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SOME KOROVKIN TYPE APPROXIMATION THEOREMS FOR

MULTIVARIATE BERNSTEIN TYPE RATIONAL OPERATORS

VIA SUMMABILITY METHODS

DİLEK SÖYLEMEZ

Abstract. In this paper, we derive approximation theorems in the multivari-

ate case for rational operators using power series convergence and A-statistical

convergence. By selecting a special case of power series convergence and con-
sidering A-statistical convergence, we study approximation properties of a

non-tensor product BBH type operator, which doesn’t converge in the clas-

sical sense. Finally, we demonstrate that our new approximation results are
stronger than some previously established results.

1. Introduction

Approximation theory and summability theory have important applications in
functional analysis, harmonic analysis, partial differential equations, measure the-
ory and probability theory (see; [44] ). Korovkin-type theorems play a central role
in approximation theory (see; [9]). The use of summability methods in approxi-
mation theory contributes studies by providing a more general limit approach for
non-convergent sequences or series. After, Gadjiev and Orhan [29] proved Korovkin-
type theorems for sequences of positive linear operators via statistical convergence,
many researchers have investigated Korovkin-type theorems with various motiva-
tions, considering summability methods such as A-statistical convergence, ideal
convergence, power series convergence etc. (see; [1]- [6]).

A Korovkin-type theorem was proved by Gadjiev and Çakar in [30] on a sub-
class of C[0,∞), which represents the space of continuous and bounded functions on
[0,∞). With the aid of this theorem the uniform approximation of Bleimann Butzer
and Hahn (BBH) operator which is a Bernstein type rational operator was obtained,

by considering the test functions
(

s
1+s

)τ
for τ = 0, 1, 2. Thus, the problem of exam-

ining approximation properties of BBH operators with the test functions
(

s
1+s

)τ
for τ = 0, 1, 2 was solved, since neither the Korovkin theorem nor the weighted
Korovkin theorem proved in [27], [28] could be applied to BBH operators and their
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18 D. SÖYLEMEZ

generalizations (see; [30]). When the classical Korovkin-type theorem didn’t work,
some extensions of this theorem were proved via A-statistical convergence, ideal
convergence, power series statistical convergence (see; [7], [24], [40]).

The main objective of this paper is to give Korovkin type theorems in multivari-
ate case using power series convergence, Abel convergence, Borel convergence and
A-statistical convergence. Additionally, we investigate the approximation proper-
ties of multivariate BBH-type operators which do not converge in the ordinary
sense.

Next, we start to mention about power series convergence and regularity of it
[12]:
Let (ρj) be a real sequence with ρ0 > 0 and ρ1, ρ2, ... ≥ 0, such that the correspond-
ing power series ρy =

∑∞
j=0 ρjy

j has radius of convergence R with 0 < R ≤ ∞. If

for all y ∈ (0, R),

lim
y→R−

1

ρ(y)

∞∑
j=0

xjρjy
j = L,

then we say that x = (xj) is convergent in the sense of power series method P .

Theorem 1.1. [12]A power series method P is considered regular if and only if for
any j ∈ N0

lim
0<y→R−

ρjy
j

ρ(y)
= 0.

Korovkin-type theorems can be found via power series convergence in [41], [42].
Power series convergence includes the Abel and Borel summability methods. For
Abel summability method, Korovkin-type theorems can be found in [43], [45]. Fur-
ther results in this direction on different spaces can be found [11], [33], [35].
As special cases of power series convergence, we recall the Abel and Borel conver-
gences; respectively.
Assume that ρj = 1, in this case R = 1 and ρ(y) = 1

1−y . Thus power series con-

vergence reduce to the Abel convergence. Let x = (xj) be a real sequence. If the
series

∞∑
j=0

xjy
j (1.1)

is convergent for any y ∈ (0, 1) and

lim
y→1−

(1− y)

∞∑
j=0

xjy
j = α

then x is said to be Abel convergent to real number α ([12], [34]).
Assume that ρj = 1

j! , in this case R = ∞ and ρ(y) = ey. Thus the power series

convergence reduces to the Borel convergence. Let x = (xj) be a real sequence. If
the series

∞∑
j=0

xjy
j (1.2)

is convergent for any y > 0 and

lim
y→∞

e−y
∞∑
j=0

xj
j!
yj = α
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then x is said to be Borel convergent to real number α. Borel summability method
is regular if and only if it is non-polynomial. ([12], [34])

In [37], Söylemez and Ünver studied an application of Korovkin-type theorems
via Abel convergence, considering Cheney Sharma operators. This study allows us
the use of weaker conditions than the classic ones, leading to more general results.
Further applications of power series convergence for different operators can be found
in ([13]-[22])

The remainder of the paper is organized as follows : In Section 2, after re-
calling some definitions and notations in the multivariate setting, we present the
multivariate BBH-type operators (Ln) which do not converge in the classical sense.
In Section 3, we demonstrate some Korovkin-type theorems in the multivariate
case, taking into account power series convergence and its particular cases; Abel
and Borel convergence. In Section 4, as a special case, using the Korovkin type
theorem proved in section 3, we establish the Abel convergence of the operators
{Ln (φ;x)}n∈N to φ(x) on Ś for φ belonging to a suitable subspace of continuous

functions that denoted by Ĥd
ω

(
Ś
)
. In Section 5, we give a Korovkin-type theorem

via A-statistical convergence, and using this theorem, examine the approximation
properties of the operators (Ln).

2. Prelimineries

In this section, we mention about the multi index notations and some definitions.
Let us consider the set Ś ⊂ Rd, d ∈ N, given by

Ś =
{
x = (x1, · · · , xd) ∈ Rd : 0 ≤ xi <∞, 1 ≤ i ≤ d

}
.

The l1 norm of x= (x1, · · · , xd) ∈ Ś is denoted by |x| =
∑d
i=1 xi and the Eu-

clidean norm is given by
d∑
i=1

x2
i = ‖x‖2 . Also, k = (k1, · · · , kd) ∈ Nd ∪ {0} and

n ∈ N we have the following representations:

|k| := k1 + k2 + · · ·+ kd, k! := k1!k2! · · · kd!,

xk := (xk11 x
k2
2 · · ·x

kd
d ), x ∈Rd, αx := (αx1, · · · , αxd) , for α∈R,(

n

k

)
:=

n!

k!(n− |k|)!
∑

0≤|k|≤n

:=
n∑

k1=0

n−k1∑
k2=0

· · ·
n−k1−···−kd−1∑

kd=0

.

On the other hand, we simply write φ (x) = φ (x1, · · · , xd) rather φ (x1, · · · , xd) for

x= (x1, · · · , xd) ∈ Ś, we also write anx rather (a1,nx1,a2,nx2, ..., ad,nxd) . 1 denotes
a function such that φ (x1, · · · , xd) = 1 and, for any x= (x1, · · · , xd), y= (y1, · · · , yd) ∈
Ś, x≤y means that xi ≤ yi for each i = 1, 2,· · · , d.

Let CB

(
Ś
)

denote the space of all real valued continuous and bounded functions

defined on Ś, equipped with norm

‖φ‖CB
= sup

x∈Ś
|φ (x)| .

Recall that the well-known total modulus of continuity of a function φ ∈ CB
(
Ś
)

is

defined as

Ω (φ; δ) := sup
{
|φ (x)− φ (t)| : |xi − ti| ≤ δi, x, t ∈ Ś, δ = (δ1, δ2, . . . , δd) ∈ Ś

}
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(see, e.g. [9], [23]).
Below, we give the definition of the general function of modulus of continuity.

Definition 2.1. [10]A non-negative function ω (u) defined in Ś ⊂ Rd is called a
function of modulus of continuity, if it satisfies the following conditions for any
δ = (δ1, · · · , δd) , µ = (µ1, · · · , µd)∈Ś

(1) ω (δ) is continuous for all δi, i = 1, · · · , d,
(2) ω (0) = 0, where 0 = (0, 0, · · · , 0) ,
(3) ω (δ) = ω (δ1, · · · , δd) is non-decreasing, i.e.;

ω (δ) ≥ ω (µ) for δ ≥ µ,
(4) ω (δ) is sub-additive, i.e.; ω (δ + µ) ≤ ω (δ) + ω (µ) .

Let Ĥd
ω

(
Ś
)

denote the space of all real valued functions defined on Ś satisfying

|φ (x)− φ (t)| ≤ ω
(∣∣∣∣ x1

1 + |x|
− t1

1 + |t|

∣∣∣∣ , · · · , ∣∣∣∣ xd
1 + |x|

− td
1 + |t|

∣∣∣∣) , (2.1)

for all x= (x1, ..., xd) , t= (t1, ..., td) ∈ Ś. It is easy to see that Ĥd
ω

(
Ś
)
⊂ CB

(
Ś
)
.

By letting univariate modulus of continuity in (1.1), we obtain the subclass Hω

defined in [30].
In [39] Söylemez et al. under the above definitions of multiindex notations,

constructed non-tensor multivariate BBH operators and show a uniform approxi-

mation of these operators in the class Ĥd
ω

(
Ś
)

. In [32], Özarslan et al. introduced

a Balázs-type generalization of non tensor bivariate BBH operators and gave a
Korovkin-type theorem in the multivariable case for Balázs-type BBH operators,
considering a class which was produced by the univariate modulus of continuity
function.

Now, we consider the following generalization of BBH-type operators for φ ∈
CB

(
Ś
)

in several variables which is not a tensor product setting:

Ln(φ; x) =
bn

(1 + |anx|)n
∑

0≤|k|≤n

(
n

k

)
(anx)

k
φ

(
k

n+ 1− |k|

)
, (2.2)

where x= (x1,x2, ..., xd) ∈ Ś, bn ≥ 0, ai,n ≥ 0 for all i = 1, 2, ...d, n ∈ N. By using
power series statistical convergence defined in [6] the approximation properties of
the operators (2.2) were studied in [40]. Throughout the paper, we use the following
test functions:

ė0 (x) = 1

ėi (x) =
xi

1 + |x|
,

ėd (x) =

d∑
i=1

(
xi

1 + |x|

)2

.

3. Main Results

In this section, we prove some Korovkin-type theorems via power series conver-
gence. Firstly, we recall the Korovkin-type theorem given in [30].
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Theorem 3.1. [30]Let (An) be a sequence of positive linear operators from Hω →
CB [0,∞) . Then we have

lim
n→∞

‖An (φ)− φ‖CB
= 0,

if and only if

lim
n→∞

‖An (ei)− ei‖CB
= 0, i = 0, 1, 2,

where ei (x) =
(

x
1+x

)i
.

The following three theorems are more useful whenever Theorem 3.1 and multi-
variate version of it (see; Theorem 2.1 in [39]) can’t be used.

Theorem 3.2. Let {Tn (φ)}n∈N be a sequence of linear positive operators from

Ĥd
ω

(
Ś
)

to CB

(
Ś
)

such that sup0<y−R
1

p(y)

∞∑
n=0

‖Tn(ė0)‖ pnyn < ∞ for any y ∈

(0, R). If

lim
y→R−

1

p(y)

∥∥∥∥∥
∞∑
n=0

{Tn (ė0)− ė0} pnyn
∥∥∥∥∥
CB

= 0, (3.1)

lim
y→R−

1

p(y)

∥∥∥∥∥
∞∑
n=0

{Tn (ėi)− ėi} pnyn
∥∥∥∥∥
CB

= 0, for all i = 1, · · · , d, d+ 1

are satisfied, then for φ ∈ Ĥd
ω

(
Ś
)

we have

lim
y→R−

1

p(y)

∥∥∥∥∥
∞∑
n=0

(Tn (φ)− φ) pny
n

∥∥∥∥∥ = 0. (3.2)

Proof. Suppose that φ ∈ Ĥd
ω

(
Ś
)

and x= (x1, ..., xd), t = (t1, ..., td) are any two

elements of Ś. Then, from the properties of the general function of modulus of
continuity, for any given ε > 0 there exists a ηi > 0 i = 1, 2, ..., d and taking
η = min {η1, η2, ..., ηd} , we may write

|φ (t)− φ (x)| < ε whenever

∣∣∣∣ ti
1 + |t|

− xi
1 + |x|

∣∣∣∣ < η (i = 1, 2, ..., d). (3.3)

Otherwise, if
∣∣∣ ti0

1+|t| −
xi0

1+|x|

∣∣∣ ≥ η for some i0 ∈ {1, 2, ...., d} , then we have

∥∥∥∥ t

1 + |t|
− x

1 + |x|

∥∥∥∥ =

√√√√ d∑
i=1

(
ti

1 + |t|
− xi

1 + |x|

)2

≥
∣∣∣∣ ti0
1 + |t|

− xi0
1 + |x|

∣∣∣∣ ≥ η.
From the boundedness of φ on Ś, one has

|φ (t)− φ (x)| ≤
2 ‖φ‖CB

η2

∥∥∥∥ t

1 + |t|
− x

1 + |x|

∥∥∥∥2

,
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when
∥∥∥ t

1+|t| −
x

1+|x|

∥∥∥ =

√√√√ d∑
i=1

(
ti

1+|t| −
xi

1+|x|

)2

≥ η, for some i0 ∈ {1, 2, ...., d}.

Hence we obtain for all x, t ∈Ś that

|φ (t)− φ (x)| ≤ ε+
2 ‖φ‖CB

η2

d∑
i=1

(
ti

1 + |t|
− xi

1 + |x|

)2

(3.4)

= ε+
2 ‖φ‖CB

η2

∥∥∥∥ t

1 + |t|
− x

1 + |x|

∥∥∥∥2

.

If we apply the operators (Tn) to (3.4) , then we have for all y ∈ (0, R) that

1

p(y)

∣∣∣∣∣
∞∑
n=0

(Tn (φ (t) ; x)− φ (x)) pny
n

∣∣∣∣∣ ≤ 1

p(y)

∞∑
n=0

(Tn (|φ (t)− φ (x)| ; x)) pny
n

+ ‖φ‖CB

1

p(y)

∣∣∣∣∣
∞∑
n=0

(Tn (1; x)− 1) pny
n

∣∣∣∣∣
=: I1

y + I2
y .

From (3.1) and using the fact that ‖φ‖CB
is finite when φ ∈ Ĥd

ω

(
Ś
)
, we obtain

lim
y→R−

I2
y = 0

lim
y→R−

‖φ‖CB

1

p(y)

∣∣∣∣∣
∞∑
n=0

(Tn,d (1; x)− 1) pny
n

∣∣∣∣∣ = 0.

Since the operator (Tn) is linear and positive and from (3.1), we obtain that

I1
y ≤ ε

1

p(y)

∣∣∣∣∣
∞∑
n=0

(Tn (1; x)− 1) pny
n

∣∣∣∣∣+ ε

+
2 ‖φ‖CB

η2

1

p(y)

∞∑
n=0

{∣∣∣∣∣Tn
(

d∑
i=1

(
ti

1 + |t|

)2

; x

)
−

d∑
i=1

(
xi

1 + |x|

)2

− 2
d∑
i=1

xi
1 + |x|

[
Tn

(
ti

1 + |t|
; x

)
− xi

1 + |x|

]

+

d∑
i=1

(
xi

1 + |x|

)2

(Tn (1; x)− 1)

}
pny

n

∣∣∣∣∣
≤
(
ε+

2d ‖φ‖CB

η2

)
1

p(y)

∣∣∣∣∣
∞∑
n=0

{Tn (1; x)− 1} pnyn
∣∣∣∣∣

+
4 ‖φ‖CB

η2

1

p(y)

d∑
i=1

∣∣∣∣∣
∞∑
n=0

{
Tn

((
ti

1 + |t|

)
; x

)
−
(

xi
1 + |x|

)}
pny

n

∣∣∣∣∣
+

2 ‖φ‖CB

η2

1

p(y)

∣∣∣∣∣∣

∞∑
n=0

Tn

( d∑
i=1

ti
1 + |t|

)2

; x

− d∑
i=1

(
xi

1 + |x|

)2
 pny

n

∣∣∣∣∣∣ ,
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for all y ∈ (0, R). Then, one can have

1

p(y)

∥∥∥∥∥
∞∑
n=0

(Tn (φ)− φ) pny
n

∥∥∥∥∥
CB

≤ K

 1

p(y)

∥∥∥∥∥
∞∑
n=0

(Tn (ėd)− ėd) pnyn
∥∥∥∥∥
CB

+
1

p(y)

∥∥∥∥∥
∞∑
n=0

(Tn (ėi)− ėi) pnyn
∥∥∥∥∥
CB

+
1

p(y)

∥∥∥∥∥
∞∑
n=0

(Tn (ė0)− ė0) pny
n

∥∥∥∥∥
CB

 ,

where K = max
{
ε+

2d‖φ‖CB

η2 ,
4‖φ‖CB

η2 ,
}
. Hence, we deduce

lim
y→R−

I1
y = 0,

which ends the proof. �

We can express Theorem 3.2 with Abel convergence and Borel convergence for
particular cases as follows:

Theorem 3.3. Let {Tn (φ)}n∈N be a sequence of linear positive operators from

Ĥd
ω

(
Ś
)

to CB

(
Ś
)

such that

∞∑
n=0

‖Tn(ė0)‖ yn <∞ for any y ∈ (0, 1). If

limy→1− (1− y)

∥∥∥∥ ∞∑
n=0
{Tn (ė0)− ė0} yn

∥∥∥∥
CB

= 0,

limy→1− (1− y)

∥∥∥∥ ∞∑
n=0
{Tn (ėi)− ėi} yn

∥∥∥∥
CB

= 0, for all i = 1, · · · , d, d+ 1
(3.5)

are satisfied, then for φ ∈ Ĥd
ω

(
Ś
)

we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Tn (φ)− φ) yn

∥∥∥∥∥
CB

= 0.

Theorem 3.4. Let {Tn (φ)}n∈N be a sequence of linear positive operators from

Ĥd
ω

(
Ś
)

to CB

(
Ś
)

such that

∞∑
n=0

‖Tn(ė0)‖ yn <∞ for any y > 0. If

limy→∞ e−y
∥∥∥∥ ∞∑
n=0
{Tn (ė0)− ė0} y

n

n!

∥∥∥∥
CB

= 0,

limy→∞ e−y
∥∥∥∥ ∞∑
n=0
{Tn (ėi)− ėi} y

n

n!

∥∥∥∥
CB

= 0, for all i = 1, · · · , d, d+ 1

are satisfied, then for φ ∈ Ĥd
ω

(
Ś
)

we have

lim
y→∞

e−y

∥∥∥∥∥
∞∑
n=0

(Tn (φ)− φ)
yn

n!

∥∥∥∥∥
CB

= 0.



24 D. SÖYLEMEZ

The following example shows that power series convergence of the operators
holds, but ordinary convergence does not hold. Let pj = 1, in this case R = 1 and
p(y) = 1

1−y , and we obtain Abel convergence.

Example 3.5. We can give the following sequence as an example for the sequences
(bn) and (ai,n) :

ai,n :=

{
0 , n is a prime,
1 , otherwise,

for each i = 1, 2, ...d

bn :=

{
0 , n is a perfect square,
1 , otherwise.

Observe that the sequences (bn) and (ai,n) are not convergent, but they are Abel
convergent (they are bounded and statistically convergent) ([34], [36]).

4. A Particular case of Power Series Convergence

In this section, we study a particular case of power series convergence to give
more detailed examples. By selecting the Abel convergence, we investigate the
approximation properties of the operators (Ln) under the following conditions:

lim
y→1−

(1− y)

∞∑
n=0

|1− ai,n| yn = 0, for all i = 1, 2, ...d

lim
y→1−

(1− y)

∞∑
n=0

|1− bn| yn = 0, (4.1)

lim
y→1−

(1− y)

∞∑
n=0

∣∣∣∣∣1− (ai,n)2n (n− 1)

(n+ 1)
2 bn

∣∣∣∣∣ yn = 0, for all i = 1, 2, ...d

lim
y→1−

(1− y)

∞∑
n=0

∣∣∣∣1− bn n

n+ 1
(ai,n)

∣∣∣∣ yn = 0, for all i = 1, 2, ...d.

Before studying the promised approximation properties of these operators, we
give the following lemma which can be proved as in [39]:

Lemma 4.1.

Ln (1; x) = bn (4.2)

Ln

(
ti

1 + |t|
; x

)
= bn

n

n+ 1

(
ai,nxi

1 + |anx|

)
, for i = 1, · · · , d (4.3)

Ln

(
d∑
i=1

(
ti

1 + |t|

)2

; x

)
= bn

d∑
i=1

{
n (n− 1)

(n+ 1)
2

(
ai,nxi

1 + |anx|

)2

+
n

(n+ 1)
2

ai,nxi
1 + |anx|

}
.

(4.4)

Lemma 4.2. The following inequalities hold for the operators (2.2)
i) ∥∥∥∥∥

∞∑
n=0

(Ln (ė0)− ė0) yn

∥∥∥∥∥
CB

=

∞∑
n=0

|1− bn| yn.
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ii) ∥∥∥∥∥
∞∑
n=0

(Ln (ėi)− ėi) yn
∥∥∥∥∥
CB

≤
∞∑
n=0

bn

(
d∑
i=1

|1− ai,n|

)
yn +

∞∑
n=0

∣∣∣∣bn n

n+ 1
(ai,n)− 1

∣∣∣∣ yn.
ii) ∥∥∥∥∥

∞∑
n=0

(Ln (ėd)− ėd) yn
∥∥∥∥∥
CB

≤
∞∑
n=0

dbn

(
d∑
i=1

|1− ai,n|

)
(d+ |an|) yn + 2d

∞∑
n=0

bn

(
d∑
i=1

|1− ai,n|

)
yn

+ d

∞∑
n=0

(
d∑
i=1

∣∣∣∣∣bnn (n− 1)

(n+ 1)
2 (ai,n)

2 − 1

∣∣∣∣∣
)
yn + d

∞∑
n=0

bn
n

(n+ 1)
2 y

n.

Proof of Lemma 4.2 can be obtained Theorem 3.1 in [40]. In the following theo-
rem, we show the Abel convergence of the sequence of the multivariate Bleimann,

Butzer and Hahn-type operators Ln (φ) to the function φ ∈ Ĥd
ω

(
Ś
)

on Ś.

Theorem 4.3. Let (Ln) be the operator defined by (2.2) and suppose that
{
bn

n
(n+1)2

}∞
0

is Abel null, (bn) and (ai,n) hold the condition (4.1), for each i = 1, 2, 3, ..., d. Then

for any φ ∈ Ĥd
ω

(
Ś
)

we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Ln (φ)− φ) yn

∥∥∥∥∥
CB

= 0.

Proof. By using Theorem 3.3, we prove (3.5) holds for the operator (Ln). Indeed,
from Lemma 4.1 and Lemma 4.2 (i) by the hypothesis, we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Ln (1; x)− 1) yn

∥∥∥∥∥
CB

= 0.

Moreover, from Lemma 4.2 (ii), we have for all i = 1, 2, 3, ..., d∥∥∥∥∥
∞∑
n=0

(Ln (ėi)− ėi) yn
∥∥∥∥∥
CB

≤
∞∑
n=0

bn

(
d∑
i=1

|1− ai,n|

)
yn +

∞∑
n=0

∣∣∣∣bn n

n+ 1
(ai,n)− 1

∣∣∣∣ yn.
By using (4.1) and the hypothesis, we reach to

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Ln (ėi)− ėi) yn
∥∥∥∥∥
CB

= 0, i = 1, · · · , d.
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Finally, from Lemma 4.2 (iii), we obtain that∥∥∥∥∥
∞∑
n=0

(Ln (ėd)− ėd) yn
∥∥∥∥∥
CB

≤
∞∑
n=0

dbn

(
d∑
i=1

|1− ai,n|

)
(d+ |an|) yn + 2d

∞∑
n=0

bn

(
d∑
i=1

|1− ai,n|

)
yn

+ d

∞∑
n=0

(
d∑
i=1

∣∣∣∣∣bnn (n− 1)

(n+ 1)
2 (ai,n)

2 − 1

∣∣∣∣∣
)
yn + d

∞∑
n=0

bn
n

(n+ 1)
2 y

n.

From (4.1), we get

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Ln (ėd)− ėd) yn
∥∥∥∥∥
CB

= 0.

Thus, we reach to the desired result. �

5. A -Statistical convergence

In this section, taking into account A-statistical convergence, we give a Korovkin
type theorem.
Now, we recall that for an infinite non-negative regular summability matrix A =
(ajn) a real sequence x := (xn) is called A-statistically convergent to a number
L if, for every ε > 0, limj→∞

∑
n:|xn−L|≥ε

ajn = 0 holds. Then we say that a real

sequence x = (xn) is said to be A-statistically convergent (see, [25], [26] ) to a real
number L. If A is the identity matrix I, then I-statistical convergence reduces to
the classical convergence, and, if A = C1, the Cesáro matrix of order one, then it
coincides with statistical convergence. Some Korovkin type approximation results
obtained using A-statistical convergence may be found [8], [31], [35], [38]. In [24],
a Korovkin-type theorem was obtained to prove A-statistical convergence of tensor
product multivariate BBH operators which have a different construction from the
operators (2.2).

For the sequence of the operators (2.2) we can not use Theorem 3.1 and mul-
tivariate version of it proved in [39], therefore it may be benefical to consider the
following theorem.

Theorem 5.1. Let A = (ajn) be a nonnegative regular summability matrix and

{Tn (φ)}n∈N be a sequence of linear positive operators from Ĥd
ω

(
Ś
)

to CB

(
Ś
)
, stA−

lim
n→∞

bn = 1, stA − lim
n→∞

ai,n = 1 for all i = 1, 2, ..., d. If

stA − limn→∞ ‖Tn (ė0)− ė0‖CB
= 0,

stA − limn→∞ ‖Tn (ėi)− ėi‖CB
= 0, for all i = 1, · · · , d, d+ 1

(5.1)

are satisfied, then for φ ∈ Ĥd
ω

(
Ś
)

we have

stA − lim
n→∞

‖Tn (φ)− φ‖CB
= 0.
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Proof. From (3.4), we deduce

|Tn (φ (t) ; x)− φ (x)|

≤ ε+

(
ε+ ‖φ‖CB

+
2d ‖φ‖CB

η2

)
|Tn (ė0)− ė0|

+
4 ‖φ‖CB

η2

d∑
i=1

|Tn (ėi)− ėi|+
2 ‖φ‖CB

η2
|Tn (ėd)− ėd| ,

which implies

‖Tn (φ)− φ‖
CB
≤ ε+K

{
d+1∑
i=0

‖Tn (ėi)− ėi‖
CB

}
,

where K = max
{
ε+ ‖φ‖CB

+
2d‖φ‖CB

η2 ,
4‖φ‖CB

η2

}
.

For a given s > 0 we select ε > 0 such that ε < s. Next, we establish the following
sets

Ù :=
{
n ∈ N : ‖Tn (φ)− φ‖CB

≥ s
}
,

Úi :=

{
n ∈ N : ‖Tn (ėi)− ėi‖CB

≥ s− ε
K(d+ 2)

}
, i = 0, 1, 2, ..., d+ 1.

Then, by (5.1) , we have Ú ⊂

(
d+1⋃
i=0

Úi

)
. Hence, for all n ∈ N,

∑
n∈Ú

ajn ≤

∑
n∈Ú1

ajn +
∑
n∈Ú2

ajn +
∑
n∈Ú3

ajn + ...+
∑

n∈Úd+1

ajn


letting j →∞ and we get from (5.1) that

lim
j→∞

∑
n∈Ú

ajn = 0,

which ends the proof. �

In the following, we study aproximation properties of the operators (2.2) via
A-statistical convergence.

Theorem 5.2. Let A = (ajn) be a nonnegative regular summability matrix and

{Ln (φ)}n∈N be a sequence of linear positive operators defined in (2.2) from Ĥd
ω

(
Ś
)

to

CB

(
Ś
)
, stA − lim

n→∞
bn = 1, stA − lim

n→∞
ai,n = 1 for all i = 1, 2, ..., d. If

stA − limn→∞ ‖Ln (ė0)− ė0‖CB
= 0,

stA − limn→∞ ‖Ln (ėi)− ėi‖CB
= 0, for all i = 1, · · · , d, d+ 1

(5.2)

are satisfied, then for φ ∈ Ĥd
ω

(
Ś
)

we have

stA − lim
n→∞

‖Ln (φ)− φ‖CB
= 0.
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Proof. By using the Theorem 5.1, it is enough to show that (5.2) holds for (Ln).
From Lemma 4.2 (ii), we have

‖Ln (ėi)− ėi‖CB

≤ bn

(
d∑
i=1

|1− ai,n|

)
+

∣∣∣∣bn n

n+ 1
(ai,n)− 1

∣∣∣∣ .
for all i = 1, 2, ..., d. Next, we establish the following sets for any ε > 0,

Ni :=
{
n ∈ N : ‖Ln (ėi)− ėi‖CB

≥ ε
}
,

N1
i :=

{
n ∈ N :

∣∣∣∣∣bn
(

d∑
i=1

|1− ai,n|

)∣∣∣∣∣ ≥ ε

2

}
,

N2
i :=

{
n ∈ N :

∣∣∣∣bn n

n+ 1
(ai,n)− 1

∣∣∣∣ ≥ ε

2

}
,

for i = 1, · · · , d, it is clear that Ni ⊂ N1
i ∪N2

i . Therefore, we can write

∑
n∈Ni

ajn ≤

∑
n∈N1

i

ajn +
∑
n∈N2

i

ajn


letting j →∞ and we get from the hypothesis that

stA − lim
n→∞

‖Ln (ėi)− ėi‖CB
= 0,

for i = 1, · · · , d. Moreover, by using Lemma 4.2 (iii), we reach to

‖Ln (ėd)− ėd‖CB

=

∣∣∣∣∣Ln
(

d∑
i=1

(
ti

1 + |t|

)2

; x

)
−

d∑
i=1

(
xi

1 + |x|

)2
∣∣∣∣∣

≤
d∑
i=1

{dbn |1− ai,n| (d+ |an|) + 2dbn |1− ai,n|

+d

∣∣∣∣∣bnn (n− 1)

(n+ 1)
2 (ai,n)

2 − 1

∣∣∣∣∣+ dbn
n

(n+ 1)
2

}
.

Since stA − limn→∞ bn, stA − limn→∞
n(n−1)

(n+1)2
= 1 and stA − lim

n→∞
ai,n = 1 for all

i = 1, 2, ..., d, observe that stA − lim
n→∞

bn
n(n−1)

(n+1)2
(ai,n)

2
= 1. Now, we define the

following sets for any ε > 0 that

K :=
{
n ∈ N : ‖(Ln (ėd)− ėd)‖CB

≥ ε
}
,

K1
i :=

{
n ∈ N : |dbn |1− ai,n| (d+ |an|)| ≥

ε

4d

}
,

K2
i :=

{
n ∈ N : 2dbn |1− ai,n| ≥

ε

4d

}
,

K3
i :=

{
n ∈ N :

∣∣∣∣∣bnn (n− 1)

(n+ 1)
2 (ai,n)

2 − 1

∣∣∣∣∣ ≥ ε

4d

}
,

K4
i :=

{
n ∈ N : bn

n

(n+ 1)
2 ≥

ε

4d

}
,
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we easily see that

K ⊂
d⋃
i=1

(
K1
i ∪K2

i ∪K3
i ∪K4

i

)
which yields

∑
n∈K

ajn ≤
d∑
i=1

 ∑
n∈K1

i

ajn +
∑
n∈K2

i

ajn +
∑
n∈K3

i

ajn +
∑
n∈K4

i

ajn


letting j →∞ and we get from the hypothesis that

lim
j→∞

∑
n∈K

ajn = 0,

it follows that

stA − lim
n→∞

‖Ln (ėd)− ėd‖CB
= 0.

Thus, the proof is completed. �

The example below demonstrates the existence of a sequence (bn) , (ai,n) where
A-statistical convergence holds, but classical convergence does not hold.

Example 5.3. Let (bn) and (ai,n) be the sequences defined by

bn =


1
2 , if n is a perfect square,

1 + 1
n , otherwise,

ai,n =


1
2 , if n is a perfect square,

e−
i
n , otherwise.

for each i = 1, 2, ..., d.

It is easy to see that (bn) and (ai,n) are not convergent, but they are statistically
convergent, i.e., C1-statistically convergent.

6. Concluding Remarks

This paper presents several Korovkin-type theorems by utilizing power series
convergence and A-statistical convergence, which are stronger than Theorem 3.1.
Note that Theorem 3.1 can not be used for the operators (2.2), but these theorems
can be used. By selecting, Abel convergence as a special case, we can give more
detail example in Example 3.5.
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[41] E. Taş, T. Yurdakadim, Ö. G. Atlıhan, Korovkin type approximation theorems in weighted

spaces via power series method, Oper. Matr. 12 2 (2018) 529-535.
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[45] M. Ünver, Abel transforms of positive linear operators on weighted spaces, Bull. Belg. Math.

Soc. Simon Stevin, 21 5 (2014) 813-822.
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