such that {®;csAij}icr—fio) is a g-frame. Then by Theorem
2.3, {Aij, bier—{io} 1s a g-frame, which is a contradiction with the fact that ®;, is exact. O

Theorem 2.5. (a) {®;};cs is an (A, B)-bounded family of g-Riesz bases if and only if
®,esP; is an (A, B) g-Riesz basis.

(b) @; is a g-orthonormal basis, for each j € J if and only if ;e P; is a g-orthonormal
basts.

Proof. (a) First let {®,};c; be an (A, B)-bounded family of g-Riesz bases. By Corollary
3.2 in [16], each @, is a g-Bessel sequence with upper bound B and therefore by Theorem
2.3, @jcsP; is a g-Bessel sequence and it is easy to see that @;c;®P; is g-complete. Let
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F be a finite subset of I and let {g;;}jes € ®jesHij;, for each i € F. For proving that
®,esP; is an (A, B) g-Riesz basis, we must show that

A Hgibieal? < 1D (@5esM) {gitienlI” < B I{gi}iel,
ek ek el
or equivalently
AN D gl < DD AP < BY Y llgsll
i€eF jed jeJ i€eF i€F jeJ

Now since each ®; is an (A, B) g-Riesz basis, then we have

AY Y Mgl =AY gl < Y11 Alga)l®,

i€F jed jeJ iEF je€J  i€eF
and
BY Y Mgl =D BY llaull® = D 11D Ayl
i€F jed jeJ i€F je€J i€F

Conversely suppose that @,c;®; is an (A, B) g-Riesz basis and jy, € J. It is easy to see
that ®;; is g-complete. Now let F be a finite subset of I and f;;, € H;j,, for each i € F'.
Then

A fiaol? = A i fiso biea I

i€F i€F
< D (@5esA5) (i Fiio bie) IP = 1) A (Fiso) 17,
i€EF i€F

and

1Y A5, (P IP = 11D (B5eai) ({80 fiso biea) I

i€EF el
< BY {0 fiotiesll> = B 1 figoll*
ieF ieF

This means that ®;, is an (A, B) g-Riesz basis.

(b) It follows from Theorem 2.3 that ®; is a Parseval g-frame for each j € J if and only
if ®;c;P; is a Parseval g-frame. Now suppose that ®; is a g-orthonormal basis, for each
j€J. Leti,lel, {f,;j}jej S @jeJHij and {ggj}jej S EBjeJng. Then

< (®jes ) {fijies), (BjesAiy){ge ties) >=
> < A5(Fi) Ady(an) >

Jj€J
If i # ¢, then >, ; < Aj;(fij), A;(9e;) >= 0, and therefore
< (Djes A (L fijhier)s (5esAs;)({9ej}jes) >= 0.

If : =/, then

< (@5eshi) {fig}ien) (@seahip) (e Yies) >= D < fijr 055 >

jeJ
=<A{fij}jes, {9} ies >,

so @jc P, is a g-orthonormal basis. The converse is easy to verify. 0
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Note that Proposition 2.16 in [12] and Proposition 2.6 in [1] are special cases of Theo-
rems 2.3 and 2.5.

3. PERTURBATIONS, DUALS AND EQUIVALENCES

We recall two definitions from [6] and [12]:

Definition 3.1. Let A = {A; € L(H,H;) :i € I} and ' = {I'; € L(H,H;) : i € I} be
two sequences and 0 < A\, Ay < 1.

(i) Let € > 0. We say that ' is a (A1, A9, &)-perturbation of A if for each i € [ and f € H,
we have

NAif = Tifll < MJAf]+ AT fN + <l f1]-

(ii) Let {c;}ier be a sequence of positive numbers such that ., ¢7 < co. We say that T’

is a (A1, Ao, {¢; }ier)-perturbation of A if for each ¢ € I and f € H, we have
[Aif = Tif Il < Ml A1+ XD fI + cll £

Proposition 3.2. Let {®;};c; and {¥;},c; be bounded families of g-Bessel sequences.
Then VU, is a (A, Ag, €)-perturbation of ®;, for each j € J if and only if ®;c;V; is a
(A1, Ag, €)-perturbation of @ P;.

Proof. First suppose that U, is a (A1, A2, €)-perturbation of ®;, for each j € J and suppose
that f = {f;}jes € ®jesH;. Let F be a finite subset of J. Then for each i € I, we have

[{(Aij = Tij) fitierllz < IH{MNAG LI+ Xl Tas fill + ell £l }ierll2
< JHAAG fill serllz + AT £l Y jerll2
+[{ell fill }serll2
< MO IAG LD + 20 IT5f17)z
JjeJ Jje€J
+Q_ 15512
jeJ

= Ml ®jes Aij fll + Aol Bjes Tij fll + €l F1I-
Since the above inequality holds for each finite subset of J, then we have

| ©jes Aijf — @jeslifl = [H{(Aij —Lij) fitsesll
< Ml Djes A fll + Xl @jes Ty fI + el £1I-

This means that @;c;V; is a (A1, A, €)-perturbation of @;c;P;.
For the converse it is enough to note that for each ¢ € I, jo € J and fj, € H;, we can
write

[Adjofio = Ligo fioll =
1(DjesMis) ({Gg0,5.fjo Yies) = (Bjeal'is)({0jo 5 fio bie)l
< Ml @jes Nij({65o, fio tien) | + Aol e Tij({65,5 fio el
+el{0j0,5.f50 Hieall = Ml Aijo fio |l + A2l Tijo £l + €l o Il
and the result follows. O
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Corollary 3.3. Let {®;},c; be a B-bounded (resp. an (A,B)-bounded, with (1—\)vV/A >
(D ier )2 ) family of g-Bessel sequences (resp. g-frames) and U, be a (M, Ao, {ci}ier)-
perturbation of ®;, for each j € J. Then ®;c;V,; and V;, for each j € J, are g-Bessel
sequences (resp. g-frames) and @jc;V; is a (A1, A, {¢; }ier) -perturbation of &;c;P;.

Conversely if ®jc;V; is a g-Bessel sequence and a (A, X, {¢; yier)-perturbation of & e,
then W, is a (A1, A2, {¢i }ier)-perturbation of ®;, for each j € J.

Proof. First let U; be a (A1, A2, {¢; }ier)-perturbation of ®;, for each j € J. Then by

1
Proposition 4.3 in [12], ¥; is a g-Bessel sequence with upper bound ((H/\l)\/?:(qz"e[ ¢i)? )2,

for each j € J. Therefore by Theorem 2.3, @;c;V; is a g-Bessel sequence. If {®,};c; is an
(A,B)-bounded family of g-frames with (1—X\)vVA > (3,, ¢2)z, then by Proposition 4.3

1
in [12], ((I_M)\/?;(\ZZZ'EIC?)Z )2 is a lower bound for ¥;, for each j € J. Hence by Theorem

2.3, ®jcs¥; is a g-frame. Now the rest of the proof can be obtained similar to the proof
of Proposition 3.2 by using ¢; instead of ¢, for each i € I. (]

It was shown in [12] (see Definition 2.10) that if {A; € L(H,H;) : i € I} and {I; €
L(H, H;) : i € I} are g-Bessel sequences with upper bounds B and D, respectively, then

Y icr DiAi(f) converges and || >, ITAi(f)|| < vBD| f|, for each f € H. Therefore
if {®;};e; and {V,};c; are bounded families of g-Bessel sequences, then the operator
Ziej(@jejffj)(@jg/\ij) iS bounded on EBjeJHj.

Proposition 3.4. Let {®;};c; and {V;}jc; be B and D-bounded families of g-Bessel
sequences, respectively. Then V; is a dual of ®;, for each j € J if and only if ®jc;V; is
a dual of ®jc;P;.

Proof. Let U, be a dual of ®; for each j € J, f ={f;}jes € BjesH; and j € J. Then
1
D oI< £ s > 1< QNG f172 QO ITG 1177 < VBD| £,

el el el

N

S0 > icr | < Aijf;, i f; > | converges, for each j € J. Also
YD <N Tifi > < VBDY |f1* = VBD| fIP,
jed i€l jeg
therefore > i ;> ;| < Aijfj, L f; > | converges. Hence
ZZ <N fi. Ty f; >= ZZ <Ni; f3,Vijfi >
jeJ i€l i€l jeJ
Now we have
<D ier(@eali;) (@jeshig) ({ fitien) { fities >
= ier <AT5MifiYier, Afitier >= 2icr 2 e < MNijfj, Lijfi >
= ey 2ier <NiifiVigfi >= 22 5c; < Dier UiiNij fin f5 >
=2 jes < [is i >=<Atikies Afi}ies >,

therefore » ./ (®;esl;)(DjesNiy)f = f, for each f € @jcsH;, and this means that
DjesV; is a dual of ®,c;P,;. Conversely suppose that ©,c;¥; is a dual of @;c;P;. Let
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Jo € J and f;, € H;,. Now we have

<Y Mo fio Fio >

iel
= <> (®esT5)(@jesNis) {803 Fio Yiea)s {00 fin Yies >
el

= <A&jo.ifioYies {0oifioties >=< fios fio >

therefore ), I';: Aijy fi, = fjo- This means that Wj, is a dual of ®;,. O]
Now we have the following result for canonical duals.

Proposition 3.5. Let {®;},c; be an (A, B)-bounded family of g-frames. Then EBJ-EJEﬁ; is
a g-frame and @je;P; = e P;.

1 1

) g-frame, for each j € J and inf{BLj cj e J} = % > 0,
11

sup{Aij :j € J} =% < oo, then @jeJE}Tj is an (5, ) g-frame, by Theorem 2.3. Moreover

Proof. Since 5; is an (

as a consequence of Theorem 2.3, we can see that @:-;6]- = {®jecsNij(PjesSe,) " i€ I}
Now by using the definition of canonical duals, it is clear that @©;c Jé; = {Pje JAiqu:jl €
L(®jesHj, ®jesHij) - i € I}. Thus it is enough to show that @;csAi;(PjesSe,)” " =
ijeJAiquj}, for each © € I. Since A.I < Sy, < B.I, for each j € J, then by Theorem
2.2.5 in [14], we have +.I < qujl < 4.1 and therefore ||S;j1|| < L, for each j € J. Thus
ijEJS;jl is a bounded operator. Now it is easy to see that (@je]S@j)_l = EBJ-EJS;],I, SO
for each {f;};es € ®jesH;, we have

®jesNij(©jesSe,) " ({fi}jes) = {MiSs, (i) }ies = ®jerhisSe, ({fi}ies),
which completes the proof. 0]
Now we recall the definitions of unitary and isometrically equivalences for g-frames:

Definition 3.6. Let A = {A; € L(H,H;) :i € I} and " = {I'; € L(H,H;) : i € I} be
two g-frames.

(1) We say that A and I' are unitarily equivalent if there is a unitary linear operator
T : H— H such that I'; = A;T, for each i € I.

(i7) We say that A is isometrically equivalent to I' if there is an isometric linear operator
T : H— H such that I'; = A;T, for each i € I.

For more results about the above equivalences see [15].

Proposition 3.7. Let {®;},c; and {V;};c; be bounded families of g-frames. Then

(1) If ®; and V; are unitarily equivalent, for each j € J, then @;c;P; and B V; are
unitarily equivalent.

(i1) If ®; is isometrically equivalent to V;, for each j € J, then ®,c;P; is isometrically
equivalent to @;csV;.

Proof. (i) Suppose that ®; and U, are unitarily equivalent, for each j € J and T; : H; —
H; is a unitary operator such that I';; = A;;Tj, for each ¢ € I. Define T' : ®je H; —
®jesH; by T = @;e,T;. Since ||T'|| = sup{||T};|| : j € J} =1, then T is bounded. Now it
is easy to see that 7" is unitary and @;e I = (®,esNi;)T, for each i € I.
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(ii) Suppose that ®; is isometrically equivalent to W, for each j € Jand T} : H; — H, is
an isometric operator such that I';; = A;;T}, foreach i € I. Define T : ®jcyH; — ®jcsH;
by T = ®jesT;. Since ||T|| = sup{||T;|| : 7 € J} = 1, then T is bounded. Now for each
f={fi}jes € BjesH;, we have

T = O = QAP =111,
jeJ jeJ

so T is an isometry. It is also easy to see that @,c [ = (PjesNi;)T, for each i € I. O
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