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THE GROWTH OF ITERATED ENTIRE FUNCTIONS

(COMMUNICATED BY VICENTIU RADULESCU)

DIBYENDU BANERJEE, RATAN KUMAT DUTTA

ABSTRACT. In this paper we study growth of iterated entire functions to im-
prove some earlier results.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

For any two transcendental entire functions f(z) and g(z) defined in the open

log T'(r,fo9)

complex plane C| it is well known [1] that lim,_ o = 0o and

T(r.f)
lim, o0 % = 0. Later on Singh [10] investigated some comparative growth

of logT(r, fog) and T(r, f). Further in [10] he raised the problem of investing
the comparative growth of logT'(r, fog) and T(r,g). However some results on the
comparative growth of logT(r, f,g) and T'(r, g) are proved in [5].

Recently Lahiri and Datta [6] made close investigation on comparative growth
properties of logT(r, fog) and T'(r,g) together with that of loglogT(r, f,g) and
T(r, f*).

In this paper, we first consider two entire functions f(z) and g(z) and following
Lahiri and Banerjee [3] form the relative iterations of f(z) with respect to g(2)
(defined below) and using this concept of relative iteration study growth of iterated
entire functions to generalise some results of Lahiri and Datta [6].

Let

hz) = f(2)
fa(z) = [l9(2)) = f(91(2))
fs(2) = f(g(f(2) = fl92(2)) = f(9(f1(2)))

fn(z) = flg(feronn (f(2) or g(2)).eem... ))s

according as n is odd or even,

= flgn-1(2) = f9(fn—2(2))),

2000 Mathematics Subject Classification. 30D35.

Key words and phrases. Entire functions; growth; iteration.
(©2008 Universiteti i Prishtinés, Prishtiné, Kosové.
Submitted January 4, 2011. Published May 28, 2011.

35



36 D. BANERJEE, R. K. DUTTA

and so are

9(z) = 9(2)
92(2) = 9(f(2)) = 9(f1(2))

gn(2) = 9(fa-1(2)) = 9(f(gn—2(2)))-
Clearly all f,(z) and g,(z) are entire functions.
For two non-constant entire functions f(z) and g(z), we have the well known
inequality
logM(r,f(g)) SIOgM(M(Tag)vf)' (11)

Definition 1.1. The order ps and lower order Ay of a meromorphic function is
defined as

i sup 28 L0 )
=lim sup ——=
Pt Hgo logr
and lou T

A = lim inf 28T S),

r—oo  logr

If f is entire then

loglog M
oy = lim sup 28108 M (1)

r—00 logr
and
loglog M
A —lim inf 28108 M@ )
r—00 logr

Definition 1.2. The hyper order py and hyper lower order Xf of a meromorphic
function is defined as

loglog T'(r, f)

B
pr=mm s log r
and sl
_ T
Xy — lim inf 081087 S),
r—00 logr
If f is entire then
. log™ M(r, f)
py = lim sup ————=
r—o0 logr
and 5l
- 1 M
X; = lim inf log™ M(r. f)
r—00 logr

Definition 1.3. A function Af(r) is called a lower prozimate order of a meromor-
phic function f if

(i) Af(r) is nonnegative and continuous for r > rq, say;

(11) Af(r) is differentiable for r > 1o except possibly at isolated points at which
)\/f(r —0) and /\} (r+0) exist;

(111) im, o0 A (1) = Ay < 00;

(iv) lim,._ oo ’I“)\;c (r)logr =0; and

(v) liminf, ?;J? =1.
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Notation 1.4. [9] Let log[O]x =z, expll2 = 2 and for positive integer m, log[m]x _
log(log[m—l]x), €l‘p[m]x — exp(escp[m_l]x),

Throughout we assume f,g etc. are non constant entire functions having re-
spective orders py, py and respective lower orders A¢, A\y. Also we do not explain
the standard notations and definitions of the theory of entire and meromorphic
functions because those are available in [2].

2. LEMMAS

The following lemmas will be needed in the sequel.

Lemma 2.1. [2] Let f(z) be an entire function. For 0 <r < R < oo, we have

T(r,f) < log" M, f) < 1" T(R, f).

Lemma 2.2. [8] Let f(z) and g(z) be two entire functions. Then we have

1 1 r

SlogM (=M (7, ) . 7).
1ot (0 (5.0) +000).£)
Lemma 2.3. [4] Let f be an entire function. Then for k > 2,

[k—1]
lim inf —log M(r, J) =
roee loght A T(r, f)

Lemma 2.4. [6] Let f be a meromorphic function. Then for §(> 0) the function
A H0=Ar () s an increasing function of r.

Lemma 2.5. [7] Let [ be an entire function of finite lower order. If there exist
entire functions a; (1 =1,2,3........... n; n < 00) satisfying T(r,a;) = o{T(r, )} and

" B . T, f) 1

Lemma 2.6. Let f(z) and g(z) be two non-constant entire functions such that
0<Af <pg<ooand0 <Ay <py <oo. Then for any e (0 <e <min{Af, A\g})

[n—1] (pr +e)logM(r,g)+ O(1)  when n is even
tog Tl fu) < { (pg +€)logM(r, f)+O(1)  when n is odd

and

[n—1] (A —e)logM (;:55,9) + O(1)  when n is even
o T(rfn) 2 { (Ag —e)log M (5=, f) + O(1)  when n is odd.
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Proof. For (> 0) we get from Lemma 2.1 and (1.1) for all large values of r

T(r, fn) < logM(r, fn)
< log M(M(r, gn-1), f)
< [M(r,ga-1)7,
that is, log T'(r, fn) < (py+e)logM(r,gn-1)
< (pf+5)10gM( (7, fn—2),9)
< (pp+ )M, fu o).
So, logi T(r, fa) < (pg +¢)log M(M(r, gn-3), f) + O(1)
< (pg +e)M(r,gn-3)]"" 1 + O(1).
Therefore, log™ ™ T(r, f,) < (py+e)log M(r,g) + O(1) when n is even.

Similarly
logl™—1] T(r, fn) < (pg +€)log M(r, f) +O(1) when n is odd.

Again for € (0 < e <min{\¢,\;}) we get from Lemma 2.1 and Lemma 2.2 for all
large values of r

T(r?fn) = T(T’f(gnfl))
1

3 log M (SM (§o9n-1) + 0(1)7f>

E [1M (% 901) +0(1)]A'f5

Y

v

318 4

Aj—e
QBM (4’%—1)} :
()\f—s)logM( G 1)+0(1)
(s =T (F290-1) +0O(1)

(O — g)é log M (;M (g2 fn2) + 0(1),g> +o(1)

Y

that is, logT'(r, frn)

AV AV

Y

()\f*é‘

Y

)% ngM (g2 fn2) + 0(1)r€ +0(1)
o= ah [o ()] o,
(A — &) log M (4% faz) +O(1).

£)log M (4n 5+ og) +O(1). (2.1)

(A —¢e)log M ( 1,9) O(1) when n is even.

that is, log® T'(r, f,)

v

\

Therefore, log["_Q] T(r, fn)

So, log"™" T(r, f,,)

Y

Similarly
log" = T(r, £,) > (\y — ) log M (47:%1, f) + O(1) when n is odd.

This proves the lemma. O
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3. THEOREMS

Theorem 3.1. Let f and g be two non-constant entire functions having finite lower
orders. Then

o logm T )
(Z) llmrl_l’)lgow

log™ U1 £, A
(i6) lim sup 08T oA
rooo  1(r,9) (4n—1)*s

3pp2*,

when n is even
and

A

o log" T 1)
(lll) lim Tl_I}l(f;o W S
L log" 1 T(r, f,) Ag

() mswp =70 gy 2 @egv

30427,

when n is odd.

Proof. We may clearly assume 0 < Ay < py < oo and 0 < Ay < p; < oo. Now from
Lemma 2.6 for arbitrary € > 0

log!" ™ T(r, f,) < (ps + ) log M(r, g) + O(1) (3:1)

when n is even.
Let 0 < ¢ <min{l, Ay, A\y}. Since

lim inf rr.g)

T—00 r)‘g(r)

:17

there is a sequence of values of r tending to infinity for which

T(r,g) < (14 ¢)r?e(r) (3.2)
and for all large value of r

T(r,g) > (1 —¢e)r?e(r), (3.3)
Thus for a sequence of values of r tending to infinity we get for any 6(> 0)

log M(r, g) < 3T (2r,g) < 3(14+¢)  (2r)et? 1
T(r,g) = T(r,g) — 1—e (2r)tet0=200) pAs(0)
3(1+¢) oA+
- 1—¢

because r*9t9=2¢(") is an increasing function of r.
Since €, d > 0 be arbitrary, we have

lim inf 7logM(r, 9)
oo T(r,g)

Therefore from (3.1) and (3.4) we get

<3.2%. (3.4)

logl®—1
lim inf 06 A T, fn)

< 3pp22a,
e T(rg) M
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when n is even.
Again for even n we have from Lemma 2.6

log["ﬂ] T(r, fn) (A —¢)log M (4 — 79) + O(1)

> (=T (5i509) +00)

Y

V

()

(M%)/\g+57)\g(4n%l)

v

(s —e)(1-e)(1+0(1))

, by (3.3).

Since 72 +9=24(") i an increasing function of r, we have
[n—1] r)‘g (r)
log T(r, fn) > (Af—f)(l—g)ﬂ*‘o(l))m

for all large values of r.
So by (3.2) for a sequence of values of r tending to infinity

1- T(r.g)

1 [n—1] T - i ) ]
(r,fn) =2 (Af —&)7T— 1tz (47—1)Ag+9

Since € and 0 are arbitrary, it follows from the above that

log" = 1(r, f, A
lim sup %8 (. fx) > L 5y
roo  1(r,g) (4n=1)rs
Similarly for odd n we get the second part of the theorem.
This proves the theorem. (I

~(1+0(1)

Theorem 3.2. Let f and g be two non-constant entire functions such that Ay and
Ag(> 0) are finite . Also there exist entire functions a; (1 =1,2,3........... n; n < 00)
satisfying T(r,a;) = of{T(r,g)} as r — oo and

Zé(ai,g) =1
i=1

Then 1]
o el T f)

[ — <
@ = T G =

when n is even.

Proof. If Ay = 0 then the first inequality is obvious. Now we suppose that Ay > 0.
For 0 < & <min{1, A¢, Ay} we have from Lemma 2.6. for all large values of r

og" 1 T(r, £) log M (5. 9)
T(r,g) T(r,g)
log M (5=1,9) T (51 9)
T (3=,9) T(rg9)
Also from (3.2) and (3.3) we get for a sequence of values of r — oo and for § > 0

(Af—¢) + O(1) when n is even

> (Ar—e) +O(1).  (35)

r . \Agt6
w > l-¢ (4n—1) ! 1
T(r,g) 1+e¢ (M%)/\g—&-é—)\g(ﬁ) e
1—¢ 1
>

1+e¢ (4n71)>\g+6
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because 9 1t9~2(") is an increasing function of r.
Since €, 0 > 0 be arbitrary, so using Lemma 2.5, we have from (3.5)

logl" ! T(r, fn) TAf
lim su >
e Tng) (@Y
If py = oo, the second inequality is obvious. So we may assume py < co. Then the
second inequality follows from Lemma 2.5 and Lemma 2.6.
This proves the theorem. ([l

Theorem 3.3. Let f and g be two non-constant entire functions such that Ay(> 0)
and Mg are finite. Also there exist entire functions a; (1 =1,2,3........... n; n < oo)
satisfying T(r,a;) = of{T(r, f)} as r — oo and

Z‘S(aiv f) =1L
=1

Then
g log" 1 T(r, f,)
— 9 < ot e S AL
@y S lm s =g <

when n is odd.

Theorem 3.4. Let f and g be two non-constant entire functions such that 0 <
A <pp<ooand0< Ay < pg <oo. Then for k=0,1,2,3,.......

kv n+1 [n+1]
Y < lim inf wﬁhm sup wé;
Pg r—oo log T(r,g(¥)) r—oo log T(r,g*))

&[S

when n is even and

by [n+1] [n+1] —_
M < lim it wqm sup log™™ " T(r, fn) _ PF
Py r—oo log T'(r, f*)) roo log T(r, fR)) = )

when n is odd, where f*) denote the k-th derivative of f.

Proof. First suppose that n is even. Then for given £(0 < ¢ < min{Ar, A\;}) we get
from Lemma 2.6 for all large values of r

log™ Y T(r, f,) > (Af—¢) logM( 1,9) +0(1)

> (A\f—9)T (Fvg) +0O(1)
that is, log™ T(r,f,) > logT (4n 1 ,g) +O(1).
So, log"™ T(r, f,) > log®T (4n 1,9) +0(1).

So for all large values of r

log" ™ T(r, f,) _ 1og” T (555.9)  log gt
log T(r,g®) = log =  'log T(r,g")

Since
. log T'(r, g™))
lim sup ——————= = p,,
r—00 logr ‘
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so for all large values of r and arbitrary € > 0 we have
log T(r, g™) < (pg + €) log . (3.7)
Since € > 0 is arbitrary, so from (3.6) and (3.7) we have

[n+1] log? T (2 log 7 — log 4"~
lim inf w > lim inf 8 (4"71’“(]). 08T T 08
r—oo log T(r,g*)) rooo log et pglog
> 2o (3.8)
Pg

Again from Lemma 2.6 for all large values of r
log" ™ T(r, fu) < (ps +€)log M(r,g) +0(1)

g™ I T(r, fu) _ log® M(r,g)

o g Tlrg®) = og T(rg®) T

(3.9)

Since “
lim inf 7logT(r, 9)
=00 logr

=A

=\,
so for all large values of r and arbitrary (0 < e < Ay) we have
log T(r, g®) > (A, — ) log . (3.10)
Since € > 0 is arbitrary, so from (3.9) and (3.10) we have
log™ ™ T(r, £,) _ 7y

lim sup 28 L In) Py

r—oo log T(r, f(*)) Ag

Combining (3.8) and (3.11) we obtain the first part of the theorem.
Similarly when n is odd then we have the second part of the theorem.
This proves the theorem. ([

(3.11)

Theorem 3.5. Let f and g be two non-constant entire functions such that 0 <
A <pp<ooand0< Ay < pg <oo. Then
log"™ T(r, fn) _ pg

logl™ T
(1) ﬁglim inf wglglimsup Ty S Y
Py r—oo log T(r,g) r—oo log T(r,g) Ag
when n is even and
log™ T
(i) 2L < lim inf 28 L fn) e <
pf r—oo log T(r, f) r—oco log T'(r, f) A

when n is odd.

Proof. First suppose that n is even. Then for given £(0 < ¢ < min{Ar, A\;}) we get
from Lemma 2.6 for all large values of r

log" ™ T(r, f,) < (ps+e)logM(r,g) + O(1)
ie. log™ T(r f,) < log® M(r,g)+0(1)
_ log™ T(r, f) log”! M (r, g)
e, & L\h) 08 VNG, g 3.12
o g Trg) - g Tirg) W (3.12)
["]T
fe. Tim inf 25 TU )y nma 2.3), (3.13)

roe log T(r, g)
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Also,
gl T(r, f) > ()\f—s)logM< 179) +0(1)
n T
ie. log T(r, fn) > log!Z M (F,g> +O0(1).
So
log™" T'(r, f.) . logT(éﬂ)_ logr — log 4"~ o)
log T(r,9) log g=r pglog r
[n]
fe. lim inf B Tfn) oAy (3.14)
r—oo log T'(r,g) Pg

Also from (3.12), we get for all large values of r,

log T(r, fn) < log[Q] M(r,g) logr

1
log T(r,g) - log r logT(r, g) +o(1)
. 10g ( fn) Pg
clim o sup =— 2 < 2 3.15
r%go IOg T(Ta g) o A.‘] ( )

Again from Lemma 2.6,
og" ! T(r.fu) = (A;—€)log M (5i.9) +O(1)

ie. log™ T(r,f,) > log® M (4 — ,g) +O0(1). (3.16)

From (3.3) we obtain for all large values of r and for § > 0 and (0 <& < 1)

Y

V

(= )A"”
_ 4n— 1
IOgM(4 *1’9) > (-9 Ag+0—Xg (557
(4!1. 1)
- e
(4n 1)/\ +6

because 9 1t9=2(") is an increasing function of r.
So by (3.2) we get for a sequence of value of r tending to infinity

1—e¢ 1
10gM(4 17.9) Z 1+€(4n_1)/\g+§T(rag)

ie. log[2]M(4n 1’9)
Now from (3.16) and (3.17)

%

logT(r,g) + O(1). (3.17)

log™" T'(r, f.,)
1 O NI
% Tog T(r, f)

So the theorem follows from (3.13), (3.14), (3.15) and (3.18) when n is even.
Similarly when n is odd we get (ii). O

(3.18)

Corollary 3.6. Using the hypothesis of Theorem 3.5 if f and g are of reqular
growth then

im M — lim M
T—00 log T(?"7 g) r—00 IOg T( 7f)

Remark 3.7. The conditions Ag, Ay > 0 and pr py < 0o are necessary for Theorem
3.5 and Corollary 3.6, which are shown by the following examples.

=1.
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Example 3.8. Let f = z,g=expz. Then A\f = pr =0 and 0 < Ay = pg < 0.
Now when n is even then

frn = expl®] 2.

Therefore,
T(r, fn) <log M(r, f,) = explz 7.
So,
log™ T(r, f,) < log™(explz—r)
= logn—Etl,
= loglz iy,

Also when n is odd

fn= expl“7 ] 2.

Therefore,
T(r, f,) < log M(r, f,) = expl™= ~1r.
So,
IOg[n] T(r, fn) < log[”] (eXp["T—lA] r)
= 10g[n7"7’1+1] -
= 10g["7“+1] .
Now

logT(r, f) =logr and logT(r,g) =logr —logm.
Therefore when n is even

log™ T'(r, f,,) < loglz 1y
logT(r,g) ~ logr—logm

—0 as r— oo,

and when n is odd

log" T, f,) _ logtF Ir
logT(r,f) — log r

—0 as r— oo.

Example 3.9. Let f =expl? z,g = expz. Then A =py =00, Ag=pg=1.
Now when n is even

fo = expl ¥ 2.

Therefore
3T(2r, frn) > logM(r,fn) =exp By
1 3n
ie. T(rfn) > 3 eXP -1 g
log™ T(r, f,) > log" (expl® ~1 g) +0(1)
= explz~l g +o(1).

Also when n is odd
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Therefore
3r2r, fn) > logM(r fn)—exp[mzﬂ 1,
e T = Lep
log™ T(r, f) > logl(exp!™7] g) +o(1)
— el o),
Also

T(r, f)<e" and T(r,g) = —
Therefore when n is even

log™ T'(r, f,,) S expls UL +0(1)
logT(r,g) — logr— 10g7r

— 00 as r — oo,

and when n is odd
log" T(r. fu) _ expU"Z§ + o(1)
logT(r, f) — r
Theorem 3.10. Let f and g be two entire functions such that 0 < Ay < py < 00
and 0 < A\g < pg < oo. Then for k=0,1,2,3,.....
A 1 n log!™ T(r, f,
() 22 <lim inf log"I T(r. ) _ . sup 108 L fn) - py
pr =B log T(r, f®) = A Tog T(r, f0) < g

when n is even.

— 00 as 1T — OQ.

A log™ T'(r, f,, log™ T(r, f,
(i) AL < lim inf 28 L) g 108 T ) py
Py r—o0 log T(r,g(®)) r—oo log T(r,g®)) = A,

when n is odd.

Proof. First suppose that n is even. Then for given (0 < e < min{As, \;}) we
have from Lemma 2.6 for all large values of r,

log" 1 T(r, fa) < (ps +¢)log M(r,g) + O(1)
ie. log™ T(r,f,) < log® M(r,g)+O(1).

Also we know that
(k)
lim inf 28T
r—00 logr
Now

o oy 08T f) o log®l M (r g)
b log T(r, f) s Tog T(r, f®)
[2]
< lim sup log' M (r, g)' logr
oo log log T'(r, f(R))

Pg

IA
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Again from lemma 2.6 we have for all large values of r,

g™ T(r, f,) > (/\f—a)logM(4 l,g) +0(1)
r Ag—e
> (Ar—e) (F> +0(1)
ie., log™ T(r,fn) > (A, —¢)log 7+ O(1).
Also
log T(r, f*)) < (ps + ) log 7.
Therefore,
log T'(r, fn) > (Ag —€)log 7+ O(1)
log T(r, f*)) = (pf+e)log r

Since € > 0 is arbitrary we get

lim inf

log[”] T(r, fn) g
r—oo log T(r f(k)) f

(3.20)

Therefore from (3.19) and (3.20) we have the result for even n.

Similarly for odd n we have (ii).
This proves the Theorem.

O

Theorem 3.11. Let f and g be two entire functions such that 0 < Ay < py < 00

and pg < oo. Then for k=0,1,2,3,

log" U T(r, f)

1, o, )

rT—00

=0 for all natural number n(> 2).

Proof. First suppose n is even. Then by Lemma 2.6 for all sufficiently large values

of rand (0 < e < Ay)
log[nfl]

T(r,fn) <
log M(r,g) <
and  T(exp(r), f®) >
So

log" " T(r, f,

(ps +e)log M(r,g) + O(1)
TPyJFE

rOf—e)

(ps +e)rrst

logl" 1 T(r, f

)
T(exp(r), f*))
)
" Tr=oe T(exp(r), f®)

Similarly for odd n we have

IN

+0o(1)

er(/\f*E)

(pg + &) log M(r, f) + O(1),

,r.prrs

(pg +e)rrste

logl" ! T(r, fn) <
and logM(r,f) <
So
logl" U T(r, fn)
T(exp(r), f*))
im IOg[n U T(r, fn)
rooo T(exp(r), fR)

This proves the theorem.

IN

+o(1)

er(%f—s)
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Remark 3.12. The condition py < oo is the necessary for Theorem 3.11, which is
shown by the following example.

Example 3.13. Let f =expz and g = exp!? z then Af=pr=1 and ps=o00

Now when n is even
[Sn]

fn =exp?
Therefore,
37(2r, f,) > logM(r, f,) = expl® Uy
1 n
ie. T(ryfn) > gexp 3n_q) ;
log[nfl] T(r, fn) > EXp[ v 1—n+1] T +o(1)
= expl#! L +o(1)
2
Also when n is odd,
fn = exp[ﬁ] z
Therefore
3T(27’7 fn) 2 IOg ]\4(7"7 fn) — exp[%_l] -
1 3n—1
i.e. 71<7"7 fn) Z 5 exp[dT—l] g
log" U T(r, f,) > exp gl 1 nt1) T . +o(1)
— el 4 o).
Also

T(exp(r), f¥) =
Therefore when n is even
log" =T (r, f,,) S expl?l £ +o(1)
T(exp(r), JP) = e/x
and when n is odd
logh" ™! T(r, f,) _ expl”3) 5 +o(1)
T(exp(r), f®) ~ er/m
Theorem 3.14. Let f and g be two entire functions such that 0 < Ay < pg < 00
and py < co. Then for k=0,1,2,3,......

o Jog" T T(r £)
r—00 T(exp(r)’ g(k))

— 00 as r — oo,

— 00 as 1T — OQ.

=0 for all natural number n(> 2).

Theorem 3.15. Let f and g be two entire functions such that pg < Ay < py < 00
. Then for k=0,1,2,3,......

[n—1]
lim 10g T(T, fn)

R T(r, f) =0 when n is even.
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Proof. From Lemma 2.6 we have for arbitrary (> 0) such that p, +¢ < Ay —¢ and
for large values of r,

log" ™! T(r, fu) < (ps +¢)log M(r,g) + O(1)
log M(r,g) < 1Pt
>

and T(r, f*)) A TE,
Therefore
log" " T(r, f.,) (ps +e)rts )
T(r, f(R) - rAs—e
[n—1]
i.e. Tlggo W = 0.
This proves the theorem. ([

Theorem 3.16. Let f and g be two entire functions such that py < Ay < pg < 00
. Then for k=0,1,2,3,...... ,

[n—1]
i 108 T(r, fn)

Lim T(r,g(k)) =0 when n is odd.

In [6] Lahiri and Datta proved the following theorem.
Theorem A. Let f and g be two transcendental entire functions such that
(1) 0< Ay < pg < o0, (ii) Af >0, and (iii) §(0;f) < 1.
Then for any real number A,

logT
lim sup 0g (1. fo9)

r—oo lOg T(TAvg(k)) -

for k=10,1,2,3,......
Now we generalise the above as follows.
Theorem 3.17. Let f and g be two transcendental entire functions such that
(1) 0 < Ag < pg <oo, (%) Af>0, and (iii) 6(0;f) <1
Then for any real number A,

lim su —10g[”*1] T(r, fn) =0
ok Tog T(rA, gy —

fork=0,1,23,...... and n is even.

Proof. When n is even then from (2.1),

og" ™ T(r.f) = (O —&)log M (5. fg) +O(1)
> (0 =T (55 f9) +O)
that is, log" ! T(r,fn) > logT (4Tr_2,fg) +0(1) .



Therefore
log!" ! T(r, f,) log T (==, /9)
lim s : > lim s 4
% Tog TG A ™) = I Tog T(r, o)
. log T (5=, f9) log T ((M 5 g(k)
> lim sup " YT 3
r—=o | Jog T ((4:72) ’g(k)) log T(T
But "
og 7 ((5=2)" ™) _ 5
lim sup > 2, (3.22)
r—oo log T(TAag(k)) Pg
So proceeding as in Theorem A we have the result by using (3.21) and (3.22).
This proves the theorem. (I
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Theorem 3.18. Let f and g be two transcendental entire functions such that

(i) 0 < Ap < pg<oo, (i) Ay >0, and (ii) 6(0;9) < 1.

Then for any real number A,

lim su log - T(r, fn) 00
1 _— L =
H&%N,M>

fork=0,1,2,3,...... and n is odd.
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