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PROJECTIVE CHANGE BETWEEN CUBIC (α, β)-METRIC AND

KROPINA METRIC

DHRUVISHA PATEL, BRIJESH KUMAR TRIPATHI∗

Abstract. In 1994, S. Basco and M. Matsumoto [17] investigated projective

change between Finsler spaces with the (α, β)-metric. The change F → F̃ is
called projective change if every geodesic of one space is transformed to a geo-

desic of the other. The main aim of the present paper is to find the necessary

and sufficient conditions for a projective change between Cubic (α, β)-metric,

F =
(α+ β)3

α2
and Kropina metric, F̃ =

α̃2

β̃
with some curvature properties

on a manifold.

1. Introduction

In 1961, Rapscak’s [1] studied the necessary and sufficient conditions for projec-
tive change, while in 1994, S. Basco and M. Matsumoto [17] studied the projective
change between Finsler spaces with the (α, β)-metric. In 2008, H. S. Park and
Y. Lee [8] investigated the projective change between a Finsler space with (α, β)-
metric and the corresponding Riemannian metric. Z. Shen and Civi Yildirim [22]
investigated projectively flat metrics with constant flag curvature in 2008. In 2009,
Ningwei Cui and Yi-Bing Shen [15] studied projective change between two forms of
(α, β)-metrics. N. Cui [14] investigated the S-curvature of several (α, β)-metrics in
2006. In 2009, Z. Lin [21] investigated (α, β)-metrics with constant flag curvature.
The projective change between two Finsler spaces has been studied by several au-
thors ([8, 9, 13, 15, 17, 22]).

In 1929, L. Berwald constructed an example of a projectively flat Finsler metric
of constant flag curvature K = 0, on unit ball Bn given by

F (x, y) =
(
√

(1− |x|2)|y|2+ < x, y >2+ < x, y >)2

(1− |x|2)2
√

(1− |x|2)|y|2+ < x, y >2
, (x, y) ∈ TRn, where x = xi, y = yi.
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Here |.| and <,> denote the standard Euclidean norm and inner product, respec-
tively on Rn.

Furthermore, L. Berwald introduced the Kropina metric for a two-dimensional
Finsler space with a rectilinear extremal, which was later investigated by V. K.
Kropina [10]. Kropina metrics are not regular Finsler metrics. Kropina metrics, the
simplest non-trivial Finsler metrics, have several intriguing applications in physics,
electron optics with a magnetic field, dissipative mechanics, and irreversible ther-
modynamics [18]. They also have promising applications in relativistic field theory,
control theory, evolution, and developmental biology.
A generalized form of a (α, β)-metric on an n-dimensional manifold M defined as

F = α

(
1 +

β

α

)p
, (1.1)

is known as the class p-power (α, β)-metrics [7], where p 6= 0 is a real constant. If
p = 1 then equation (1.1) reduces to Randers metric which has important and in-
teresting curvature properties and firstly introduced by Ingarden in 1957. If p = 2
then it becomes square metric and it also known as Z. Shens square metric. If
p = −1 it reduces to Matsumoto type metric which can be used in measurement of
slope of a mountain. If p = 1

2 it reduces to square root metric i.e. F =
√
α(α+ β)

and so on.

In the present paper, we considered p = 3 in equation (1.1) and got a special
class of (α, β)-metric in the form of

F =
(α+ β)3

α2
, (1.2)

and named as Cubic (α, β)-metric in an n-dimensional manifold M and a n-
dimensional Finsler space Fn equipped with Cubic (α, β)-metric is known as Finsler
space with Cubic (α, β)-metric [2]. Furthermore, the main aim of this paper is to
investigate the projective change between the Cubic (α, β)-metric and the Kropina
metric with some curvature properties.

1.1. Preliminary estimates. Consider that M is an n-dimensional smooth man-
ifold. Denote TxM , the tangent space of M at x. The tangent bundle TM is the
union of tangent spaces, TM :=

⋃
x∈M TxM . We denote elements of TM by (x, y),

where x = (xi) be a point of M and y ∈ TxM called supporting element. We denote
TM0 = TM\{0}.

Definition 1.1 A Finsler metric on M is a function F : TM → [0,∞) with the
following properties:

(1) F is smooth on TM0,
(2) F is positively 1-homogeneous on the fibers of tangent bundle TM and,

(3) the Hessian of
F 2

2
with element gij =

1

2

∂2F 2

∂yi∂yj
is positive definite on TM0.

The pair Fn = (M,F ) is called a Finsler space of dimension n. F is called fun-
damental function and gij is called the fundamental tensor of the Finsler space Fn.
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For a given Finsler metric F = F (x, y), the geodesic of F satisfy the following
ODEs [6]:

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0,

where Gi = Gi(x, y) are called the spray coefficients of F, which are given by

Gi =
1

4
gil
{

[F 2]xmyly
m − [F 2]xl

}
.

In Riemannian geometry, two Riemannian metrics α and ᾱ are projectively related
if and only if their spray coefficients are given by [6]

Giα = Giα̃ + λxkykyi, (1.3)

where λ = λ(x) is a scalar function on the based manifold.

Two Finsler metrics F and F̃ are projectively related if and only if their spray
coefficients have the relation

Gi = G̃i + P (x, y)yi, (1.4)

where Gi and G̃i are the spray coefficients of F and F̃ respectively and P (x, y) is a
scalar function on TM\{0} and homogeneous of degree one in y.

A Finsler metric is called a projectively flat metric if it is projectively related to
a locally Minkowskian metric.

In 1972, M. Matsumoto [11] introduced (α, β)-metrics. By definition, an (α, β)-
metric is a Finsler metric given in the following form:

F = αφ(s), s =
β

α
.

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form sat-

isfying ||βx|| < b0, ∀x ∈ M . It is generally known that F = αφ(s) is a regular
(α, β)-metric if the function φ(s) is a positive C∞ function with |s| < b0 satisfying
[6]

φ(s)− sφ
′
(s) + (b2 − s2)φ

′′
(s) > 0, |s| ≤ b < b0. (1.5)

In this case, F induces a positive definite metric tensor.

Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i).

where bi|j means the coefficients of the covariant derivative of β with respect to α.
Clearly β is closed if and only if sij = 0.
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An (α, β)-metric is said to be trivial if rij = sij = 0. Additionally, we denote

rij := aikrkj , sij := aikskj ,

r00 := rijy
iyj , rio := rijy

j ,

si := bjs
j
i , s0 := siy

i,

r := rijb
ibj , si0 := sijy

j .

The relation between the spray coefficients Gi of F and geodesic coefficients Giα of
α are given by [16]

Gi = Giα + αQsi0 + {−2Qαs0 + r00}
{

Ψbi + Θα−1yi
}
, (1.6)

where

Θ =
φφ

′ − s(φφ′′
+ φ

′
φ

′
)

2φ((φ− sφ′) + (b2 − s2)φ′′)
,

Q =
φ

′

φ− sφ′ ,

Ψ =
1

2

φ
′′

(φ− sφ′) + (b2 − s2)φ′′ .

The tensor D := Di
jkl∂i ⊗ dxj ⊗ dxk ⊗ dxl is called Douglas tensor where,

Di
jkl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
. (1.7)

A Finsler metric is called a Douglas metric when the Douglas tensor vanishes ([15],
[20]). The Douglas tensor is projective invariant [9]. Since the spray coefficients
of a Riemannian metric are quadratic forms, Douglas tensor vanishes for the Rie-
mannian metric indicating that it is a non-Riemannian quantity. The fundamental
fact is that all Berwald metrics must be Douglas metrics.

To represent the appropriate quantities of the metric F̃ , we use quantities with
a tilde. We now enumerate the Douglas tensor of a (α, β)-metric.

Let

G̃i = Giα + αQsi0 + Ψ {−2Qαs0 + r00} bi. (1.8)

Then (1.6) becomes

Gi = G̃i + Θ {−2Qαs0 + r00}α−1yi.

Clearly, if sprays Gi and G̃i are projective equivalent, they will have the same
Douglas tensor. Consider

T i = αQsi0 + Ψ {−2Qαs0 + r00} bi. (1.9)

Differentiating equation (1.9) with respect to ym, we have

Tmym = Q
′
s0 + Ψ

′
α−1(b2 − s2)[r00 − 2Qαs0] + 2Ψ[r0 −Q

′
(b2 − s2)s0 −Qss0].(1.10)
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The equation (1.8) can be rewritten as G̃i = Giα + T i. By (1.7), we have

D̃i
jkl =

∂3

∂yi∂yk∂yl
(Giα −

1

n+ 1

∂Gmα
∂ym

yi + T i − 1

n+ 1

∂Tm

∂ym
yi) (1.11)

=
∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1

∂Tm

∂ym
yi
)
.

The Douglas tensor of an (α, β)-metric is given by following equation

D̃i
jkl =

∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1

∂Tm

∂ym
yi
)
. (1.12)

Therefore, if F and F̃ are observed to possess the same Douglas tensor, that is to
say Di

jkl = D̃i
jkl. From (1.7) and (1.12), we get

∂3

∂yj∂yk∂yl

[
T i − T̃ i − 1

n+ 1
(Tmym − T̃mym)yi

]
= 0. (1.13)

Then there exists a class of scalar functions Hi
jk := Hi

jk(x), such that

T i − T̃ i − 1

n+ 1
(Tmym − T̃mym)yi = Hi

00, (1.14)

where Hi
00 := Hi

jk(x)yjyk, T i and Tmym are given by the relation (1.9) and (1.10)
respectively.

2. Projective change of the two metrics

In this section, we consider the projectively related two (α, β)-metrics, namely

Cubic (α, β)-metric F =
(α+ β)3

α2
and Kropina metric F̃ =

α̃2

β̃
.

For the Cubic (α, β)-metric
(α+ β)3

α2
, one can prove by (1.5) that F is a regular

Finsler metric if and only if ||βx|| < 1 for any x ∈ M . Geodesic coefficients are
provided by (1.6) with
.

Q :=
3

1− 2s
, (2.1)

Θ :=
3− 12s

2(1− s− 8s2 + 6b2)
,

Ψ :=
3

1− s− 8s2 + 6b2
.

The Kropina-metric F̃ =
α̃2

β̃
is not a regular (α, β)-metric, but the relation φ(s)−

sφ
′
(s) + (b2 − s2)φ

′′
(s) > 0 remains valid for |s| > 0.
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The geodesic coefficients are given by (1.6) with

Q̃ :=
−1

2s
, (2.2)

Θ̃ :=
−s
b̃2
,

Ψ̃ :=
1

2b̃2
.

For simplicity, we assume in this paper that λ :=
1

(n+ 1)
.

Lemma 2.1. [12] Let F =
α2

β
be a Kropina metric on an n-dimensional manifold

M. Then

(1) (n ≥ 3) Kropina metric F with b2 6= 0 is a Douglas metric if and only if

sik =
1

b2
(bisk − bksi). (2.3)

(2) (n = 2) Kropina metric F is a Douglas metric.

Furthermore, the Douglas tensor is projective invariant; hence, we have

Proposition 2.2. Let F =
(α+ β)3

α2
be a Cubic (α, β)-metric and F̃ =

α̃2

β̃
be a

Kropina metric on a manifold M with dimension n ≥ 3, where α and α̃ are two
Riemannian metrics, β and β̃ are two non-zero 1-forms. The Finsler metrics F
and F̃ have same Douglas tensor if and only if both are Douglas metrics.

Proof. The sufficiency is obvious, we simply need to prove the necessity. Suppose
that F and F̃ have the same Douglas tensor on an n-dimensional manifold M when
n ≥ 3. Then Di

jkl = D̃i
jkl, which implies that (1.14) holds.

Putting equations (2.1) and (2.2) into equation (1.14). Thus, we obtain

α11ξ1 + α10ξ2 + α9ξ3 + α8ξ4 + α7ξ5 + α6ξ6 + α5ξ7 + α4ξ8 + α3ξ9 + α2ξ10 + αξ11 + ξ12
α10η1 + α9η2 + α8η3 + α7η4 + α6η5 + α5η6 + α4η7 + α3η8 + α2η9 + αη10 + η11

(2.4)

+
1

2b̃2β̃

[
α̃2ξ̄1 + ξ̄2

]
= Hi

00,
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where

ξ1 = A1B6,
ξ2 = A1B7 +A2B6 − λyiA5B1,
ξ3 = A1B8 +A2B7 +A3B6 − λyiA5B2 − λyiA6B1,
ξ4 = A1B9 +A2B8 +A3B7 +A4B6 − λyiA5B3 − λyiA6B2 − λyiA7B1,
ξ5 = A1B10 +A2B9 +A3B8 +A4B7 − λyiA5B4 − λyiA6B3 − λyiA7B2 − λyiA8B1,
ξ6 = A1B11 +A2B10 +A3B9 +A4B8 − λyiA5B5 − λyiA6B4 − λyiA7B3 − λyiA8B2 − λyiA9B1,
ξ7 = A1B12 +A2B11 +A3B10 +A4B9 − λyiA6B5 − λyiA7B4 − λyiA8B3 − λyiA9B2 − λyiA10B1,
ξ8 = A2B12 +A3B11 +A4B10 − λyiA7B5 − λyiA8B4 − λyiA9B3 − λyiA10B2 − λyiA11B1,
ξ9 = A3B12 +A4B11 − λyiA8B5 − λyiA9B4 − λyiA10B3 − λyiA11B2,
ξ10 = A4B12 − λyiA9B5 − λyiA10B4 − λyiA11B3,
ξ11 = −λyiA10B5 − λyiA11B4,
ξ12 = −λyiA11B5,
η1 = B1B6,
η2 = B1B7 +B2B6,
η3 = B1B8 +B2B7 +B3B6,
η4 = B1B9 +B2B8 +B3B7 +B4B6,
η5 = B1B10 +B2B9 +B3B8 +B4B7 +B5B6,
η6 = B1B11 +B2B10 +B3B9 +B4B8 +B5B7,
η7 = B1B12 +B2B11 +B3B10 +B4B9 +B5B8,
η8 = B2B12 +B3B11 +B4B10 +B5B9,
η9 = B3B12 +B4B11 +B5B10,
η10 = B4B12 +B5B11,
η11 = B5B12,

ξ̄1 = b̃2s̃i0 − s̃0b̃i,
ξ̄2 = 2λyiβ̃r̃00 − β̃r̃00b̃i,
A1 = 3si0 + 18b2si0 − 18s0b

i,
A2 = −9βsi0 − 36b2βsi0 + 3r00b

i + 36βs0b
i,

A3 = −18si0β
2 − 12βr00b

i,
A4 = 48β3si0 + 12β2r00b

i,
A5 = s0(6 + 18b2) + r0(6 + 36b2),
A6 = s0(−30β − 396βb2) + 3b2r00 + r0(−30β − 144b2β),
A7 = (18β2 + 720b2β2)s0 + 36b2βr00 + 144b2β2r0,
A8 = 420s0β

3 + r00(−3β2 − 180b2β2) + r0(168β3),
A9 = −768s0β

4 + r00(−36β3 + 192b2β3) + r0(−192β4),
A10 = 180r00β

4,
A11 = −192β5,
B1 = 1 + 6b2,
B2 = −5β − 24b2β,
B3 = 24b2β2,
B4 = 28β3,
B5 = −32β4,
B6 = 1 + 12b2 + 36b4,
B7 = −6β − 60b2β − 144b4β,
B8 = −3β2 + 144b4β2,
B9 = 68β3 + 336b2β3,
B10 = −60β4 − 384b2β4,
B11 = −192β5,
B12 = 256β6.
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Here λ :=
1

n+ 1
. Furthermore, (2.4)is equal to

(α11ξ1 + α10ξ2 + α9ξ3 + α8ξ4 + α7ξ5 + α6ξ6
+α5ξ7 + α4ξ8 + α3ξ9 + α2ξ10 + αξ11 + ξ12)

×(2b̃2β̃) + (α10η1 + α9η2 + α8η3 + α7η4 + α6η5
+α5η6 + α4η7 + α3η8 + α2η9 + αη10 + η11)×
(α̃2ξ̄1 + ξ̄2) = Hi

00(2b̃2β̃)× (α10η1 + α9η2 + α8η3
+α7η4 + α6η5 + α5η6 + α4η7 + α3η8 + α2η9 + αη10 + η11).

(2.5)

By replacing yi with −yi in (2.5), we get



(−α11ξ1 + α10ξ2 − α9ξ3 + α8ξ4 − α7ξ5 + α6ξ6
−α5ξ7 + α4ξ8 − α3ξ9 + α2ξ10 − αξ11 + ξ12)

×(−2b̃2β̃)− (α10η1 − α9η2 + α8η3 − α7η4 + α6η5
−α5η6 + α4η7 − α3η8 + α2η9 − αη10 + η11)×
(α̃2ξ̄1 + ξ̄2) = Hi

00(−2b̃2β̃)× (α10η1 − α9η2 + α8η3
−α7η4 + α6η5 − α5η6 + α4η7 − α3η8 + α2η9 − αη10 + η11).

(2.6)

Adding (2.5) with (2.6), we obtain
.  (α11ξ1 + α9ξ3 + α7ξ5 + α5ξ7 + α3ξ9 + αξ11)× (2b̃2β̃)

+(α9η2 + α7η4 + α5η6 + α3η8 + αη10)× (α̃2ξ̄1 + ξ̄2)

= Hi
00(2b̃2β̃)× (α9η2 + α7η4 + α5η6 + α3η8 + αη10).

(2.7)

Subtracting (2.6) from (2.5), we get
.  (α10ξ2 + α8ξ4 + α6ξ6 + α4ξ8 + α2ξ10 + ξ12)× (2b̃2β̃)+

(α10η1 + α8η3 + α6η5 + α4η7 + α2η9 + η11)× (α̃2ξ̄1 + ξ̄2)

= Hi
00(2b̃2β̃)× (α10η1 + α8η3 + α6η5 + α4η7 + α2η9 + η11).

(2.8)

From (2.7) we have,

 (α10ξ1 + α8ξ3 + α6ξ5 + α4ξ7 + α2ξ9 + ξ11)× (2b̃2β̃)
r + (α8η2 + α6η4 + α4η6 + α2η8 + η10)× (α̃2ξ̄1 + ξ̄2)

= Hi
00(2b̃2β̃)× (α8η2 + α6η4 + α4η6 + α2η8 + η10).

(2.9)

According to equation (2.9), The term (α8η2+α6η4+α4η6+α2η8+η10)×(α̃2ξ̄1+ξ̄2)

can be divided by β̃. The expression α̃2ξ̄1α
8η2 can also be divided by β̃. Since

β = µβ̃ and β̃ is prime with respect to α and α̃, Thus, ξ̄1 := b̃2s̃i0 − b̃is̃0 is divisible

by β̃. Consequently, there is a scalar function ψi(x) such that

b̃2s̃i0 − b̃is̃0 = β̃ψi. (2.10)

Contracting (2.10) by ỹi := ãijy
j , we obtained ψi(ỹi) = −s̃0. As ỹi is an arbitray

vector, we get ψi(x) = −s̃i. Then we have,

s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
, (2.11)
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given that b̃2 6= 0. Lemma 2.1 states that the Douglas metric is F̃ =
α̃2

β̃
. F and F̃

are both Douglas metrics because they have the same Douglas tensor.

When n = 2, F̃ =
α̃2

β̃
is a Douglas metric according to Lemma 2.1. Since F and

F̃ have the same Douglas tensor, they are all Douglas metrics. This concludes the
demonstration of proposition 2.2.

Now we are able to claim the following theorem

Theorem 2.3. Let F =
(α+ β)3

α2
and F̃ =

α̃2

β̃
be two (α, β)-metrics on a manifold

M with dimension n > 2, where α and α̃ are two Riemannian metrics, β = biy
i

and β̃ are two non-zero colinear 1-forms. Then F is projectively related to F̃ if and
only if the following relations hold:

(i) Giα = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + ˜r00b̃

i
]

+ θyi − τα2((1 + 6b2)α2 − 8β2)bi

α2 − αβ − 8β2 + 6b2α2
,

(ii) bi|j =
τ

3

{
(1 + 6b2)aij − 8bibj

}
,

(iii) s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
,

where τ = τ(x) is some scalar function, bi|j denote the coefficients of the covariant

derivatives of β with respect to α and b̃i := ãij b̃j, b̃ := ||β̃||α̃ and θ = θiy
i is a

1-form on M.

Cubic (α, β)-metric F =
(α+ β)3

α2
is a Douglas metric if and only if bi|j =

τ

3

{
(1 + 6b2)aij − 8bibj

}
holds for some scalar τ = τ(x). It is known that Kropina

metric F̃ =
α̃2

β̃
is a Douglas metric if and only if s̃ij =

1

b̃2

[
b̃is̃j − b̃j s̃i

]
.

Proof. First, we establish the necessity. The Douglas tensor is defined to be invari-
ant under projective change between two Finsler metrics. If F is projectively related
to F̃ , then they have the same Douglas tensor. By proposition 2.2, we obtain that
F and F̃ are both Douglas metrics. It has been proved in [12] that Kropina metric

F̃ =
α̃2

β̃
is a Douglas metric if and only if

s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
. (2.12)

In the present paper, we proved that Cubic (α, β)-metric F =
(α+ β)3

α2
is a Dou-

glas metric if and only if

bi|j =
τ

3

{
(1 + 6b2)aij − 8bibj

}
. (2.13)
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for some scalar function τ = τ(x), where bi|j represent the coefficients of the co-
variant derivatives of β with respect to α. In this case, β is closed. Plugging (2.13)
and (2.1) into (1.6), we have

Gi = Giα +
τα2((1 + 6b2)α2 − 8β2)bi

α2 − αβ − 8β2 + 6b2α2
+
τ((1 + 6b2)α2 − 8β2)(α− 4β)yi

2(α2 − αβ − 8β2 + 6b2α2)
. (2.14)

On the other hand, Putting (2.12) and (2.2) into (1.6), we have

G̃i = G̃iα̃ −
1

2b̃2

[
−α̃2s̃i + (2s̃0y

i − r̃00b̃i) +
2r̃00β̃y

i

α̃2

]
. (2.15)

As F is projectively connected to F̃ again, there is a scalar function P = P (x, y)
on TM\ {0} such that

Gi = G̃i + Pyi. (2.16)

From (2.14), (2.15) and (2.16), we have;

[
P − τ((1 + 6b2)α2 − 8β2)(α− 4β)

2(α2 − αβ − 8β2 + 6b2α2)
− 1

b̃2

(
s̃0 +

r̃00β̃

α̃2

)]
yi (2.17)

= Giα +
τα2((1 + 6b2)α2 − 8β2)bi

α2 − αβ − 8β2 + 6b2α2
− G̃iα̃ −

1

2b̃2

[
α̃2s̃i + r̃00b̃

i
]
.

The right-hand side of the preceding equation is a quadratic form in y. Then there
exists just one form θ = θi(x)yi on M such that,

P − τ((1 + 6b2)α2 − 8β2)(α− 4β)

2(α2 − αβ − 8β2 + 6b2α2)
− 1

b̃2

(
s̃0 +

r̃00β̃

α̃2

)
= θ. (2.18)

Then, we have

Giα = G̃iα̃ −
τα2((1 + 6b2)α2 − 8β2)bi

α2 − αβ − 8β2 + 6b2α2
+

1

2b̃2

[
α̃2s̃i + r̃00b̃

i
]

+ θyi. (2.19)

From (2.12), (2.13), and (2.19), we finish the proof of the necessity.

Conversely, plugging (2.13) into (1.6) with (2.1) yields (2.14). Plugging (2.12)
into (1.6) with (2.2) yileds (2.15). From (2.14) and (2.19) we have,

Gi = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + r̃00b̃

i
]

+ yi
[
θ +

τ((1 + 6b2)α2 − 8β2)(α− 4β)

2(α2 − αβ − 8β2 + 6b2α2)

]
. (2.20)
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Putting the value of G̃iα̃ from equation(2.15) to equation (2.20), we get

Gi = G̃i +

{(
1

2b̃2

[
2s̃0 +

2r̃00β̃

α̃2

])
+

(
θ +

τ((1 + 6b2)α2 − 8β2)(α− 4β)

2(α2 − αβ − 8β2 + 6b2α2)

)}
yi.(2.21)

From equation (2.16), we get

P = θ +
τ((1 + 6b2)α2 − 8β2)(α− 4β)

2(α2 − αβ − 8β2 + 6b2α2)
+

1

2b̃2

[
2s̃0 +

2r̃00β̃

α̃2

]
. (2.22)

i.e. F is projectively related to F̃ . Hence complete the proof of theorem (2.3).
�

�

Corollary 2.4. Let F =
(α+ β)3

α2
and F̃ =

α̃2

β̃
be two (α, β)-metrics on a manifold

M with dimension n > 2, where α and α̃ are two Riemannian metrics, β = biy
i and

β̃ are two non-zero 1-forms. Then F is projectively related to F̃ if and only if they
are Douglas metrics and the spray coefficients of α and α̃ have the following relation

Giα = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + ˜r00b̃

i
]

+ θyi − τα2((1 + 6b2)α2 − 8β2)bi

α2 − αβ − 8β2 + 6b2α2
, (2.23)

where b̃i := ãij b̃j , τ = τ(x) is a scalar function and θ = θiy
i is a 1-form on M.

3. Projective change with curvature properties

The Berwald curvature tensor of a Finsler metric F is defined by

B := Bijkldx
j ⊗ ∂i ⊗ dxk ⊗ dxl,

where Bijkl =
∂3Gi

∂yj∂yk∂yl
= [Gi]yjykyl and Gi are the spray coefficients of F.

A Finsler metric F is of isotropic Berwald curvature if

Bijkl = c(Fyjykδ
i
l + Fyjylδ

i
k + Fykylδ

i
j + FyJykyly

i),

where c = c(x) is a scalar function on M [6].

The mean Berwald curvature tensor is defined by E := Eijdx
i ⊗ dxj , where

Eij :=
1

2

∂2

∂yi∂yj

(
∂Gm

∂ym

)
=

1

2
Bmmij .
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A Finsler metric is said to be isotropic mean Berwald curvature if Eij =
n+ 1

2
c(x)Fyiyj ,

where c = c(x) is a scalar function on M [19]. Clearly, the Finsler metric of isotropic
Berwald curvature must be of isotropic mean Berwald curvature.

A Finsler metric F is said to have isotropic S-curvature if S = (n+ 1)c(x)F for
some scalar function c(x) on M [6].

Furthermore, N.W. Cui proves the following:

Lemma 3.1. [14] For metric F = α + εβ + k
β2

α
+ r

β3

α2
, where ε, k, r 6= 0 are

constants on an n-dimensional manifold M, the following are equivalent:

(i) F is of isotropic S-curvature, that is, S = (n+ 1)c(x)F ;

(ii) F is of isotropic mean Berwald curvature, E =
n+ 1

2
c(x)F−1h;

(iii) F has vanished S-curvature, that is, S = 0;

(iv) F is a weakly Berwald metric, that is, E = 0;

(v) β is a Killing 1-form of constant length with respect to α, that is, r00 =
s0 = 0, where c = c(x) is a scalar function.

The lemma (3.1) is valid for F =
(α+ β)3

α2
when we put ε = 3, k = 3, and r = 1.

In the present section, we suppose that F =
(α+ β)3

α2
has some curvature proper-

ties. Kropina metric F̃ =
α̃2

β̃
is projectively related to F . For F =

(α+ β)3

α2
of

isotropic S-curvature, we have the following:

Theorem 3.2. Let F =
(α+ β)3

α2
and F̃ =

α̃2

β̃
be two (α, β)-metrics on a manifold

M with dimension n > 2, where α and α̃ are two Riemannian metrics, β = biy
i

and β̃ are two non-zero 1-forms. Suppose that F has isotropic S-curvature. Then
F is projectively related to F̃ if and only if the following conditions hold:

(i) Giα = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + r̃00b̃

i
]

+ θyi;

(ii) β is parallel with respect to α, that is, bi|j = 0;

(iii) s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
, where bi|j denote the coefficients of the covariant

derivatives of β with respect to α and b̃i := ãij b̃j, b̃ := ||β̃||α̃ and θ = θiy
i

is a 1-form on M.

Proof. Sufficiency is clear from Theorem (2.3). Theorem(2.3) states that if F̃ is
projectively related to F, then
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bi|j =
τ

3

[
(1 + 6b2)aij − 8bibj

]
,

for some scalar function τ = τ(x). Contracting the above equation with yi and yj

yields

r00 =
τ

3

[
(1 + 6b2)α2 − 8β2

]
. (3.1)

According to Lemma (3.1), if F possesses isotropic S-curvature, then r00 = s0 = 0.

Plugging r00 = s0 = 0 in equation (3.1), we get

(1 + 6b2)α2 − 8β2 = 0,

provided τ 6= 0. That is

(1 + 6b2)aij − 8bibj = 0.

Contracting the above equation with aij yields n + (6n − 8)b2 = 0, which is
impossible. Therefore, τ = 0, which is not possible as n ≥ 2, we put in Theorem
(2.3) and finish the proof.

We know that the Finsler metric for isotropic Berwald curvature must be equal
to isotropic mean Berwald curvature. As a result of Lemma (3.1), and assuming
that F has isotropic Berwald curvature, the theorem is consequently obtained.

�

Theorem 3.3. Let F =
(α+ β)3

α2
and F̃ =

α̃2

β̃
be two (α, β)-metrics on a manifold

M with dimension n > 2, where α and α̃ are two Riemannian metrics, β = biy
i

and β̃ are two non-zero 1-forms. Suppose that F has isotropic Berwald curvature.
Then F is projectively related to F̃ if and only if the following conditions hold:

(1) Giα = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + r̃00b̃

i
]

+ θyi;

(2) β is parallel with respect to α, that is, bi|j = 0;

(3) s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
, where bi|j denote the coefficients of the covariant

derivatives of β with respect to α and b̃i := ãij b̃j, b̃ := ||β̃||α̃ and θ = θiy
i

is a 1-form on M.

Theorem 3.4. Let F =
(α+ β)3

α2
be projectively equivalent to F̃ =

α̃2

β̃
and F̃ has

isotropic Berwald curvature. Then F has isotopic Berwald curvature if and only if
F has isotropic S-curvature.

Proof. Suppose F has isotropic Berwald curvature, then F has isotropic mean
Berwald curvature. Thus, by Lemma (3.1), F is of isotropic S-curvature. This

proves necessary condition for proving sufficiency. Since F and F̃ are projectively
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equivalent, (1.4) holds. Suppose that F has isotropic S-curvature S = (n+1)c(x)F .
By Lemma (3.1), we have F is of isotropic mean Berwald curvature, that is,

Eij =
n+ 1

2
cFyiyj .

Given that F̃ has isotropic Berwald curvature, then

B̃ijkl = c̃
(
F̃yjykδ

i
l + F̃yjylδ

i
k + F̃ykylδ

i
j + F̃yjykyly

i
)
,

where c̃ = c̃(x) is a scalar function on M. Hence, by the definition of the mean

Berwald tensor, it follows from (1.4) that cFyiyj = c̃F̃yiyj +Pyiyj , which gives that

cFyiyjyk = c̃F̃yiyjyk + Pyiyjyk .

Now we have

Bijkl =
∂3Gi

∂yj∂yk∂yl

= B̃ijkl + (Pyjykδ
i
l + Pyjylδ

i
k + Pykylδ

i
j + Pyjykyly

i)

= c̃(F̃yjykδ
i
l + F̃yjylδ

i
k + F̃ykylδ

i
j + F̃yjykyly

i)

+ (Pyjykδ
i
l + Pyjylδ

i
k + Pykylδ

i
j +Pyjykyly

i)

= c(Fyjykδ
i
l + Fyjylδ

i
k + Fykylδ

i
j + Fyjykyly

i).

This implies that F has isotropic Berwald curvature. We complete the proof. By
the above methods, we could obtain the theorem.

�

Theorem 3.5. Let F =
(α+ β)3

α2
be projectively equivalent to F̃ =

α̃2

β̃
and F has

isotropic Berwald curvature. Then F̃ has isotropic Berwald curvature if and only
if F̃ has isotropic S-curvature.

4. Conclusion

In the present paper, we investigated the condition for projective change be-
tween the Cubic (α, β)-metric [2, 3, 4] and the Kropina metric with some curvature
properties. The results that we obtained are as follows:

(1) Let F =
(α+ β)3

α2
be a Cubic (α, β)-metric and F̃ =

α̃2

β̃
be a Kropina

metric on a manifold M with dimension n ≥ 3, where α and α̃ are two
Riemannian metrics, β and β̃ are two non-zero 1-forms. The Finsler metrics
F and F̃ have same Douglas tensor if and only if both are Douglas metrics.

(2) Let F =
(α+ β)3

α2
and F̃ =

α̃2

β̃
be two (α, β)-metrics on a manifold M with

dimension n > 2, where α and α̃ are two Riemannian metrics, β = biy
i and

β̃ are two non-zero colinear 1-forms. Then F is projectively related to F̃ if
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and only if the following relations hold:

(a) Giα = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + ˜r00b̃

i
]

+ θyi − τα2((1 + 6b2)α2 − 8β2)bi

α2 − αβ − 8β2 + 6b2α2
,

(b) bi|j =
τ

3

{
(1 + 6b2)aij − 8bibj

}
,

(c) s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
.

Where τ = τ(x) is some scalar function, bi|j denote the coefficients of the

covariant derivatives of β with respect to α and b̃i := ãij b̃j , b̃ := ||β̃||α̃ and
θ = θiy

i is a 1-form on M.

(3) Let F =
(α+ β)3

α2
and F̃ =

α̃2

β̃
be two (α, β)-metrics on a manifold M with

dimension n > 2, where α and α̃ are two Riemannian metrics, β = biy
i

and β̃ are two non-zero 1-forms. Suppose that F has isotropic S-curvature.
Then F is projectively related to F̃ if and only if the following conditions
hold:

(a) Giα = G̃iα̃ +
1

2b̃2

[
α̃2s̃i + r̃00b̃

i
]

+ θyi;

(b) β is parallel with respect to α, that is, bi|j = 0;

(c) s̃ij =
1

b̃2

[
b̃is̃j − b̃j s̃i

]
, where bi|j denote the coefficients of the covari-

ant derivatives of β with respect to α and b̃i := ãij b̃j , b̃ := ||β̃||α̃ and
θ = θiy

i is a 1-form on M.

(4) Let F =
(α+ β)3

α2
be projectively equivalent to F̃ =

α̃2

β̃
and F̃ has isotropic

Berwald curvature. Then F has isotopic Berwald curvature if and only if F
has isotropic S-curvature.
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