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Abstract

In this paper we introduce a class of multivalent harmonic functions starlike of order
γ using the Dziok-Srivastava operator. Necessary and sufficient coefficient bounds and
convolution condition for this class are determined. Results on extreme points, convex
combination and distortion bounds using the coefficient condition are also obtained.
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1 Introduction

A continuous function f = u + iv is said to be a complex-valued harmonic function in a
complex domain E ⊂ C if both u and v are real harmonic in E. There is an interrelation
between harmonic functions and analytic functions. In any simply connected domain we write
f = h + ḡ where h and g are analytic in E. Respectively, h and g are called the analytic
part and co-analytic part of f . The function f = h + ḡ is said to be univalent harmonic
in E if the mapping z → f(z) is orientation preserving, harmonic and univalent in E. This
mapping is orientation preserving and locally univalent in E if and only if the Jacobian of f,
Jf (z) = |h′(z)|2 − |g′(z)|2 > 0 in E [16].

From the perspective of geometric functions theory, Clunie and Sheil-Small [10] initiated
the study on these functions by introducing the class SH consisting of normalised complex-
valued harmonic univalent functions f defined on the open unit disk D = {z : z ∈ C, |z| < 1}.
They gave necessary and sufficient conditions for f to be locally univalent and sense-preserving
in D. Coefficient bounds for functions in SH were obtained. Since then, various subclasses of
SH were investigated by several authors(see [5], [8], [15], [19], [20] and [22]). Note that the
class SH reduces to the class of normalised analytic univalent functions if the co-analytic part



of f is identically to zero (g ≡ 0). Generally, more discussion on univalent harmonic mappings
can be found in [1] and [9].

Multivalent harmonic functions in the unit disk D were introduced by Duren, Hengartner
and Laugesen [11] via the argument principle. In [2], the class of multivalent harmonic func-
tions and multivalent harmonic functions starlike of order γ, S∗H(p, γ), p ≥ 1 where 0 ≤ γ < 1
were discussed and studied . Motivated by [4] and using the Dziok-Srivastava operator, we
introduce class of multivalent harmonic functions starlike of order γ. Several related papers
using other operators can also be found in [3], [14], [21] and [25].

Before presenting the results, we give definitions and notations that will be used throughout
this paper.

Let SH(p) denote the class of multivalent harmonic functions f = h+ ḡ where

h(z) = zp +
∞∑
n=2

an+p−1z
n+p−1 , g(z) =

∞∑
n=1

bn+p−1z
n+p−1 . (1)

For complex or real parameters αi(i = 1, 2, . . . , l) and βj ∈ C\{0,−1,−2, . . .}(j = 1, 2, . . . ,m),
the generalised hypergeometric function lFm(α1, . . . , αl;β1, . . . , βm; z) is given by

lFm(α1, . . . , αl;β1, . . . , βm; z) =
∞∑
n=0

(α1)n . . . (αl)n
(β1)n . . . (βm)nn!

zn

(l ≤ m+ 1; l,m ∈ N0 := N ∪ {0}; z ∈ D)

where (λ)n is the Pochhammer symbol defined, in terms of gamma function, by

(λ)n :=
Γ(λ+ n)

Γ(λ)
=
{

1 , n = 0, λ 6= 0
λ(λ+ 1)(λ+ 2) · · · (λ+ n− 1) , n = 1, 2, 3, . . .

Let ϕ(z) =
∑∞

n=0 anz
n and ψ(z) =

∑∞
n=0 bnz

n be analytic functions. The convolution of
these functions is defined by ϕ(z) ∗ ψ(z) =

∑∞
n=0 anbnz

n = ψ(z) ∗ ϕ(z).

Dziok and Srivastava [12] introduced the linear operator

H l,m
p [α1] f(z) = zp lFm(α1, . . . , αl;β1, . . . , βm; z) ∗ f(z)

which includes well known operators such as the Hohlov operator [13], Carlson-Shaffer opera-
tor [7], Ruscheweyh derivative operator [23], the generalised Bernardi-Libera-Livington integral
operator [6], [17], [18] and the Srivastava-Owa fractional derivative operator [26].



The Dziok-Srivastava operator for harmonic functions f = h+ ḡ given by (1) is defined as
follows:

H l,m
p [α1] f(z) = H l,m

p [α1]h(z) +H l,m
p [α1] g(z)

where

H l,m
p [α1]h(z) = zp +

∑∞
n=2 φnan+p−1z

n+p−1 , H l,m
p [α1] g(z) =

∑∞
n=1 φnbn+p−1z

n+p−1

and φn = (α1)n−1... (αl)n−1

(β1)n−1... (βm)n−1(n−1)! , α1, . . . , αl;β1, . . . , βm are positive real numbers

such that l ≤ m+ 1.

Let denote by S∗H(p, α1, γ) the class of multivalent harmonic functions starlike of order
γ satisfying

<


z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

)
 ≥ pγ (2)

for p ≥ 1, 0 ≤ γ < 1, |z| = r < 1.

Note that S∗H(1, α1, γ) ≡ S∗H(α1, γ) is the class defined in [4]. In the case of l = m + 1 and
α2 = β1, . . . , αl = βm, S∗H(p, 1, γ) ≡ S∗H(p, γ) defined in [2] and S∗H(1, 1, γ) ≡ S∗H(γ) is the
class introduced by Jahangiri [15].

Further we denote T ∗H(p, α1, γ), p ≥ 1, to be the class of functions f = h+ ḡ ∈ S∗H(p, α1, γ)
such that h and g are of the form

h(z) = zp −
∞∑
n=2

|an+p−1|zn+p−1 , g(z) =
∞∑
n=1

|bn+p−1|zn+p−1 . (3)

2 Main Results

Necessary coefficient conditions for the harmonic starlike functions and harmonic convex func-
tions can be found in [10] and [24]. Now we derive sufficient coefficient bound for the class
S∗H(p, α1, γ).

Theorem 2.1:

Let f = h+ ḡ be given by (1) and
∏l
i=1 (αi)n−1 ≥

∏m
j=1 (βj)n−1 (n− 1)!. If

∞∑
n=2

{
n+ p (1− γ)− 1

p (1− γ)
|an+p−1|+

n+ p (1 + γ)− 1
p (1− γ)

|bn+p−1|
}
|φn| ≤ 1− 1 + γ

1− γ
|bp| (4)

where |bp| < 1−γ
1+γ , 0 ≤ γ < 1 and φn = (α1)n−1... (αl)n−1

(β1)n−1... (βm)n−1(n−1)! then the harmonic function f is
orientation preserving in D and f ∈ S∗H(p, α1, γ).



Proof

To verify that f is orientation preserving, we show |h′(z)| ≥ |g′(z)|.

|h′(z)| ≥ p |z|p−1 −
∞∑
n=2

(n+ p− 1)|an+p−1||z|n+p−2

= p|z|p−1

{
1−

∞∑
n=2

(n+ p− 1)
p

|an+p−1||z|n−1

}

≥ p|z|p−1

{
1−

∞∑
n=2

(n+ p− 1)
p

|an+p−1|

}

≥ |z|p−1

{
1−

∞∑
n=2

(n+ p (1− γ)− 1)
p (1− γ)

|φn||an+p−1|

}

By hypothesis, since |φn| ≥ 1 and by (4),

|h′(z)| ≥ |z|p−1

{
1 + γ

1− γ
|bp|+

∞∑
n=2

(n+ p (1 + γ)− 1)
p (1− γ)

|φn||bn+p−1|

}

= |z|p−1

{ ∞∑
n=1

(n+ p (1 + γ)− 1)
p (1− γ)

|φn||bn+p−1|

}

≥ |z|p−1

{ ∞∑
n=1

(n+ p− 1)|bn+p−1|

}

≥ |z|p−1

{ ∞∑
n=1

(n+ p− 1)|bn+p−1||z|n−1

}

=
∞∑
n=1

(n+ p− 1)|bn+p−1||z|n+p−2

= |g′(z)|

Thus, f is orientation preserving in D.

Next, we prove f ∈ S∗H(p, α1, γ) by establishing condition (2).

First, let w =
z
(
Hl,m

p [α1]h(z)
)′
−z
(
Hl,m

p [α1]g(z)
)′

(
Hl,m

p [α1]h(z)
)

+
(
Hl,m

p [α1]g(z)
) = A(z)

B(z)

where

A(z) = z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′

B(z) =
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

)
.



Since < w ≥ pγ if and only if |A(z) + p (1 − γ)B(z)| ≥ |A(z) − p (1 + γ)B(z)|, it suffices to
show |A(z) + p (1− γ)B(z)| − |A(z)− p (1 + γ)B(z)| ≥ 0.

|A(z) + p (1− γ)B(z)| − |A(z)− p (1 + γ)B(z)|

≥ (2p− pγ)|zp| −
∞∑
n=2

(n+ 2p− pγ − 1)|φnan+p−1z
n+p−1| −

∞∑
n=1

(n+ pγ − 1)|φnbn+p−1zn+p−1| − pγ|zp|

−
∞∑
n=2

(n− pγ − 1)|φnan+p−1z
n+p−1| −

∞∑
n=1

(n+ 2p+ pγ − 1)|φnbn+p−1zn+p−1|

= 2p (1− γ)|zp| −
∞∑
n=2

(2n+ 2p− 2pγ − 2)|φn||an+p−1||zn+p−1|

−
∞∑
n=1

(2n+ 2p+ 2pγ − 2)|φn||bn+p−1||zn+p−1|

= 2p (1− γ)|zp|

{
1−

∞∑
n=2

(n+ p− pγ − 1)
p (1− γ)

|φn||an+p−1||zn−1| −
∞∑
n=1

(n+ p+ pγ − 1)
p (1− γ)

|φn||bn+p−1||zn−1|

}

≥ 2p (1− γ)|zp|

{
1−

∞∑
n=2

(n+ p− pγ − 1)
p (1− γ)

|φn||an+p−1| −
∞∑
n=1

(n+ p+ pγ − 1)
p (1− γ)

|φn||bn+p−1|

}

= 2p (1− γ)|zp|

{
1− 1 + γ

1− γ
|bp| −

( ∞∑
n=2

[
(n+ p− pγ − 1)

p (1− γ)
|an+p−1|+

(n+ p+ pγ − 1)
p (1− γ)

|bn+p−1|
]
|φn|

)}

The last expression is non-negative by (4),thus f ∈ S∗H(p, α1, γ). ♦

For
∑∞

n=1 (|xn+p−1|+ |ȳn+p−1|) = 1 and xp = 0, the function

f1(z) = zp+
∞∑
n=2

p (1− γ)
[n+ p(1− γ)− 1]|φn|

xn+p−1z
n+p−1 +

∞∑
n=1

p(1− γ)
[n+ p(1 + γ)− 1]|φn|

ȳn+p−1z̄
n+p−1

(5)

shows equality in the coefficient bound given by (4) is attained. For the function f1 defined in
(5) the coefficients are

an+p−1 = p (1−γ)
[n+p(1−γ)−1]|φn|xn+p−1 and bn+p−1 = p(1−γ)

[n+p(1+γ)−1]|φn| ȳn+p−1,

and since condition (4) holds, this implies f1 ∈ S∗H(p, α1, γ).



To show that the converse need not be true, consider the function
f(z) = zp + p(1−γ)

[1+p(1−γ)]φ2
zp+1 + γ−1

2(1+γ) z̄
p. It can be shown that

<


z
[
zp + p(1−γ)

[1+p(1−γ)]z
p+1
]′
− z̄

[
(γ−1)
2(1+γ) z̄

p
]′

zp + p(1−γ)
[1+p(1−γ)]z

p+1 + (γ−1)
2(1+γ) z̄

p

 ≥ pγ
(p ≥ 1, 0 ≤ γ < 1)

thus f ∈ S∗p(p, α1, γ) but

∞∑
n=2

n+ p(1− γ)− 1
p(1− γ)

|an+p−1||φn|+
∞∑
n=1

n+ p(1 + γ)− 1
p(1− γ)

|bn+p−1||φn|

= 1+p(1−γ)
p(1−γ)

∣∣∣ p(1−γ)
[1+p(1−γ)]φ2

∣∣∣ |φ2|+ 1+γ
1−γ

∣∣∣ γ−1
2(1+γ)

∣∣∣ > 1.

Next, we obtain the convolution condition for f to be in the class S∗H(p, α1, γ).

Theorem 2.2:

f ∈ S∗H(p, α1, γ) if and only if

H l,m
p [α1]h(z) ∗

[
2p(1− γ)zp + (ξ − 2p+ 2pγ + 1)zp+1

(1− z)2

]
− H l,m

p [α1] g(z) ∗
[

2p(ξ + γ)z̄p + (ξ − 2pξ − 2pγ + 1)z̄p+1

(1− z̄)2

]
6= 0,

|ξ| = 1, z ∈ D.
Proof

A necessary and sufficient condition for f ∈ S∗H(p, α1, γ) is given by (2) and we have

<

 1
p(1− γ)

z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ


 ≥ 0

Since

1
p(1− γ)

z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ


=

1
p(1− γ)

[
p+

∑∞
n=2(n+ p− 1)φnan+p−1z

n−1 − z̄p

zp

∑∞
n=1(n+ p− 1)φnbn+p−1zn−1

1 +
∑∞

n=2 φnan+p−1zn−1 + z̄p

zp

∑∞
n=1 φnbn+p−1zn−1

− pγ

]
= 1



at z = 0, the above required condition is equivalent to

1
p(1− γ)

z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ

 6= ξ − 1
ξ + 1

, (6)

|ξ| = 1, ξ 6= −1, 0 < |z| < 1.

Simple algebraic manipulation in (6) yields

0 6= (ξ + 1)
{
z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′
− pγH l,m

p [α1]h(z)− pγH l,m
p [α1] g(z)

}
− (ξ − 1)p(1− γ)H l,m

p [α1]h(z)− (ξ − 1)p(1− γ)H l,m
p [α1] g(z)

= H l,m
p [α1]h(z) ∗

{
(ξ + 1)

(
zp

(1− z)2
− (1− p)zp

(1− z)

)
− (2pγ + pξ − p)zp

(1− z)

}
− H l,m

p [α1] g(z) ∗

{
(ξ̄ + 1)

(
zp

(1− z)2
− (1− p)zp

(1− z)

)
+

(2pγ + pξ̄ − p)zp
(1− z)

}

= H l,m
p [α1]h(z) ∗

[
2p(1− γ)zp + (ξ − 2p+ 2pγ + 1)zp+1

(1− z)2

]
− H l,m

p [α1] g(z) ∗
[

2p(ξ + γ)z̄p + (ξ − 2pξ − 2pγ + 1)z̄p+1

(1− z̄)2

]
. ♦

The coefficient bound for class T ∗H(p, α1, γ) is determined in the following theorem. Fur-
thermore, we use the coefficient condition to obtain extreme points, convex combination and
distortion upper and lower bounds.

Theorem 2.3:

Let f = h+ ḡ be given by (3). Then f ∈ T ∗H(p, α1, γ) if and only if

∞∑
n=2

{
n+ p (1− γ)− 1

p (1− γ)
|an+p−1|+

n+ p (1 + γ)− 1
p (1− γ)

|bn+p−1|
}
|φn| ≤ 1− 1 + γ

1− γ
|bp| (7)

where |bp| < 1−γ
1+γ , 0 ≤ γ < 1 and φn = (α1)n−1... (αl)n−1

(β1)n−1... (βm)n−1(n−1)! .



Proof

Since T ∗H(p, α1, γ) ⊂ S∗H(p, α1, γ), the sufficient condition is proved by Theorem 2.1. Next, we
prove the necessary part of the theorem. Suppose that f ∈ T ∗H(p, α1, γ). Then we obtain

<

 1
p(1− γ)

z
(
H l,m
p [α1]h(z)

)′
− z

(
H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ




= <
{

1
p(1− γ)

[
pzp −

∑∞
n=2(n+ p− 1)|an+p−1|φnzn+p−1 −

∑∞
n=1(n+ p− 1)|b̄n+p−1|φ̄nz̄n+p−1

zp −
∑∞

n=2 |an+p−1|φnzn+p−1 +
∑∞

n=1 |b̄n+p−1|φ̄nz̄n+p−1
− pγ

]}

= <

z
p −

∑∞
n=2

(n+p(1−γ)−1)
p(1−γ) |an+p−1|φnzn+p−1 −

∑∞
n=1

n+p(1+γ)−1)
p(1−γ) |b̄n+p−1|φ̄nz̄n+p−1

zp −
∑∞

n=2 |an+p−1|φnzn+p−1 +
∑∞

n=1 |b̄n+p−1|φ̄nz̄n+p−1


≥ 0

The condition must hold for all values of z, |z| = r < 1. Choosing the values of z on the
positive specific values, 0 ≤ z = r < 1 , and φn is real, we have

1−
(∑∞

n=2
(n+p(1−γ)−1)

p(1−γ) |an+p−1|φnrn−1 +
∑∞

n=1
n+p(1+γ)−1)

p(1−γ) |bn+p−1|φnrn−1
)

1−
∑∞

n=2 |an+p−1|φnrn−1 +
∑∞

n=1 |bn+p−1|φnrn−1
≥ 0 (8)

Letting r → 1− and if the condition (7) does not hold, then the numerator in (8) is negative.
Thus the coefficient bound inequality (7) holds true when f ∈ T ∗H(p, α1, γ). This completes
the proof of Theorem 2.3. ♦



Let clco T ∗H(p, α1, γ) denote the closed convex hull of T ∗H(p, α1, γ). Now we determine the
extreme points of clco T ∗H(p, α1, γ).

Theorem 2.4:

Let f be given by (3). Then f ∈ clco T ∗H(p, α1, γ) if and only if f can be expressed in
the form

f =
∞∑
n=1

(Xn+p−1hn+p−1 + Yn+p−1gn+p−1) (9)

where

hp(z) = zp, hn+p−1(z) = zp − p(1− γ)
[n+ p(1− γ)− 1]|φn|

zn+p−1 (n = 2, 3, ...),

gn+p−1(z) = zp+
p(1− γ)

[n+ p(1 + γ)− 1]|φn|
z̄n+p−1 (n = 1, 2, 3, ...),

φn = (α1)n−1... (αl)n−1

(β1)n−1... (βm)n−1(n−1)! and
∑∞

n=1 (Xn+p−1 + Yn+p−1) = 1, with Xn+p−1 ≥ 0, Yn+p−1 ≥ 0.

In particular the extreme points of T ∗H(p, α1, γ) are {hn+p−1} and {gn+p−1}.

Proof

Let f be of the form (9), then we have

f(z) = Xphp(z) +
∞∑
n=2

Xn+p−1

(
zp − p(1− γ)

[n+ p(1− γ)− 1] |φn|
zn+p−1

)

+
∞∑
n=1

Yn+p−1

(
zp +

p(1− γ)
[n+ p(1 + γ)− 1] |φn|

z̄n+p−1

)

f(z) = zp−
∞∑
n=2

p(1− γ)
[n+ p(1− γ)− 1] |φn|

Xn+p−1z
n+p−1+

∞∑
n=1

p(1− γ)
[n+ p(1 + γ)− 1] |φn|

Yn+p−1z̄
n+p−1.

(10)

Furthermore, let |an+p−1| = p(1−γ)
[n+p(1−γ)−1]|φn|Xn+p−1 and |bn+p−1| = p(1−γ)

[n+p(1+γ)−1]|φn|Yn+p−1.



Thus
∞∑
n=2

[n+ p (1− γ)− 1] |φn|
p (1− γ)

(
p(1− γ)

[n+ p(1− γ)− 1] |φn|
Xn+p−1

)

+
∞∑
n=1

[n+ p (1 + γ)− 1] |φn|
p (1− γ)

(
p(1− γ)

[n+ p(1 + γ)− 1] |φn|
Yn+p−1

)

=
∞∑
n=2

Xn+p−1 +
∞∑
n=1

Yn+p−1

= 1−Xp ≤ 1.

Thus f ∈ clco T ∗H(p, α1, γ).

Conversely, suppose that f ∈ clco T ∗H(p, α1, γ). Set

Xn+p−1 =
[n+ p (1− γ)− 1]|φn||an+p−1|

p (1− γ)
(n = 2, 3, ...),

Yn+p−1 =
[n+ p (1 + γ)− 1]|φn||bn+p−1|

p (1− γ)
(n = 1, 2, ...),

and define Xp = 1−
∑∞

n=2Xn+p−1 −
∑∞

n=1 Yn+p−1.

Then,

f(z) = zp −
∞∑
n=2

|an+p−1|zn+p−1 +
∞∑
n=1

|bn+p−1|z̄n+p−1

f(z) = zp −
∞∑
n=2

p (1− γ)Xn+p−1

[n+ p (1− γ)− 1]|φn|
zn+p−1 +

∞∑
n=1

p (1− γ)Yn+p−1

[n+ p (1 + γ)− 1]|φn|
z̄n+p−1

f(z) = Xpz
p +

∞∑
n=2

Xn+p−1

(
zp − p (1− γ)

[n+ p (1− γ)− 1]|φn|
zn+p−1

)

+
∞∑
n=1

Yn+p−1

(
zp +

p (1− γ)
[n+ p (1 + γ)− 1]|φn|

z̄n+p−1

)

f(z) =
∞∑
n=1

(Xn+p−1hn+p−1 + Yn+p−1gn+p−1)

as required. ♦



Theorem 2.5:

The class T ∗H(p, α1, γ) is closed under convex combination.

Proof

For i = 1, 2, 3, ..., suppose that fi(z) ∈ T ∗H(p, α1, γ) , where fi is given by

fi(z) = zp −
∞∑
n=2

|ai,n+p−1|zn+p−1 +
∞∑
n=1

|bi,n+p−1|z̄n+p−1 .

By Theorem 2.3,

∞∑
n=2

n+ p (1− γ)− 1
p (1− γ)

|φn||ai,n+p−1|+
∞∑
n=1

n+ p (1 + γ)− 1
p (1− γ)

|φn||bi,n+p−1| ≤ 1. (11)

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as,

∞∑
i=1

tifi(z) = zp −
∞∑
n=2

( ∞∑
i=1

ti|ai,n+p−1|

)
zn+p−1 +

∞∑
n=1

( ∞∑
i=1

ti|bi,n+p−1|

)
z̄n+p−1 .

Then, by (11)

∞∑
n=2

[n+ p (1− γ)− 1]|φn|
p (1− γ)

(∣∣∣∣∣
∞∑
i=1

ti|ai,n+p−1|

∣∣∣∣∣
)

+
∞∑
n=1

[n+ p (1 + γ)− 1]|φn|
p (1− γ)

(∣∣∣∣∣
∞∑
i=1

ti|bi,n+p−1|

∣∣∣∣∣
)

=
∞∑
i=1

ti

{ ∞∑
n=2

[n+ p (1− γ)− 1]|φn|
p (1− γ)

|ai,n+p−1|+
∞∑
n=1

[n+ p (1 + γ)− 1]]|φn|
p (1− γ)

|bi,n+p−1|

}

≤
∞∑
i=1

ti = 1.

Hence,
∑∞

i=1 tifi(z) ∈ T ∗H(p, α1, γ). ♦



In the last theorem below we give distortion inequalities for f in the class T ∗H(p, α1, γ).

Theorem 2.6:

If f ∈ T ∗H(p, α1, γ) with φn ≥ φ2 , then for |z| = r < 1,

|f(z)| ≤ (1 + |bp|) rp + rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}
and

|f(z)| ≥ (1− |bp|) rp − rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}
.

Proof

p (1− γ) + 1
p (1− γ)

|φ2|
∞∑
n=2

(|an+p−1|+ |bn+p−1|)

≤
∞∑
n=2

n+ p (1− γ)− 1
p (1− γ)

(|an+p−1|+ |bn+p−1|) |φn|

≤
∞∑
n=2

(
n+ p (1− γ)− 1

p (1− γ)
|an+p−1|+

n+ p (1 + γ)− 1
p (1− γ)

|bn+p−1|
)
|φn|.

Thus by using the result of Theorem 2.3, the inequality above gives
∞∑
n=2

(|an+p−1|+ |bn+p−1|) ≤
p (1− γ)

[p (1− γ) + 1]|φ2|

{
1− 1 + γ

1− γ
|bp|
}
. (12)

Next, again since f ∈ T ∗H(p, α1, γ), we have from (12) and |z| = r that

|f(z)| =

∣∣∣∣∣zp −
∞∑
n=2

|an+p−1|zn+p−1 +
∞∑
n=1

|bn+p−1|z̄n+p−1

∣∣∣∣∣
≤ |zp|+

∞∑
n=2

|an+p−1| |z|n+p−1 +
∞∑
n=1

|bn+p−1| |z̄|n+p−1

= rp +
∞∑
n=2

|an+p−1|rn+p−1 +
∞∑
n=1

|bn+p−1|rn+p−1

≤ (1 + |bp|)rp +

( ∞∑
n=2

(|an+p−1|+ |bn+p−1|)

)
rp+1

≤ (1 + |bp|)rp + rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}



which gives the first result.

In a similar manner, we obtain the following lower bound.

|f(z)| ≥ rp −
∞∑
n=2

|an+p−1|rn+p−1 −
∞∑
n=1

|bn+p−1|rn+p−1

= (1− |bp|)rp −
∞∑
n=2

(|an+p−1|+ |bn+p−1|) rn+p−1

≥ (1− |bp|)rp − rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}
. ♦
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