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THE GROWTH OF ITERATED ENTIRE FUNCTIONS

(COMMUNICATED BY VICENTIU RADULESCU)

DIBYENDU BANERJEE, RATAN KUMAT DUTTA

Abstract. In this paper we study growth of iterated entire functions to im-
prove some earlier results.

1. Introduction, Definitions and Notations

For any two transcendental entire functions f(z) and g(z) defined in the open

complex plane C, it is well known [1] that limr→∞
log T (r,fog)

T (r,f) = ∞ and

limr→∞
log T (r,fog)

T (r,g) = 0. Later on Singh [10] investigated some comparative growth

of logT (r, fog) and T (r, f). Further in [10] he raised the problem of investing
the comparative growth of logT (r, fog) and T (r, g). However some results on the
comparative growth of logT (r, fog) and T (r, g) are proved in [5].

Recently Lahiri and Datta [6] made close investigation on comparative growth
properties of logT (r, fog) and T (r, g) together with that of log log T (r, fog) and
T (r, f (k)).

In this paper, we first consider two entire functions f(z) and g(z) and following
Lahiri and Banerjee [3] form the relative iterations of f(z) with respect to g(z)
(defined below) and using this concept of relative iteration study growth of iterated
entire functions to generalise some results of Lahiri and Datta [6].

Let

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

.... .... ....

.... .... ....

fn(z) = f(g(f........(f(z) or g(z))........)),

according as n is odd or even,

= f(gn−1(z)) = f(g(fn−2(z))),
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and so are

g1(z) = g(z)

g2(z) = g(f(z)) = g(f1(z))

.... ....

.... ....

gn(z) = g(fn−1(z)) = g(f(gn−2(z))).

Clearly all fn(z) and gn(z) are entire functions.
For two non-constant entire functions f(z) and g(z), we have the well known

inequality

logM(r, f(g)) ≤ logM(M(r, g), f). (1.1)

Definition 1.1. The order ρf and lower order λf of a meromorphic function is
defined as

ρf = lim sup
r→∞

log T (r, f)

log r

and

λf = lim inf
r→∞

log T (r, f)

log r
.

If f is entire then

ρf = lim sup
r→∞

log logM(r, f)

log r

and

λf = lim inf
r→∞

log logM(r, f)

log r
.

Definition 1.2. The hyper order ρf and hyper lower order λf of a meromorphic
function is defined as

ρf = lim sup
r→∞

log log T (r, f)

log r

and

λf = lim inf
r→∞

log log T (r, f)

log r
.

If f is entire then

ρf = lim sup
r→∞

log[3] M(r, f)

log r

and

λf = lim inf
r→∞

log[3] M(r, f)

log r
.

Definition 1.3. A function λf (r) is called a lower proximate order of a meromor-
phic function f if

(i) λf (r) is nonnegative and continuous for r ≥ r0, say;
(ii) λf (r) is differentiable for r ≥ r0 except possibly at isolated points at which

λ
′

f (r − 0) and λ
′

f (r + 0) exist;

(iii) limr→∞ λf (r) = λf < ∞;

(iv) limr→∞ rλ
′

f (r) log r = 0; and

(v) lim infr→∞
T (r,f)

rλf (r) = 1.
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Notation 1.4. [9] Let log[0]x = x, exp[0]x = x and for positive integer m, log[m]x =
log(log[m−1]x), exp[m]x = exp(exp[m−1]x).

Throughout we assume f, g etc. are non constant entire functions having re-
spective orders ρf , ρg and respective lower orders λf , λg. Also we do not explain
the standard notations and definitions of the theory of entire and meromorphic
functions because those are available in [2].

2. Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [2] Let f(z) be an entire function. For 0 ≤ r < R < ∞, we have

T (r, f) ≤ log+ M(r, f) ≤ R+ r

R− r
T (R, f).

Lemma 2.2. [8] Let f(z) and g(z) be two entire functions. Then we have

T (r, f(g)) ≥ 1

3
logM

(
1

8
M

(r
4
, g
)
+O(1), f

)
.

Lemma 2.3. [4] Let f be an entire function. Then for k > 2,

lim inf
r→∞

log[k−1] M(r, f)

log[k−2] T (r, f)
= 1.

Lemma 2.4. [6] Let f be a meromorphic function. Then for δ(> 0) the function
rλf +δ−λf (r) is an increasing function of r.

Lemma 2.5. [7] Let f be an entire function of finite lower order. If there exist
entire functions ai (i = 1, 2, 3...........n; n ≤ ∞) satisfying T (r, ai) = o{T (r, f)} and

n∑
i=1

δ(ai, f) = 1 then lim
r→∞

T (r, f)

logM(r, f)
=

1

π
.

Lemma 2.6. Let f(z) and g(z) be two non-constant entire functions such that
0 < λf ≤ ρf < ∞ and 0 < λg ≤ ρg < ∞. Then for any ε (0 < ε <min{λf , λg})

log[n−1] T (r, fn) ≤
{

(ρf + ε) logM(r, g) +O(1) when n is even
(ρg + ε) logM(r, f) +O(1) when n is odd

and

log[n−1] T (r, fn) ≥
{

(λf − ε) logM
(

r
4n−1 , g

)
+O(1) when n is even

(λg − ε) logM
(

r
4n−1 , f

)
+O(1) when n is odd.
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Proof. For ε(> 0) we get from Lemma 2.1 and (1.1) for all large values of r

T (r, fn) ≤ logM(r, fn)

≤ logM(M(r, gn−1), f)

≤ [M(r, gn−1)]
ρf+ε,

that is, log T (r, fn) ≤ (ρf + ε) logM(r, gn−1)

≤ (ρf + ε) logM(M(r, fn−2), g)

≤ (ρf + ε)[M(r, fn−2)]
ρg+ε.

So, log[2] T (r, fn) ≤ (ρg + ε) logM(M(r, gn−3), f) +O(1)

≤ (ρg + ε)[M(r, gn−3)]
ρf+ε +O(1).

Therefore, log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1) when n is even.

Similarly

log[n−1] T (r, fn) ≤ (ρg + ε) logM(r, f) +O(1) when n is odd.

Again for ε (0 < ε <min{λf , λg}) we get from Lemma 2.1 and Lemma 2.2 for all
large values of r

T (r, fn) = T (r, f(gn−1))

≥ 1

3
logM

(
1

8
M

(r
4
, gn−1

)
+O(1), f

)
≥ 1

3

[
1

8
M

(r
4
, gn−1

)
+O(1)

]λf−ε

≥ 1

3

[
1

9
M

(r
4
, gn−1

)]λf−ε

,

that is, log T (r, fn) ≥ (λf − ε) logM
(r
4
, gn−1

)
+O(1)

≥ (λf − ε)T
(r
4
, gn−1

)
+O(1)

≥ (λf − ε)
1

3
logM

(
1

8
M

( r

42
, fn−2

)
+O(1), g

)
+O(1)

≥ (λf − ε)
1

3

[
1

8
M

( r

42
, fn−2

)
+O(1)

]λg−ε

+O(1)

≥ (λf − ε)
1

3

[
1

9
M

( r

42
, fn−2

)]λg−ε

+O(1),

that is, log[2] T (r, fn) ≥ (λg − ε) logM
( r

42
, fn−2

)
+O(1).

Therefore, log[n−2] T (r, fn) ≥ (λg − ε) logM
( r

4n−2
, fog

)
+O(1). (2.1)

So, log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)
+O(1) when n is even.

Similarly

log[n−1] T (r, fn) ≥ (λg − ε) logM
( r

4n−1
, f

)
+O(1) when n is odd.

This proves the lemma. �
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3. Theorems

Theorem 3.1. Let f and g be two non-constant entire functions having finite lower
orders. Then

(i) lim inf
r→∞

log[n−1] T (r, fn)

T (r, g)
≤ 3ρf2

λg ,

(ii) lim sup
r→∞

log[n−1] T (r, fn)

T (r, g)
≥ λf

(4n−1)
λg

when n is even
and

(iii) lim inf
r→∞

log[n−1] T (r, fn)

T (r, f)
≤ 3ρg2

λf ,

(iv) lim sup
r→∞

log[n−1] T (r, fn)

T (r, f)
≥ λg

(4n−1)
λf

when n is odd.

Proof. We may clearly assume 0 < λf ≤ ρf < ∞ and 0 < λg ≤ ρg < ∞. Now from
Lemma 2.6 for arbitrary ε > 0

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1) (3.1)

when n is even.
Let 0 < ε <min{1, λf , λg}. Since

lim inf
r→∞

T (r, g)

rλg(r)
= 1,

there is a sequence of values of r tending to infinity for which

T (r, g) < (1 + ε)rλg(r) (3.2)

and for all large value of r

T (r, g) > (1− ε)rλg(r). (3.3)

Thus for a sequence of values of r tending to infinity we get for any δ(> 0)

logM(r, g)

T (r, g)
≤ 3T (2r, g)

T (r, g)
≤ 3(1 + ε)

1− ε

(2r)λg+δ

(2r)λg+δ−λg(2r)

1

rλg(r)

≤ 3(1 + ε)

1− ε
2λg+δ

because rλg+δ−λg(r) is an increasing function of r.
Since ε, δ > 0 be arbitrary, we have

lim inf
r→∞

logM(r, g)

T (r, g)
≤ 3.2λg . (3.4)

Therefore from (3.1) and (3.4) we get

lim inf
r→∞

log[n−1] T (r, fn)

T (r, g)
≤ 3ρf2

λg .
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when n is even.
Again for even n we have from Lemma 2.6

log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)
+O(1)

≥ (λf − ε)T
( r

4n−1
, g
)
+O(1)

≥ (λf − ε)(1− ε)(1 +O(1))

(
r

4n−1

)λg+δ(
r

4n−1

)λg+δ−λg( r

4n−1 )
, by (3.3).

Since rλg+δ−λg(r) is an increasing function of r, we have

log[n−1] T (r, fn) ≥ (λf − ε)(1− ε)(1 +O(1))
rλg(r)

(4n−1)λg+δ

for all large values of r.
So by (3.2) for a sequence of values of r tending to infinity

log[n−1] T (r, fn) ≥ (λf − ε)
1− ε

1 + ε
(1 +O(1))

T (r, g)

(4n−1)λg+δ
.

Since ε and δ are arbitrary, it follows from the above that

lim sup
r→∞

log[n−1] T (r, fn)

T (r, g)
≥ λf

(4n−1)
λg

.

Similarly for odd n we get the second part of the theorem.
This proves the theorem. �

Theorem 3.2. Let f and g be two non-constant entire functions such that λf and
λg(> 0) are finite . Also there exist entire functions ai (i = 1, 2, 3...........n; n ≤ ∞)
satisfying T (r, ai) = o{T (r, g)} as r → ∞ and

n∑
i=1

δ(ai, g) = 1.

Then
πλf

(4n−1)λg
≤ lim sup

r→∞

log[n−1] T (r, fn)

T (r, g)
≤ πρf

when n is even.

Proof. If λf = 0 then the first inequality is obvious. Now we suppose that λf > 0.
For 0 < ε <min{1, λf , λg} we have from Lemma 2.6. for all large values of r

log[n−1] T (r, fn)

T (r, g)
≥ (λf − ε)

logM
(

r
4n−1 , g

)
T (r, g)

+O(1) when n is even

≥ (λf − ε)
logM

(
r

4n−1 , g
)

T
(

r
4n−1 , g

) T
(

r
4n−1 , g

)
T (r, g)

+O(1). (3.5)

Also from (3.2) and (3.3) we get for a sequence of values of r → ∞ and for δ > 0

T
(

r
4n−1 , g

)
T (r, g)

>
1− ε

1 + ε

(
r

4n−1

)λg+δ(
r

4n−1

)λg+δ−λg( r

4n−1 )

1

rλg(r)

≥ 1− ε

1 + ε

1

(4n−1)λg+δ
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because rλg+δ−λg(r) is an increasing function of r.
Since ε, δ > 0 be arbitrary, so using Lemma 2.5, we have from (3.5)

lim sup
r→∞

log[n−1] T (r, fn)

T (r, g)
≥ πλf

(4n−1)λg
.

If ρf = ∞, the second inequality is obvious. So we may assume ρf < ∞. Then the
second inequality follows from Lemma 2.5 and Lemma 2.6.
This proves the theorem. �

Theorem 3.3. Let f and g be two non-constant entire functions such that λf (> 0)
and λg are finite. Also there exist entire functions ai (i = 1, 2, 3...........n; n ≤ ∞)
satisfying T (r, ai) = o{T (r, f)} as r → ∞ and

n∑
i=1

δ(ai, f) = 1.

Then
πλg

(4n−1)λf
≤ lim sup

r→∞

log[n−1] T (r, fn)

T (r, f)
≤ πρg

when n is odd.

Theorem 3.4. Let f and g be two non-constant entire functions such that 0 <
λf ≤ ρf < ∞ and 0 < λg ≤ ρg < ∞. Then for k = 0, 1, 2, 3, .......

λg

ρg
≤ lim inf

r→∞

log[n+1] T (r, fn)

log T (r, g(k))
≤ lim sup

r→∞

log[n+1] T (r, fn)

log T (r, g(k))
≤ ρg

λg

when n is even and

λf

ρf
≤ lim inf

r→∞

log[n+1] T (r, fn)

log T (r, f (k))
≤ lim sup

r→∞

log[n+1] T (r, fn)

log T (r, f (k))
≤ ρf

λf

when n is odd, where f (k) denote the k-th derivative of f .

Proof. First suppose that n is even. Then for given ε(0 < ε < min{λf , λg}) we get
from Lemma 2.6 for all large values of r

log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)
+O(1)

≥ (λf − ε)T
( r

4n−1
, g
)
+O(1)

that is, log[n] T (r, fn) ≥ log T
( r

4n−1
, g
)
+O(1).

So, log[n+1] T (r, fn) ≥ log[2] T
( r

4n−1
, g
)
+O(1).

So for all large values of r

log[n+1] T (r, fn)

log T (r, g(k))
≥

log[2] T
(

r
4n−1 , g

)
log r

4n−1

.
log r

4n−1

log T (r, g(k))
+ o(1). (3.6)

Since

lim sup
r→∞

log T (r, g(k))

log r
= ρg,
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so for all large values of r and arbitrary ε > 0 we have

log T (r, g(k)) < (ρg + ε) log r. (3.7)

Since ε > 0 is arbitrary, so from (3.6) and (3.7) we have

lim inf
r→∞

log[n+1] T (r, fn)

log T (r, g(k))
≥ lim inf

r→∞

log[2] T
(

r
4n−1 , g

)
log r

4n−1

.

(
log r − log 4n−1

ρg log r

)
≥ λg

ρg
. (3.8)

Again from Lemma 2.6 for all large values of r

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

i.e.
log[n+1] T (r, fn)

log T (r, g(k))
≤ log[3] M(r, g)

log T (r, g(k))
+ o(1). (3.9)

Since

lim inf
r→∞

log T (r, g(k))

log r
= λg,

so for all large values of r and arbitrary ε(0 < ε < λg) we have

log T (r, g(k)) > (λg − ε) log r. (3.10)

Since ε > 0 is arbitrary, so from (3.9) and (3.10) we have

lim sup
r→∞

log[n+1] T (r, fn)

log T (r, f (k))
≤ ρg

λg
. (3.11)

Combining (3.8) and (3.11) we obtain the first part of the theorem.
Similarly when n is odd then we have the second part of the theorem.

This proves the theorem. �

Theorem 3.5. Let f and g be two non-constant entire functions such that 0 <
λf ≤ ρf < ∞ and 0 < λg ≤ ρg < ∞. Then

(i)
λg

ρg
≤ lim inf

r→∞

log[n] T (r, fn)

log T (r, g)
≤ 1 ≤ lim sup

r→∞

log[n] T (r, fn)

log T (r, g)
≤ ρg

λg

when n is even and

(ii)
λf

ρf
≤ lim inf

r→∞

log[n] T (r, fn)

log T (r, f)
≤ 1 ≤ lim sup

r→∞

log[n] T (r, fn)

log T (r, f)
≤ ρf

λf

when n is odd.

Proof. First suppose that n is even. Then for given ε(0 < ε < min{λf , λg}) we get
from Lemma 2.6 for all large values of r

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

i.e. log[n] T (r, fn) ≤ log[2] M(r, g) +O(1)

i.e.
log[n] T (r, fn)

log T (r, g)
≤ log[2] M(r, g)

log T (r, g)
+ o(1) (3.12)

i.e. lim inf
r→∞

log[n] T (r, fn)

log T (r, g)
≤ 1 [by Lemma 2.3]. (3.13)
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Also,

log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)
+O(1)

i.e. log[n] T (r, fn) ≥ log[2] M
( r

4n−1
, g
)
+O(1).

So

log[n] T (r, fn)

log T (r, g)
≥

log T
(

r
4n−1 , g

)
log r

4n−1

.

(
log r − log 4n−1

ρg log r

)
+ o(1)

i.e. lim inf
r→∞

log[n] T (r, fn)

log T (r, g)
≥ λg

ρg
. (3.14)

Also from (3.12), we get for all large values of r,

log[n] T (r, fn)

log T (r, g)
≤ log[2] M(r, g)

log r

log r

log T (r, g)
+ o(1)

∴ lim sup
r→∞

log[n] T (r, fn)

log T (r, g)
≤ ρg

λg
. (3.15)

Again from Lemma 2.6,

log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)
+O(1)

i.e. log[n] T (r, fn) ≥ log[2] M
( r

4n−1
, g
)
+O(1). (3.16)

From (3.3) we obtain for all large values of r and for δ > 0 and ε(0 < ε < 1)

logM
( r

4n−1
, g
)

> (1− ε)

(
r

4n−1

)λg+δ(
r

4n−1

)λg+δ−λg( r

4n−1 )

≥ 1− ε

(4n−1)λg+δ
rλg(r)

because rλg+δ−λg(r) is an increasing function of r.
So by (3.2) we get for a sequence of value of r tending to infinity

logM
( r

4n−1
, g
)

≥ 1− ε

1 + ε

1

(4n−1)λg+δ
T (r, g)

i.e. log[2] M
( r

4n−1
, g
)

≥ log T (r, g) +O(1). (3.17)

Now from (3.16) and (3.17)

lim sup
r→∞

log[n] T (r, fn)

log T (r, f)
≥ 1. (3.18)

So the theorem follows from (3.13), (3.14), (3.15) and (3.18) when n is even.
Similarly when n is odd we get (ii). �
Corollary 3.6. Using the hypothesis of Theorem 3.5 if f and g are of regular
growth then

lim
r→∞

log[n] T (r, fn)

log T (r, g)
= lim

r→∞

log[n] T (r, fn)

log T (r, f)
= 1.

Remark 3.7. The conditions λf , λg > 0 and ρf,ρg < ∞ are necessary for Theorem
3.5 and Corollary 3.6, which are shown by the following examples.
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Example 3.8. Let f = z, g = exp z. Then λf = ρf = 0 and 0 < λg = ρg < ∞.
Now when n is even then

fn = exp[
n
2 ] z.

Therefore,

T (r, fn) ≤ logM(r, fn) = exp[
n
2 −1] r.

So,

log[n] T (r, fn) ≤ log[n](exp[
n
2 −1] r)

= log[n−
n
2 +1] r

= log[
n
2 +1] r.

Also when n is odd

fn = exp[
n−1
2 ] z.

Therefore,

T (r, fn) ≤ logM(r, fn) = exp[
n−1
2 −1] r.

So,

log[n] T (r, fn) ≤ log[n](exp[
n−1
2 −1] r)

= log[n−
n−1
2 +1] r

= log[
n+1
2 +1] r.

Now

log T (r, f) = log r and log T (r, g) = log r − log π.

Therefore when n is even

log[n] T (r, fn)

log T (r, g)
≤ log[

n
2 +1] r

log r − log π
→ 0 as r → ∞,

and when n is odd

log[n] T (r, fn)

log T (r, f)
≤ log[

n+1
2 +1] r

log r
→ 0 as r → ∞.

Example 3.9. Let f = exp[2] z, g = exp z. Then λf = ρf = ∞, λg = ρg = 1.
Now when n is even

fn = exp[
3n
2 ] z.

Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[
3n
2 −1] r

i.e. T (r, fn) ≥ 1

3
exp[

3n
2 −1] r

2

∴ log[n] T (r, fn) ≥ log[n](exp[
3n
2 −1] r

2
) + o(1)

= exp[
n
2 −1] r

2
+ o(1).

Also when n is odd

fn = exp[
3n+1

2 ] z.
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Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[
3n+1

2 −1] r

i.e. T (r, fn) ≥ 1

3
exp[

3n−1
2 ] r

2

∴ log[n] T (r, fn) ≥ log[n](exp[
3n−1

2 ] r

2
) + o(1)

= exp[
n−1
2 ] r

2
+ o(1).

Also

T (r, f) ≤ er and T (r, g) =
r

π
.

Therefore when n is even

log[n] T (r, fn)

log T (r, g)
≥

exp[
n
2 −1] r

2 + o(1)

log r − log π
→ ∞ as r → ∞,

and when n is odd

log[n] T (r, fn)

log T (r, f)
≥

exp[
n−1
2 ] r

2 + o(1)

r
→ ∞ as r → ∞.

Theorem 3.10. Let f and g be two entire functions such that 0 < λf ≤ ρf < ∞
and 0 < λg ≤ ρg < ∞. Then for k = 0, 1, 2, 3, ......

(i)
λg

ρf
≤ lim inf

r→∞

log[n] T (r, fn)

log T (r, f (k))
≤ lim sup

r→∞

log[n] T (r, fn)

log T (r, f (k))
≤ ρg

λf

when n is even.

(ii)
λf

ρg
≤ lim inf

r→∞

log[n] T (r, fn)

log T (r, g(k))
≤ lim sup

r→∞

log[n] T (r, fn)

log T (r, g(k))
≤ ρf

λg

when n is odd.

Proof. First suppose that n is even. Then for given ε(0 < ε < min{λf , λg}) we
have from Lemma 2.6 for all large values of r,

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

i.e. log[n] T (r, fn) ≤ log[2] M(r, g) +O(1).

Also we know that

lim inf
r→∞

log T (r, g(k))

log r
= λg.

Now

lim sup
r→∞

log[n] T (r, fn)

log T (r, f (k))
≤ lim sup

r→∞

log[2] M(r, g)

log T (r, f (k))

≤ lim sup
r→∞

[
log[2] M(r, g)

log r
.

log r

log T (r, f (k))

]
=

ρg
λf

(3.19)
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Again from lemma 2.6 we have for all large values of r,

log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)
+O(1)

≥ (λf − ε)
( r

4n−1

)λg−ε

+O(1)

i.e., log[n] T (r, fn) ≥ (λg − ε) log r +O(1).

Also
log T (r, f (k)) < (ρf + ε) log r.

Therefore,

log[n] T (r, fn)

log T (r, f (k))
≥ (λg − ε) log r +O(1)

(ρf + ε) log r
.

Since ε > 0 is arbitrary we get

lim inf
r→∞

log[n] T (r, fn)

log T (r, f (k))
≥ λg

ρf
. (3.20)

Therefore from (3.19) and (3.20) we have the result for even n.
Similarly for odd n we have (ii).

This proves the Theorem. �
Theorem 3.11. Let f and g be two entire functions such that 0 < λf ≤ ρf < ∞
and ρg < ∞. Then for k = 0, 1, 2, 3, ......

lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0 for all natural number n(≥ 2).

Proof. First suppose n is even. Then by Lemma 2.6 for all sufficiently large values
of r and ε(0 < ε < λf )

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

logM(r, g) < rρg+ε

and T (exp(r), f (k)) > er
(λf−ε)

.

So

log[n−1] T (r, fn)

T (exp(r), f (k))
≤ (ρf + ε)rρg+ε

er
(λf−ε)

+ o(1)

∴ lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0.

Similarly for odd n we have

log[n−1] T (r, fn) ≤ (ρg + ε) logM(r, f) +O(1),

and logM(r, f) < rρf+ε

So

log[n−1] T (r, fn)

T (exp(r), f (k))
≤ (ρg + ε)rρf+ε

er
(λf−ε)

+ o(1)

∴ lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0.

This proves the theorem. �
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Remark 3.12. The condition ρg < ∞ is the necessary for Theorem 3.11, which is
shown by the following example.

Example 3.13. Let f = exp z and g = exp[2] z then λf = ρf = 1 and ρg = ∞.
Now when n is even

fn = exp[
3n
2 ] z

Therefore,

3T (2r, fn) ≥ logM(r, fn) = exp[
3n
2 −1] r

i.e. T (r, fn) ≥ 1

3
exp[

3n
2 −1] r

2

∴ log[n−1] T (r, fn) ≥ exp[
3n
2 −1−n+1] r

2
+ o(1)

= exp[
n
2 ] r

2
+ o(1).

Also when n is odd,

fn = exp[
3n−1

2 ] z

Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[
3n−1

2 −1] r

i.e. T (r, fn) ≥ 1

3
exp[

3n−1
2 −1] r

2

∴ log[n−1] T (r, fn) ≥ exp[
3n−1

2 −1−n+1] r

2
+ o(1)

= exp[
n−1
2 ] r

2
+ o(1).

Also

T (exp(r), f (k)) =
er

π

Therefore when n is even

log[n−1] T (r, fn)

T (exp(r), f (k))
≥

exp[
n
2 ] r

2 + o(1)

er/π
→ ∞ as r → ∞,

and when n is odd

log[n−1] T (r, fn)

T (exp(r), f (k))
≥

exp[
n−1
2 ] r

2 + o(1)

er/π
→ ∞ as r → ∞.

Theorem 3.14. Let f and g be two entire functions such that 0 < λg ≤ ρg < ∞
and ρf < ∞. Then for k = 0, 1, 2, 3, ......

lim
r→∞

log[n−1] T (r, fn)

T (exp(r), g(k))
= 0 for all natural number n(≥ 2).

Theorem 3.15. Let f and g be two entire functions such that ρg < λf ≤ ρf < ∞
. Then for k = 0, 1, 2, 3, ......

lim
r→∞

log[n−1] T (r, fn)

T (r, f (k))
= 0 when n is even.
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Proof. From Lemma 2.6 we have for arbitrary ε(> 0) such that ρg +ε < λf −ε and
for large values of r,

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

logM(r, g) < rρg+ε,

and T (r, f (k)) > rλf−ε.

Therefore

log[n−1] T (r, fn)

T (r, f (k))
≤ (ρf + ε)rρg+ε

rλf−ε
+ o(1)

i.e. lim
r→∞

log[n−1] T (r, fn)

T (r, f (k))
= 0.

This proves the theorem. �

Theorem 3.16. Let f and g be two entire functions such that ρf < λg ≤ ρg < ∞
. Then for k = 0, 1, 2, 3, ......,

lim
r→∞

log[n−1] T (r, fn)

T (r, g(k))
= 0 when n is odd.

In [6] Lahiri and Datta proved the following theorem.
Theorem A. Let f and g be two transcendental entire functions such that

(i) 0 < λg ≤ ρg < ∞, (ii) λf > 0, and (iii) δ(0; f) < 1.

Then for any real number A,

lim sup
r→∞

log T (r, fog)

log T (rA, g(k))
= ∞

for k = 0, 1, 2, 3, ......
Now we generalise the above as follows.

Theorem 3.17. Let f and g be two transcendental entire functions such that

(i) 0 < λg ≤ ρg < ∞, (ii) λf > 0, and (iii) δ(0; f) < 1.

Then for any real number A,

lim sup
r→∞

log[n−1] T (r, fn)

log T (rA, g(k))
= ∞

for k = 0, 1, 2, 3, ...... and n is even.

Proof. When n is even then from (2.1),

log[n−2] T (r, fn) ≥ (λg − ε) logM
( r

4n−2
, fg

)
+O(1)

≥ (λg − ε)T
( r

4n−2
, fg

)
+O(1)

that is, log[n−1] T (r, fn) ≥ log T
( r

4n−2
, fg

)
+O(1) .
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Therefore

lim sup
r→∞

log[n−1] T (r, fn)

log T (rA, g(k))
≥ lim sup

r→∞

log T
(

r
4n−2 , fg

)
log T (rA, g(k))

≥ lim sup
r→∞

 log T
(

r
4n−2 , fg

)
log T

((
r

4n−2

)A
, g(k)

) log T
((

r
4n−2

)A
, g(k)

)
log T (rA, g(k))

 .(3.21)

But

lim sup
r→∞

log T
((

r
4n−2

)A
, g(k)

)
log T (rA, g(k))

≥ λg

ρg
. (3.22)

So proceeding as in Theorem A we have the result by using (3.21) and (3.22).
This proves the theorem. �

Theorem 3.18. Let f and g be two transcendental entire functions such that

(i) 0 < λf ≤ ρf < ∞, (ii) λg > 0, and (iii) δ(0; g) < 1.

Then for any real number A,

lim sup
r→∞

log[n−1] T (r, fn)

log T (rA, f (k))
= ∞

for k = 0, 1, 2, 3, ...... and n is odd.

References

[1] J. Clunie, The composition of entire and meromorphic functions, Mathematical essays dedi-
cated to A. J. Macintyre, Ohio Univ. Press, (1970), 75-92.

[2] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[3] B. K. Lahiri, D. Banerjee, Relative fix points of entire functions, J. Indian Acad. Math.,

19(1) (1997), 87-97.
[4] I. Lahiri, Generalised proximate order of meromorphic functions, Matematnykn Bechnk, 41

(1989), 9-16.
[5] I. Lahiri, Growth of composite integral functions, Indian J. Pure and Appl. Math., 20(9)

(1989), 899-907.
[6] I. Lahiri, S. K. Datta, On the growth of composite entire and meromorphic functions, Indian

J. Pure and Appl. Math., 35(4) (2004), 525-543.

[7] Q. Lin, C. Dai, On a conjecture of Shah concerning small functions, Kexue Tong (English
Ed.), 31(4) (1986), 220-224.

[8] K. Niino, C. C. Yang, Some growth relationships on factors of two composite entire functions,
Factorization Theory of Meromorphic Functions and Related Topics, Marcel Dekker Inc. (New

York and Basel), (1982), 95-99.
[9] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc., 69

(1963), 411-414.
[10] A. P. Singh, Growth of composite entire functions, Kodai Math. J., 8 (1985), 99-102.

Department of Mathematics, Visva Bharati, Santiniketan-731235, West Bengal, India

E-mail address: dibyendu192@rediffmail.com

Department of Mathematics, Siliguri Institute of Technology, Post.- Sukna, Silig-

uri, Darjeeling-734009, West Bengal, India
E-mail address: ratan 3128@yahoo.com


