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Abstract. In this paper we study g-frames on the direct sum of Hilbert spaces. We
generalize some of the results about g-frames on super Hilbert spaces to the direct sum of
a countable number of Hilbert spaces. Also we study the direct sum of g-frames, g-Riesz
bases and g-orthonormal bases for these spaces. Moreover we consider perturbations,
duals and equivalences for the direct sum of g-frames.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer (see [10]) in
1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986 by
Daubechies, Grossmann and Meyer (see [9]). Frames are very useful in characterization
of function spaces and other fields of applications such as filter bank theory (see [4]),
sigma-delta quantization (see [3]), signal and image processing (see [5]) and wireless com-
munications (see [11]). First we recall the definition of frames.
Let H be a Hilbert space and let I be a finite or countable subset of Z. A family
{fi}i∈I ⊆ H is a frame for H, if there exist 0 < A ≤ B <∞, such that for each f ∈ H,

A‖f‖2 ≤
∑
i∈I

| < f, fi > |2 ≤ B‖f‖2.

In this case we say that {fi}i∈I is an (A,B) frame. A and B are the lower and upper
frame bounds, respectively. If only the right-hand side inequality is required, it is called a
Bessel sequence. A frame is tight, if A = B. If A = B = 1, it is called a Parseval frame.
A family {fi}i∈I ⊆ H is complete if the span of {fi}i∈I is dense in H. We say that {fi}i∈I

is a Riesz basis for H, if it is complete in H and there exist two constants 0 < A ≤ B <∞,
such that for each sequence of scalars {ci}i∈I ∈ `2(I),

A
∑
i∈I

|ci|2 ≤ ‖
∑
i∈I

cifi‖2 ≤ B
∑
i∈I

|ci|2,

or equivalently

A
∑
i∈F

|ci|2 ≤ ‖
∑
i∈F

cifi‖2 ≤ B
∑
i∈F

|ci|2,

for each sequence of scalars {ci}i∈F , where F is a finite subset of I. In this case we say
that {fi}i∈I is an (A,B) Riesz basis. For more results about frames see [8].
Sun in [16] introduced g-frames as a generalization of frames. He showed that oblique
frames, pseudo frames and fusion frames ([7], [2]) are special cases of g-frames. Let I be
a finite or countable subset of Z and H be a Hilbert space. For each i ∈ I, let Hi be a
Hilbert space and L(H,Hi) be the set of all bounded, linear operators from H to Hi. We
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2 G-FRAMES AND DIRECT SUMS

call Λ = {Λi ∈ L(H,Hi) : i ∈ I} a g-frame for H with respect to {Hi : i ∈ I} if there
exist two positive constants A and B such that

A‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B‖f‖2,

for each f ∈ H. In this case we say that Λ is an (A,B) g-frame. A and B are the lower
and upper g-frame bounds, respectively. We call Λ an A-tight g-frame if A = B and we
call it a Parseval g-frame if A = B = 1. If only the second inequality is required, we call
it a g-Bessel sequence. If Λ is an (A,B) g-frame, then the g-frame operator SΛ is defined
by SΛf =

∑
i∈I Λ∗

i Λif , which is a bounded, positive and invertible operator such that

A.I ≤ SΛ ≤ B.I. The canonical dual g-frame for Λ is defined by {Λ̃i ∈ L(H,Hi) : i ∈ I},
where Λ̃i = ΛiS

−1
Λ , which is an ( 1

B
, 1

A
) g-frame for H and for each f ∈ H, we have

f =
∑
i∈I

Λ∗
i Λ̃if =

∑
i∈I

Λ̃i
∗
Λif.

If Λ is a g-Bessel sequence, then the g-Bessel sequence {Γi ∈ L(H,Hi) : i ∈ I} is called
an alternate dual or a dual of Λ if

f =
∑
i∈I

Γ∗i Λif =
∑
i∈I

Λ∗
i Γif,

for each f ∈ H. Now define

⊕i∈IHi =

{
{fi}i∈I |fi ∈ Hi, ‖{fi}i∈I‖2

2 =
∑
i∈I

‖fi‖2 <∞
}
.

⊕i∈IHi with pointwise operations and inner product as

< {fi}i∈I , {gi}i∈I >=
∑
i∈I

< fi, gi >

is a Hilbert space.
Let {Hi}i∈I be a sequence of Hilbert spaces. Then by considering K = ⊕i∈IHi, we can
assume that each Hi is a closed subspace of K, therefore if fi1 ∈ Hi1 and fi2 ∈ Hi2 , for
i1, i2 ∈ I, then < fi1 , fi2 > is well-defined.
We say that {Λi ∈ L(H,Hi) : i ∈ I} is g-complete if {f : Λif = 0,∀i ∈ I} = {0}, and we
call it a g-orthonormal basis for H, if

< Λ∗
i1
fi1 ,Λ

∗
i2
fi2 >= δi1,i2 < fi1 , fi2 >, i1, i2 ∈ I, fi1 ∈ Hi1 , fi2 ∈ Hi2 ,

and ∑
i∈I

‖Λif‖2 = ‖f‖2, ∀f ∈ H.

Λ = {Λi ∈ L(H,Hi) : i ∈ I} is a g-Riesz basis for H, if it is g-complete and there exist
two constants 0 < A ≤ B <∞, such that for each finite subset F ⊆ I and fi ∈ Hi, i ∈ F ,

A
∑
i∈F

‖fi‖2 ≤ ‖
∑
i∈F

Λ∗
i fi‖2 ≤ B

∑
i∈F

‖fi‖2.

In this case we say that Λ is an (A,B) g-Riesz basis.
Let Hi and H ′

i be Hilbert spaces, for each i ∈ I and let H = ⊕i∈IHi and H ′ = ⊕i∈IH
′
i.

Recall that if Ti ∈ L(Hi, H
′
i), then T = ⊕i∈ITi which is defined by T ({hi}i∈I) = {Ti(hi)}i∈I

is a bounded operator from H to H ′ if and only if sup{‖Ti‖ : i ∈ I} < ∞. In this case
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‖T‖ = sup{‖Ti‖ : i ∈ I} and T ∗ = ⊕i∈ITi
∗. If H and K are Hilbert spaces, then H ⊕K

is called a super Hilbert space.
Recently some authors were interested in g-frames on super Hilbert spaces, see Proposition
2.16 in [12], [17] and [1]. In this paper we consider g-frames on the direct sum of a finite
or countable number of Hilbert spaces.
In Section 2 we study g-frames, g-Riesz bases and g-orthonormal bases for the direct sum
of Hilbert spaces. We also construct the direct sum of g-frames (resp. g-Riesz bases,
g-orthonormal bases) for a finite or countable number of g-frames (resp. g-Riesz bases,
g-orthonormal bases).
In Section 3 we consider perturbations, duals and equivalences for the direct sum of
g-frames.

2. the direct sum of g-frames

Throughout this note all of the Hilbert spaces are separable. I, J , Ki’s, Kij’s are finite
or countable subsets of Z and H, Hi’s, Hij’s are Hilbert spaces.
We start with the following proposition which is a generalization of Proposition 2.3 in [1]:

Proposition 2.1. Let {Λij ∈ L(H,Hij) : i ∈ I} be a sequence for each j ∈ J and
{eij,k : k ∈ Kij} be an orthonormal basis for Hij. Suppose that Θi : H −→ ⊕j∈JHij which
is defined by Θi(f) = {Λijf}j∈J is a bounded operator for each i ∈ I, and suppose that
ψij,k = Λ∗

ij(eij,k). Then {ψij,k : j ∈ J, i ∈ I, k ∈ Kij} is a frame (resp. tight frame, Bessel
sequence, Riesz basis, orthonormal basis) for H if and only if {Θi ∈ L(H,⊕j∈JHij) : i ∈ I}
is a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis).

Proof. For each f ∈ H, we have

(1)
∑
i∈I

‖Θif‖2 =
∑
i∈I

∑
j∈J

‖Λijf‖2 =
∑
j∈J

∑
i∈I

∑
k∈Kij

| < f, ψij > |2.

This shows that {ψij,k : j ∈ J, i ∈ I, k ∈ Kij} is a frame (resp. tight frame, Bessel
sequence, complete set)if and only if {Θi}i∈I is a g-frame (resp. tight g-frame, g-Bessel
sequence, g-complete set).
Let {ψij,k : j ∈ J, i ∈ I, k ∈ Kij} be a Riesz basis and F be a finite subset of I. Suppose
that f ∈ H and {fij}j∈J ∈ ⊕j∈JHij for each i ∈ F . We have

< Θ∗
i ({fij}j∈J), f > = < {fij}j∈J , {Λijf}j∈J >=

∑
j∈J

< fij,Λijf >

= <
∑
j∈J

Λ∗
ijfij, f >,

therefore Θ∗
i ({fij}j∈J) =

∑
j∈J Λ∗

ijfij, so

‖
∑
i∈F

Θ∗
i ({fij}j∈J)‖2 = ‖

∑
i∈F

∑
j∈J

Λ∗
ijfij‖2.

Suppose that fij =
∑

k∈Kij
cij,keij,k, thus Λ∗

ij(fij) =
∑

k∈Kij
cij,kψij,k. Hence

(2) ‖
∑
i∈F

Θ∗
i ({fij}j∈J)‖2 = ‖

∑
j∈J

∑
i∈F

∑
k∈Kij

cij,kψij,k‖2.



4 G-FRAMES AND DIRECT SUMS

Since fij =
∑

k∈Kij
cij,keij,k, then

‖{fij}j∈J‖2 =
∑
j∈J

‖fij‖2 =
∑
j∈J

∑
k∈Kij

|cij,k|2,

for each i ∈ F , therefore

(3)
∑
i∈F

‖{fij}j∈J‖2 =
∑
i∈F

∑
j∈J

∑
k∈Kij

|cij,k|2 =
∑
j∈J

∑
i∈F

∑
k∈Kij

|cij,k|2.

Now by using (2) and (3), we have

A
∑
i∈F

‖{fij}j∈J‖2 = A
∑
j∈J

∑
i∈F

∑
k∈Kij

|cij,k|2 ≤ ‖
∑
j∈J

∑
i∈F

∑
k∈Kij

cij,kψij,k‖2

= ‖
∑
i∈F

Θ∗
i ({fij}j∈J)‖2,

similarly

‖
∑
i∈F

Θ∗
i ({fij}j∈J)‖2 ≤ B

∑
i∈F

‖{fij}j∈J‖2.

This means that {Θi}i∈I is an (A,B) g-Riesz basis.
The converse is similar by choosing a finite sequence of scalars {cij,k}, using (2), (3) and
the fact that {Θi}i∈I is a g-Riesz basis.

Now let {ψij,k : j ∈ J, i ∈ I, k ∈ Kij} be an orthonormal basis. Suppose that i, ` ∈ I,
{fij}j∈J ∈ ⊕j∈JHij and {g`j}j∈J ∈ ⊕j∈JH`j. We have fij =

∑
k∈Kij

< fij, eij,k > eij,k,

g`j =
∑

k∈K`j
< g`j, e`j,k > e`j,k. Then

< Θ∗
i ({fij}j∈J),Θ∗

`({g`j}j∈J) >=<
∑
j∈J

Λ∗
ij(fij),

∑
j∈J

Λ∗
`j(g`j) >

=
∑
j∈J

∑
r∈J

∑
k∈Kij

∑
d∈K`r

〈
< fij, eij,k > ψij,k, < g`r, e`r,d > ψ`r,d

〉
=

∑
j∈J

∑
r∈J

∑
k∈Kij

∑
d∈K`r

< fij, eij,k >< e`r,d, g`r >< ψij,k, ψ`r,d > .

Now if i = `, then∑
j∈J

∑
r∈J

∑
k∈Kij

∑
d∈K`r

< fij, eij,k >< e`r,d, g`r >< ψij,k, ψ`r,d >=

∑
j∈J

∑
k∈Kij

< fij, eij,k >< eij,k, gij >=
∑
j∈J

< fij, gij >

=< {fij}j∈J , {gij}j∈J >,

so < Θ∗
i ({fij}j∈J),Θ∗

i ({gij}j∈J) >=< {fij}j∈J , {gij}j∈J >. If i 6= `, then < ψij,k, ψ`r,d >=
0. Therefore < Θ∗

i ({fij}j∈J),Θ∗
`({g`j}) >= 0. The second condition of g-orthonormal

basis follows from (1). Conversely let {Θi}i∈I be a g-orthonormal basis. Let i1, i2 ∈ I,
j1, j2 ∈ J , k1 ∈ Ki1j1 and k2 ∈ Ki2j2 . Then

< ψi1j1,k1 , ψi2j2,k2 > = < Λ∗
i1j1

(ei1j1,k1),Λ
∗
i2j2

(ei2j2,k2) >

= < Θ∗
i1
(fi1j1,k1),Θ

∗
i2
(fi2j2,k2) >,
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where fi1j1,k1 = {δj1,jei1j1,k1}j∈J and fi2j2,k2 = {δj2,jei2j2,k2}j∈J . Hence

< ψi1j1,k1 , ψi2j2,k2 >= δi1,i2 < fi1j1,k1 , fi2j2,k2 >= δi1,i2δj1,j2δk1,k2 ,

which shows that {ψij,k : j ∈ J, i ∈ I, k ∈ Kij} is an orthonormal basis. �

The converse of the above theorem is also true:

Proposition 2.2. Let {Θi ∈ L(H,⊕j∈JHij) : i ∈ I} be a g-frame (resp. tight g-frame,
g-Bessel sequence, g-Riesz basis, g-orthonormal basis). Then for each j ∈ J , there exists
a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis)
{Λij ∈ L(H,Hij) : i ∈ I} such that Θi(f) = {Λijf}j∈J , for each i ∈ I and f ∈ H.

Proof. Define πj : ⊕`∈JHi` −→ Hij by πj({fi`}`∈J) = fij and Λij = πj ◦ Θi, for each
i ∈ I and j ∈ J . It is clear that Θi(f) = {Λijf}j∈J , for each i ∈ I and f ∈ H, so
by Proposition 2.1, {ψij,k = Λ∗

ij(eij,k) : j ∈ J, i ∈ I, k ∈ Kij} is a frame (resp. tight
frame, Bessel sequence, Riesz basis, orthonormal basis) for H, where {eij,k}k∈Kij

is an
orthonormal basis for Hij, now the result follows from Theorem 3.1 in [16]. �

In the rest of this note, Φj and Ψj are {Λij ∈ L(Hj, Hij) : i ∈ I} and {Γij ∈ L(Hj, Hij) :
i ∈ I}, respectively, for each j ∈ J . We say that {Φj}j∈J is an (A,B)-bounded family
of g-frames (resp. g-Riesz bases), if Φj is an (Aj, Bj) g-frame (resp. g-Riesz basis) such
that A = inf{Aj : j ∈ J} > 0 and B = sup{Bj : j ∈ J} < ∞. Also we call {Φj}j∈J a
B-bounded family of g-Bessel sequences, if Φj is a g-Bessel sequence for each j ∈ J with
upper bound Bj such that B = sup{Bj : j ∈ J} <∞.

Theorem 2.3. {Φj}j∈J is an (A,B)-bounded (resp. a B-bounded) family of g-frames
(resp. g-Bessel sequences) if and only if ⊕j∈JΦj = {⊕j∈JΛij ∈ L(⊕j∈JHj,⊕j∈JHij) : i ∈
I} is an (A,B) g-frame (resp. a g-Bessel sequence with upper bound B) for ⊕j∈JHj. In
this case the g-frame operator of ⊕j∈JΦj is ⊕j∈JSΦj

, where SΦj
is the g-frame operator of

Φj, for each j ∈ J .

Proof. First suppose that {Φj}j∈J is a B-bounded family of g-Bessel sequences. For each
j ∈ J, i ∈ I and fj ∈ Hj, we have

‖Λijfj‖2 ≤
∑
k∈I

‖Λkjfj‖2 ≤ Bj‖fj‖2 ≤ B‖fj‖2 =⇒ ‖Λij‖ ≤
√
B.

Thus for each i ∈ I, we have sup{‖Λij‖ : j ∈ J} < ∞. This means that for each i ∈ I,
⊕j∈JΛij is a bounded operator from ⊕j∈JHj to ⊕j∈JHij. Now for each f = {fj}j∈J ∈
⊕j∈JHj, we have ∑

i∈I

‖(⊕j∈JΛij)f‖2 =
∑
i∈I

∑
j∈J

‖Λij(fj)‖2.

Hence ∑
i∈I

∑
j∈J

‖Λij(fj)‖2 =
∑
j∈J

∑
i∈I

‖Λij(fj)‖2 ≤
∑
j∈J

Bj‖fj‖2

≤ B
∑
j∈J

‖fj‖2 = B‖f‖2,
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so ⊕j∈JΦj is a g-Bessel sequence for ⊕j∈JHj with upper bound B. Conversely suppose
that ⊕j∈JΦj is a g-Bessel sequence with upper bound B. Let j0 ∈ J and fj0 ∈ Hj0 . Then∑

i∈I

‖Λij0fj0‖2 =
∑
i∈I

‖(⊕j∈JΛij)({δj0,jfj0}j∈J)‖2

≤ B‖{δj0,jfj0}j∈J‖2 = B‖fj0‖2.

This means that Φj0 is a g-Bessel sequence with upper bound B. Now suppose that {Φj}j∈J

is an (A,B)-bounded family of g-frames. For each f = {fj}j∈J ∈ ⊕j∈JHj, we have∑
i∈I

‖(⊕j∈JΛij)f‖2 =
∑
i∈I

∑
j∈J

‖Λij(fj)‖2 =
∑
j∈J

∑
i∈I

‖Λij(fj)‖2

≥
∑
j∈J

Aj‖fj‖2 ≥ A‖f‖2,

so ⊕j∈JΦj is an (A,B) g-frame. The converse is also easy to verify.
Note that since SΦj

≤ B.I, then by Theorem 2.2.5 in [14], ‖SΦj
‖ ≤ B, for each j ∈ J , so

⊕j∈JSΦj
is a bounded operator. For each f = {fj}j∈J ∈ ⊕j∈JHj, we have

< S⊕j∈JΦj
(f), f > = <

∑
i∈I

(⊕j∈JΛ∗
ij)(⊕j∈JΛij)({fj}j∈J), {fj}j∈J >

=
∑
i∈I

∑
j∈J

< Λij
∗Λij(fj), fj >

=
∑
i∈I

∑
j∈J

‖Λij(fj)‖2 =
∑
j∈J

∑
i∈I

‖Λij(fj)‖2

=
∑
j∈J

<
∑
i∈I

Λij
∗Λij(fj), fj >

=
∑
j∈J

< SΦj
(fj), fj >=< (⊕j∈JSΦj

)f, f >,

therefore S⊕j∈JΦj
= ⊕j∈JSΦj

. �

Recall that a g-frame is called exact if it ceases to be a g-frame whenever any of its
elements is removed. For more results about exact g-frames, see [13]. Now we have the
following result:

Corollary 2.4. Let {Φj}j∈J be a bounded family of g-frames. If Φj0 is an exact g-frame,
for some j0 ∈ J , then ⊕j∈JΦj is exact.

Proof. Suppose that i0 ∈ I such that {⊕j∈JΛij}i∈I−{i0} is a g-frame. Then by Theorem
2.3, {Λij0}i∈I−{i0} is a g-frame, which is a contradiction with the fact that Φj0 is exact. �

Theorem 2.5. (a) {Φj}j∈J is an (A,B)-bounded family of g-Riesz bases if and only if
⊕j∈JΦj is an (A,B) g-Riesz basis.
(b) Φj is a g-orthonormal basis, for each j ∈ J if and only if ⊕j∈JΦj is a g-orthonormal
basis.

Proof. (a) First let {Φj}j∈J be an (A,B)-bounded family of g-Riesz bases. By Corollary
3.2 in [16], each Φj is a g-Bessel sequence with upper bound B and therefore by Theorem
2.3, ⊕j∈JΦj is a g-Bessel sequence and it is easy to see that ⊕j∈JΦj is g-complete. Let
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F be a finite subset of I and let {gij}j∈J ∈ ⊕j∈JHij, for each i ∈ F . For proving that
⊕j∈JΦj is an (A,B) g-Riesz basis, we must show that

A
∑
i∈F

‖{gij}j∈J‖2 ≤ ‖
∑
i∈F

(⊕j∈JΛ∗
ij)({gij}j∈J)‖2 ≤ B

∑
i∈F

‖{gij}j∈J‖2,

or equivalently

A
∑
i∈F

∑
j∈J

‖gij‖2 ≤
∑
j∈J

‖
∑
i∈F

Λ∗
ij(gij)‖2 ≤ B

∑
i∈F

∑
j∈J

‖gij‖2.

Now since each Φj is an (A,B) g-Riesz basis, then we have

A
∑
i∈F

∑
j∈J

‖gij‖2 =
∑
j∈J

A
∑
i∈F

‖gij‖2 ≤
∑
j∈J

‖
∑
i∈F

Λ∗
ij(gij)‖2,

and
B

∑
i∈F

∑
j∈J

‖gij‖2 =
∑
j∈J

B
∑
i∈F

‖gij‖2 ≥
∑
j∈J

‖
∑
i∈F

Λ∗
ij(gij)‖2.

Conversely suppose that ⊕j∈JΦj is an (A,B) g-Riesz basis and j0 ∈ J . It is easy to see
that Φj0 is g-complete. Now let F be a finite subset of I and fij0 ∈ Hij0 , for each i ∈ F .
Then

A
∑
i∈F

‖fij0‖2 = A
∑
i∈F

‖{δj0,jfij0}j∈J‖2

≤ ‖
∑
i∈F

(⊕j∈JΛ∗
ij)({δj0,jfij0}j∈J)‖2 = ‖

∑
i∈F

Λ∗
ij0

(fij0)‖2,

and

‖
∑
i∈F

Λ∗
ij0

(fij0)‖2 = ‖
∑
i∈F

(⊕j∈JΛ∗
ij)({δj0,jfij0}j∈J)‖2

≤ B
∑
i∈F

‖{δj0,jfij0}j∈J‖2 = B
∑
i∈F

‖fij0‖2.

This means that Φj0 is an (A,B) g-Riesz basis.
(b) It follows from Theorem 2.3 that Φj is a Parseval g-frame for each j ∈ J if and only

if ⊕j∈JΦj is a Parseval g-frame. Now suppose that Φj is a g-orthonormal basis, for each
j ∈ J . Let i, ` ∈ I, {fij}j∈J ∈ ⊕j∈JHij and {g`j}j∈J ∈ ⊕j∈JH`j. Then

< (⊕j∈JΛ∗
ij)({fij}j∈J), (⊕j∈JΛ∗

`j)({g`j}j∈J) >=∑
j∈J

< Λ∗
ij(fij),Λ

∗
`j(g`j) > .

If i 6= `, then
∑

j∈J < Λ∗
ij(fij),Λ

∗
`j(g`j) >= 0, and therefore

< (⊕j∈JΛ∗
ij)({fij}j∈J), (⊕j∈JΛ∗

`j)({g`j}j∈J) >= 0.

If i = `, then

< (⊕j∈JΛ∗
ij)({fij}j∈J), (⊕j∈JΛ∗

`j)({g`j}j∈J) >=
∑
j∈J

< fij, gij >

=< {fij}j∈J , {gij}j∈J >,

so ⊕j∈JΦj is a g-orthonormal basis. The converse is easy to verify. �
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Note that Proposition 2.16 in [12] and Proposition 2.6 in [1] are special cases of Theo-
rems 2.3 and 2.5.

3. perturbations, duals and equivalences

We recall two definitions from [6] and [12]:

Definition 3.1. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} and Γ = {Γi ∈ L(H,Hi) : i ∈ I} be
two sequences and 0 ≤ λ1, λ2 < 1.
(i) Let ε > 0. We say that Γ is a (λ1, λ2, ε)-perturbation of Λ if for each i ∈ I and f ∈ H,
we have

‖Λif − Γif‖ ≤ λ1‖Λif‖+ λ2‖Γif‖+ ε‖f‖.
(ii) Let {ci}i∈I be a sequence of positive numbers such that

∑
i∈I c

2
i <∞. We say that Γ

is a (λ1, λ2, {ci}i∈I)-perturbation of Λ if for each i ∈ I and f ∈ H, we have

‖Λif − Γif‖ ≤ λ1‖Λif‖+ λ2‖Γif‖+ ci‖f‖.

Proposition 3.2. Let {Φj}j∈J and {Ψj}j∈J be bounded families of g-Bessel sequences.
Then Ψj is a (λ1, λ2, ε)-perturbation of Φj, for each j ∈ J if and only if ⊕j∈JΨj is a
(λ1, λ2, ε)-perturbation of ⊕j∈JΦj.

Proof. First suppose that Ψj is a (λ1, λ2, ε)-perturbation of Φj, for each j ∈ J and suppose
that f = {fj}j∈J ∈ ⊕j∈JHj. Let F be a finite subset of J . Then for each i ∈ I, we have

‖{(Λij − Γij)fj}j∈F‖2 ≤ ‖{λ1‖Λijfj‖+ λ2‖Γijfj‖+ ε‖fj‖}j∈F‖2

≤ ‖{λ1‖Λijfj‖}j∈F‖2 + ‖{λ2‖Γijfj‖}j∈F‖2

+‖{ε‖fj‖}j∈F‖2

≤ λ1(
∑
j∈J

‖Λijfj‖2)
1
2 + λ2(

∑
j∈J

‖Γijfj‖2)
1
2

+ε(
∑
j∈J

‖fj‖2)
1
2

= λ1‖ ⊕j∈J Λijf‖+ λ2‖ ⊕j∈J Γijf‖+ ε‖f‖.

Since the above inequality holds for each finite subset of J, then we have

‖ ⊕j∈J Λijf −⊕j∈JΓijf‖ = ‖{(Λij − Γij)fj}j∈J‖2

≤ λ1‖ ⊕j∈J Λijf‖+ λ2‖ ⊕j∈J Γijf‖+ ε‖f‖.

This means that ⊕j∈JΨj is a (λ1, λ2, ε)-perturbation of ⊕j∈JΦj.
For the converse it is enough to note that for each i ∈ I, j0 ∈ J and fj0 ∈ Hj0 we can
write

‖Λij0fj0 − Γij0fj0‖ =

‖(⊕j∈JΛij)({δj0,jfj0}j∈J)− (⊕j∈JΓij)({δj0,jfj0}j∈J)‖
≤ λ1‖ ⊕j∈J Λij({δj0,jfj0}j∈J)‖+ λ2‖ ⊕j∈J Γij({δj0,jfj0}j∈J)‖

+ε‖{δj0,jfj0}j∈J‖ = λ1‖Λij0fj0‖+ λ2‖Γij0fj0‖+ ε‖fj0‖,

and the result follows. �
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Corollary 3.3. Let {Φj}j∈J be a B-bounded (resp. an (A,B)-bounded, with (1−λ1)
√
A >

(
∑

i∈I c
2
i )

1
2 ) family of g-Bessel sequences (resp. g-frames) and Ψj be a (λ1, λ2, {ci}i∈I)-

perturbation of Φj, for each j ∈ J . Then ⊕j∈JΨj and Ψj, for each j ∈ J , are g-Bessel
sequences (resp. g-frames) and ⊕j∈JΨj is a (λ1, λ2, {ci}i∈I)-perturbation of ⊕j∈JΦj.

Conversely if ⊕j∈JΨj is a g-Bessel sequence and a (λ1, λ2, {ci}i∈I)-perturbation of ⊕j∈JΦj,
then Ψj is a (λ1, λ2, {ci}i∈I)-perturbation of Φj, for each j ∈ J .

Proof. First let Ψj be a (λ1, λ2, {ci}i∈I)-perturbation of Φj, for each j ∈ J . Then by

Proposition 4.3 in [12], Ψj is a g-Bessel sequence with upper bound
( (1+λ1)

√
B+(

∑
i∈I c2i )

1
2

1−λ2

)2
,

for each j ∈ J . Therefore by Theorem 2.3, ⊕j∈JΨj is a g-Bessel sequence. If {Φj}j∈J is an

(A,B)-bounded family of g-frames with (1−λ1)
√
A > (

∑
i∈I c

2
i )

1
2 , then by Proposition 4.3

in [12],
( (1−λ1)

√
A−(

∑
i∈I c2i )

1
2

1+λ2

)2
is a lower bound for Ψj, for each j ∈ J . Hence by Theorem

2.3, ⊕j∈JΨj is a g-frame. Now the rest of the proof can be obtained similar to the proof
of Proposition 3.2 by using ci instead of ε, for each i ∈ I. �

It was shown in [12] (see Definition 2.10) that if {Λi ∈ L(H,Hi) : i ∈ I} and {Γi ∈
L(H,Hi) : i ∈ I} are g-Bessel sequences with upper bounds B and D, respectively, then∑

i∈I Γ∗i Λi(f) converges and ‖
∑

i∈I Γ∗i Λi(f)‖ ≤
√
BD‖f‖, for each f ∈ H. Therefore

if {Φj}j∈J and {Ψj}j∈J are bounded families of g-Bessel sequences, then the operator∑
i∈I(⊕j∈JΓ∗ij)(⊕j∈JΛij) is bounded on ⊕j∈JHj.

Proposition 3.4. Let {Φj}j∈J and {Ψj}j∈J be B and D-bounded families of g-Bessel
sequences, respectively. Then Ψj is a dual of Φj, for each j ∈ J if and only if ⊕j∈JΨj is
a dual of ⊕j∈JΦj.

Proof. Let Ψj be a dual of Φj for each j ∈ J , f = {fj}j∈J ∈ ⊕j∈JHj and j ∈ J . Then∑
i∈I

| < Λijfj,Γijfj > | ≤ (
∑
i∈I

‖Λijfj‖2)
1
2 (

∑
i∈I

‖Γijfj‖2)
1
2 ≤

√
BD‖fj‖2,

so
∑

i∈I | < Λijfj,Γijfj > | converges, for each j ∈ J . Also∑
j∈J

∑
i∈I

| < Λijfj,Γijfj > | ≤
√
BD

∑
j∈J

‖fj‖2 =
√
BD‖f‖2,

therefore
∑

j∈J

∑
i∈I | < Λijfj,Γijfj > | converges. Hence∑

j∈J

∑
i∈I

< Λijfj,Γijfj >=
∑
i∈I

∑
j∈J

< Λijfj,Γijfj > .

Now we have

<
∑

i∈I(⊕j∈JΓ∗ij)(⊕j∈JΛij)({fj}j∈J), {fj}j∈J >

=
∑

i∈I < {Γ∗ijΛijfj}j∈J , {fj}j∈J >=
∑

i∈I

∑
j∈J < Λijfj,Γijfj >

=
∑

j∈J

∑
i∈I < Λijfj,Γijfj >=

∑
j∈J <

∑
i∈I Γ∗ijΛijfj, fj >

=
∑

j∈J < fj, fj >=< {fj}j∈J , {fj}j∈J >,

therefore
∑

i∈I(⊕j∈JΓ∗ij)(⊕j∈JΛij)f = f , for each f ∈ ⊕j∈JHj, and this means that
⊕j∈JΨj is a dual of ⊕j∈JΦj. Conversely suppose that ⊕j∈JΨj is a dual of ⊕j∈JΦj. Let
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j0 ∈ J and fj0 ∈ Hj0 . Now we have

<
∑
i∈I

Γ∗ij0Λij0fj0 , fj0 >

= <
∑
i∈I

(⊕j∈JΓ∗ij)(⊕j∈JΛij)({δj0,jfj0}j∈J), {δj0,jfj0}j∈J >

= < {δj0,jfj0}j∈J , {δj0,jfj0}j∈J >=< fj0 , fj0 >,

therefore
∑

i∈I Γ∗ij0Λij0fj0 = fj0 . This means that Ψj0 is a dual of Φj0 . �

Now we have the following result for canonical duals.

Proposition 3.5. Let {Φj}j∈J be an (A,B)-bounded family of g-frames. Then ⊕j∈JΦ̃j is

a g-frame and ⊕̃j∈JΦj = ⊕j∈JΦ̃j.

Proof. Since Φ̃j is an ( 1
Bj
, 1

Aj
) g-frame, for each j ∈ J and inf{ 1

Bj
: j ∈ J} = 1

B
> 0,

sup{ 1
Aj

: j ∈ J} = 1
A
<∞, then ⊕j∈JΦ̃j is an ( 1

B
, 1

A
) g-frame, by Theorem 2.3. Moreover

as a consequence of Theorem 2.3, we can see that ⊕̃j∈JΦj = {⊕j∈JΛij(⊕j∈JSΦj
)−1 : i ∈ I}.

Now by using the definition of canonical duals, it is clear that ⊕j∈JΦ̃j = {⊕j∈JΛijS
−1
Φj
∈

L(⊕j∈JHj,⊕j∈JHij) : i ∈ I}. Thus it is enough to show that ⊕j∈JΛij(⊕j∈JSΦj
)−1 =

⊕j∈JΛijS
−1
Φj

, for each i ∈ I. Since A.I ≤ SΦj
≤ B.I, for each j ∈ J , then by Theorem

2.2.5 in [14], we have 1
B
.I ≤ S−1

Φj
≤ 1

A
.I and therefore ‖S−1

Φj
‖ ≤ 1

A
, for each j ∈ J . Thus

⊕j∈JS
−1
Φj

is a bounded operator. Now it is easy to see that (⊕j∈JSΦj
)−1 = ⊕j∈JS

−1
Φj

, so

for each {fj}j∈J ∈ ⊕j∈JHj, we have

⊕j∈JΛij(⊕j∈JSΦj
)−1({fj}j∈J) = {ΛijS

−1
Φj

(fj)}j∈J = ⊕j∈JΛijS
−1
Φj

({fj}j∈J),

which completes the proof. �

Now we recall the definitions of unitary and isometrically equivalences for g-frames:

Definition 3.6. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} and Γ = {Γi ∈ L(H,Hi) : i ∈ I} be
two g-frames.
(i) We say that Λ and Γ are unitarily equivalent if there is a unitary linear operator
T : H −→ H such that Γi = ΛiT , for each i ∈ I.
(ii) We say that Λ is isometrically equivalent to Γ if there is an isometric linear operator
T : H −→ H such that Γi = ΛiT , for each i ∈ I.

For more results about the above equivalences see [15].

Proposition 3.7. Let {Φj}j∈J and {Ψj}j∈J be bounded families of g-frames. Then
(i) If Φj and Ψj are unitarily equivalent, for each j ∈ J , then ⊕j∈JΦj and ⊕j∈JΨj are
unitarily equivalent.
(ii) If Φj is isometrically equivalent to Ψj, for each j ∈ J , then ⊕j∈JΦj is isometrically
equivalent to ⊕j∈JΨj.

Proof. (i) Suppose that Φj and Ψj are unitarily equivalent, for each j ∈ J and Tj : Hj −→
Hj is a unitary operator such that Γij = ΛijTj, for each i ∈ I. Define T : ⊕j∈JHj −→
⊕j∈JHj by T = ⊕j∈JTj. Since ‖T‖ = sup{‖Tj‖ : j ∈ J} = 1, then T is bounded. Now it
is easy to see that T is unitary and ⊕j∈JΓij = (⊕j∈JΛij)T , for each i ∈ I.
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(ii) Suppose that Φj is isometrically equivalent to Ψj, for each j ∈ J and Tj : Hj −→ Hj is
an isometric operator such that Γij = ΛijTj, for each i ∈ I. Define T : ⊕j∈JHj −→ ⊕j∈JHj

by T = ⊕j∈JTj. Since ‖T‖ = sup{‖Tj‖ : j ∈ J} = 1, then T is bounded. Now for each
f = {fj}j∈J ∈ ⊕j∈JHj, we have

‖Tf‖ = (
∑
j∈J

‖Tjfj‖2)
1
2 = (

∑
j∈J

‖fj‖2)
1
2 = ‖f‖,

so T is an isometry. It is also easy to see that ⊕j∈JΓij = (⊕j∈JΛij)T , for each i ∈ I. �
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