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ON SOME DYNAMIC PROPERTIES OF A DISTRIBUTED
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Abstract. This paper investigates the dynamic properties of Riccati differen-
tial equation with distributed delay, focusing on stability, bifurcation, chaos,

and chaos control. Riccati equation with distributed delay are common in

control theory and dynamical systems, and discretizing these models is essen-
tial for practical implementation. The study employs analytical and numerical

methods to analyze the stability of equilibrium points and characterize bifur-

cation phenomena as system parameters vary. Furthermore, the emergence of
chaotic behavior in these discretized systems is explored, and strategy for chaos

control is studied. Understanding the dynamic properties of Riccati equations

with distributed delay is crucial for designing robust control systems and op-
timizing system performance in real-world applications.

1. Introduction

In recent years, differential equations with delay have attracted many researchers
due to their applications in various fields, such as science and engineering [15, 28].
Examples include the oscillating Belousov-Zhabotinsky reaction in chemistry [32],
the chaotic Chua circuit in electrical engineering [22], intricate movements in ce-
lestial mechanics [4], bifurcations in ecological systems [23, 29, 17], and numerous
instances in economics such as Guerrini et al., who studied the bifurcation of an
economic growth model with gamma-distributed time delay [11]. They also ex-
amined a Neoclassical growth model with multiple distributed delays in economics
[12]. Delays in neural networks are particularly useful since the complexity found
in small networks can often be extended to larger networks. Wei and Ruan [30]
analyzed a simple neural network with two delays.

The delay in these equations can be discrete, where the effect occurs at a specific
time lag, or distributed, where the delay effect is spread over a range of past times.
Delay differential equations with a special class of distributed delays are particularly
attractive from both a modeling perspective and for their mathematical tractability
[26]. Ruan and Filfil [24] studied a two-neuron network model with multiple dis-
crete and distributed delays. Fang and Jiang [10] presented a bifurcation analysis
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of a logistic growth model with discrete and distributed delays, considering the dis-
tributed delay as representing the manner in which the past history of the species
influences the current growth rate.

Li et al. [20] developed an SIR epidemic model with a logistic process and
distributed time delay to be more realistic. Liu et al. [?] proposed a stochastic HIV
infection model with distributed delay. The stability and bifurcation analysis of
a reaction–diffusion equation with distributed delay with weak and strong kernels
have been studied by Zuo et al. [34].

In this paper, we study the dynamic behavior of the distributed delay Riccati dif-
ferential equation, which has many applications in engineering and science [6, 7, 18].

The delayed Riccati differential equation is given by [7]

dx

dt
= 1− ρx(t)x(t− r), x(t) = x0, t ≤ 0. (1.1)

In [7], the author discuss the dynamical behaviour of the perturbed delay of
Riccati equation with multiple discrete delays.

Here, we are concerned with the following delay differential equation with α−distributed
delay:

dx

dt
= 1− ρx(t)

∫ t

0

K(t− s)x(s)ds, (1.2)

where ρ > 0 and K(t) is called the delay kernel [25, 31].
Consider the kernel

K(t) = e−αt, α > 0,

then the problem (1.2) can be written as

dx

dt
= 1− ρx(t)

∫ t

0

e−α(t−s)x(s)ds, t ∈ (0, T ], (1.3)

x(0) = x0.

Using the linear chain trick [26, 16] to obtain directly the system of differential
equations.

dx(t)

dt
= 1− ρx(t)y(t), x(0) = x0,

dy(t)

dt
= x(t)− αy(t), y(0) = 0, (1.4)

where

y(t) =

∫ t

0

e−α(t−s)x(s)ds,

and
dy(t)

dt
= x(t)− αy(t). (1.5)

So, we obtain the feedback control problem (1.4) as the following system corre-
sponding to the problem (1.3).
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The stability of the system (1.4) is discussed, and then (1.4) is discretized using
the piecewise constant arguments method. Moreover, we study the local stability
of the discretized version of (1.4) and perform a bifurcation analysis to understand
how the parameter α affects the system’s behavior. Additionally, we apply the state
feedback control method [21, 5, 13] to control the chaos of the system.

The paper is structured as follows: Section (2) presents the stability analysis
of the continuous-time feedback control model (1.4), while Section (4) covers the
discretization process, stability analysis, and chaos control. Numerical results illus-
trating the system’s properties are provided in Section (3.3), and a brief conclusion
is given in Section (5).

2. The continuous time model of problem (1.4)

There are various approaches to analyzing stability, depending on the complexity
of the system and the mathematical tools available. One common method is lin-
ear stability analysis, which involves linearizing the equations governing the system
around an equilibrium point and examining the eigenvalues of the resulting lin-
earized system. This method provides insights into the stability of the equilibrium
point and the system’s overall behavior.

2.1. Fixed points and stability analysis. In this section, we study the local
stability of (1.4). First, we solve the following equations to find the equilibrium
points

1− ρxy = 0,

x− αy = 0.

We obtain the following two equilibrium points (
√

α
ρ ,

1√
ρα ) and (−

√
α
ρ ,−

1√
ρα ).

Now, we linearize (1.4) at the equilibrium point and the Jacobian matrix of the
system is given by

J(x∗, y∗) =

[
−ρy∗ −ρx∗

1 −α

]
. (2.1)

The corresponding characteristic polynomial has trace τ = −ρy∗ − α and a deter-
minant d = α(ρy∗) + ρx∗).

The eigenvalues of (2.1) are

λ1,2 =
1

2
(τ ±

√
∆),

where ∆ = τ2 − 4d.

Lemma 2.1. [15]

(1) If ∆ > 0, d > 0 and τ < 0 the fixed point is stable node.
(2) If ∆ > 0, d > 0 and τ > 0 the fixed point is unstable node.
(3) If ∆ < 0, d > 0 and τ < 0 the fixed point is stable spiral.
(4) If ∆ < 0, d > 0 and τ > 0 the fixed point is unstable.

Proposition 2.2.

(1) If α2 + ρ
α < 6

√
ρα, then

(√
α
ρ ,

1√
ρα

)
is a stable spiral focus.
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(2) If α2 + ρ
α > 6

√
ρα, then

(√
α
ρ ,

1√
ρα

)
is called a stable node.

(3) The second fixed point (−
√

α
ρ ,−

1√
ρα ) is called unstable saddle node.

To clarify more, we sketch the phase portrait, the phase portrait shows the
direction of the vector field and the trajectories of the system. In Figures (1a)
, (1b) the vector field, shown with blue arrows, illustrates the direction of the
trajectories. The arrows indicate how the system evolves over time from different
initial conditions in the (x, y) plane. We noted that the phase portrait suggests
that trajectories spiral into or out of the equilibrium points.

(a) The phase portrait at ρ = 1 and α =
1

(b) The phase portrait at ρ = 1 and α =
5

Figure 1. Phase portraits for the system at different values of α.

3. The discrete time model of (1.4)

In this section, we use the piecewise constant arguments method [8, 9, 1, 6] to
discretize the system (1.4) as follows:

dx(t)

dt
= (1− ρx(r[

t

r
])y(r[

t

r
])), t ∈ (0, T ],

dy(t)

dt
= x(r[

t

r
])− αy(r[

t

r
]), (3.1)

x(0) = x0, y(0) = y0,

where [.] denotes the greatest integer function and r is a constant argument.

(1) let t ∈ [0, r) then, [
t

r
] = 0,

dx(t)

dt
= (1− ρx0y0), t ∈ [0, r).

and the solution is given by

x(t) = x0 + (1− ρx0y0)

∫ t

0

1dt

= x0 + (1− ρx0y0)t.
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similarly,

y(t) = y0 + (x0 − αy0)

∫ t

0

1dt

= y0 + (x0 − αy0)t.

when t → r, x(r) = x1 , we get

x1 = x0 + r(1− ρx0y0),

y1 = y0 + r(x0 − αy0).

(2) let t = [r, 2r) then, [
t

r
] = 1,

dx(t)

dt
= (1− ρx1y1), t ∈ [r, 2r).

and the solution of is given by

x(t) = x(r) + (1− ρx(r)y(r))

∫ t

r

1ds

= x(r) + (1− ρx(r)y(r))(t− r),

also

y(r) = y(r) + (x(r)− αy(r))(t− r),

When t → 2r and x(r) = x1, y(r) = y1, we get

x2 = x1 + r(1− ρx1y1),

y2 = y1 + r(x1 − αy1).

repeating this procedure for n iterations, we get the following discrete time sys-
tem:

x(t) = x(nr) + (t− nr)(1− ρx(nr)y(nr)), t ∈ [nr, (n+ 1)r),

y((t) = y(nr) + (t− nr)(x(nr) + αy(nr)).

let t → (n+ 1)r, we obtain the discretization as follows:

xn+1 = xn + r(1− ρxnyn),

yn+1 = yn + r(xn − αyn), (3.2)

where α, ρ > 0.

3.1. Fixed points and stability analysis. The fixed point of the discrete system
(3.2) are the same as in section (2.1).

Now, we study the local stability of the fixed points to the discrete model . The
Jacobian matrix of the system (3.2) is given by

J(x, y) =

[
1− ρry −ρrx

r 1− αr

]
. (3.3)

The characteristic equation of the Jacobian matrix can be written as

F (λ) = |J − λI| = λ2 + Pλ+Q = 0, (3.4)

where

P = −tr(J) = −(2− ρry − αr),
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and
Q = det(J) = (1− ρry)(1− αr) + ρr2x.

In order to study the modulus of eigenvalues of the characteristic equation (lo-
cal stability), we first know the following lemma, which is the relations between
roots and coefficients of the quadratic equation.

Lemma 3.1. let F (λ) = λ2 + Pλ + Q = 0. Suppose that F (1) > 0, λ1,2

are two roots of F (λ) = 0, then

• |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and Q < 1.
• |λ1| > 1 and |λ2| < 1 or (|λ1| < 1 and |λ2| > 1) if and only if F (−1) < 0.
• |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and Q > 1.
• λ1 = −1 and λ2 ̸= 1 if and only if F (−1) = 0 and P ̸= 0, 2.
• λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if P 2 − 4Q < 0 and
Q = 1.

For the first fixed point (
√

α
ρ ,

1√
ρα ), the Jacobian matrix be

J(x, y) =

[
1− r

√
ρ
α −r

√
ρα

r 1− αr

]
. (3.5)

The P and Q of the characteristic equation of the Jacobian matrix at the first fixed
point can be written as

P = −2 + r(

√
ρ

α
+ α),

and

Q = 1− rα− r

√
ρ

α
+ 2r2

√
ρα.

Proposition 3.2. The first fixed point (
√

α
ρ ,

1√
ρα )

(1) It is called sink (asymptotically stable) if −2+Ar
r2 <

√
ρα < A

2r .

(2) It is called source if
√
ρα > max ( A

2r ,
−2+rA

r2 ).

(3) It is called saddle if
√
ρα < −2+Ar

r .

(4) It is a non hyperbolic at r = 1
2 (
√

α
ρ + 1

α ) if ρ
α + α2 < 6

√
ρα, where

A = α+
√

ρ
α .

Proposition 3.3. The second fixed point (−
√

α
ρ ,−

1√
ρα ) is unstable.

3.2. Bifurcation analysis. The Bifurcation refers to the qualitative change in the
behavior of a system as one or more parameters vary. By studying bifurcations,
researchers can gain insights into the emergence of new behaviors or patterns in
dynamical systems. Additionally, the authors specifically investigate the effect of
a parameter denoted as alpha on the system. This suggests that alpha plays a
significant role in shaping the system’s dynamics, and the authors aim to elucidate
its impact.



ON SOME DYNAMIC PROPERTIES OF A DISTRIBUTED DELAY 83

Now, we discuss the existence of a Neimark-Sacker bifurcation by using the Neimark-
Sacker theorem in [19].
We note that the condition P 2 − 4Q < 0, the eigenvalues be complex, if r =
1
2

(√
α
ρ + 1

α

)
, then det(Q) = 1. For r = rNS , the eigenvalues of the Jacobian are

λ1,2 =
1

2

(
2− rA± ri

√
6
√
ρα− (α2 +

ρ

α
)

)
.

we have,

Q(rNS) = 1, |λi| = 1, i = 1, 2

d|λi(r)|
dr

∣∣∣
r=rNS

=
1

2

(
−A± i

√
6
√
ρα− (α2 +

ρ

α
)

)
. ̸= 0 (3.6)

and λ2 = λ1.

Now, we transform the fixed point to origin using linearization. let x = x−x∗, y =
y − y∗.
The system (3.2) it converted to the following system(

x
y

)
→ J(x∗, y∗, r)

(
x
y

)
+

(
F1

F2

)
(3.7)

Where, F1 = −ρxy − 1
2rρ(y)

2 +O(||(x, y)||4) and F2 = 0.
Then,

B1(x, y) =

2∑
j,k ̸=1

∂2F1(ξ, r)

∂ξi∂ξk

∣∣∣
ξ=0

xjyk = −ρx1y2 − ρx2y1 − rρy1x2

B2(x, y) = 0, C1(x, y) = C2(x, y) = 0

Also, we must P (rNS) ̸= 0. Moreover if P (rNS) ̸= 0, 1, then α
ρ (α + ρ

α2 ) ̸= 2, 4,

which satisfies λn(rNS) ̸= 1 for n = 1, 2, 3, 4.
Suppose that q, p ∈ C2 are two eigenvectors of J(rNS) and JT (rNS) of eigenval-

ues λ(rNS)and λ(rNS) such that,

J(rNS)q = λ(rNS)q, J(rNS)q = λ(rNS)q,

JT (rNS)p = λ(rNS)p, JT (rNS)p = λ(rNS)p,

then we obtain

q = (rαρ, 1− λ)T

p = (−r, 1− λ)T

we set p = γ(−r, 1− λ)T where, γ = 1
−r2α(ρ)+αr .

then, for p, q ∈ C2 its clear that ⟨p, q⟩ = 1, where, ⟨p, q⟩ = p1q2 = p2q1.
Consider the composition X ∈ R2 as X = zq + zq for r near to rNS and z ∈ C.
Z = ⟨p,X⟩ is the formula to determine z, then we obtain the transformed system

(3.7) as

z = λ(r)z + g(z, z, r)
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where, λ(r) = (1 + ϕ(r))eiθ(r), where ϕ(r) is a smooth complex function with
ϕ(rNS) = 0 and g is given by

g(z, z, r) =
∑

k+l≥2

1

k!l!
gkl(r)z

k−lz, k, l = 0, 1

By symmetric multilinear vector functions, the Taylor coefficients gkl can be ex-
pressed by the formulas

g20(rNS) = ⟨p,B(q, q)⟩, g11(rNS) = ⟨p,B(q, q)⟩,

g02(rNS) = ⟨p,B(q, q)⟩, g21(rNS) = ⟨p, C(q, q, q)⟩.
The invariant closed curve appear in the direction which is determined by the

coefficient a(rNS)and calculated by

a(rNS) = Re

(
e−iθ(rNS)g21

2

)
−Re

(
1− 2eiθ(rNS)e−2iθ(rNS)

2(1− eiθ(rNS))
g20g11

)
−1

2
|g11|2−

1

4
|g02|2,

(3.8)
where, eiθ(rNS) = λ(rNS).

From the above analysis and the theorem in [14], we have the following result.

Theorem 3.4. If (3.6) holds, a(rNS) ̸= 0, and the parameter r changes its value
in small change of rNS , then system (3.2) passes through a Neimark-Sacker bifur-
cation at fixed point.

3.3. Chaos control. Chaos control involves manipulating a chaotic system’s dy-
namics to achieve intended results or suppress desirable behaviors. By studying
chaos control, we aim to provide insights into how to handle and possibly use the
unpredictable behavior of the system we’re studying.

In this section we discuss the chaos control method [21, 5, 13] for the feedback
control (3.2), to stabilize chaotic of an unstable fixed point of (3.2). Consider the
following controlled form of system (3.2):

xn+1 = xn + r(1− ρxnyn) + hn,

yn+1 = yn + r(xn − αyn). (3.9)

where, hn = −k1(xn − x∗) − k2(yn − y∗) which is the control force, the jacobian
matrix of the new feedback control (3.9) is

J(x∗, y∗) =

[
1− ρry∗ − k1 −ρrx∗ − k2

r 1− αr

]
=

[
1− r

√
ρ
α − k1 −r

√
ρα− k2

r 1− αr

]
,

(3.10)
then

Trac(J) = λ1 + λ2 = 2− r(

√
ρ

α
− α)− k1. (3.11)

λ1λ2 = det(J) = (1− r

√
ρ

α
− k1)(1− αr) + r2

√
ρα+ rk2. (3.12)

The equations λ1 = ±1 and λ1λ2 = 1 must be solved in order to get the lines of
marginal stability. These requirements ensure that the modulus of the eigenvalues
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λ1 and λ2 is smaller than 1.
The three equations as follows: let λ1λ2 = 1

l1 : (αr − 1)k1 + rk2 = −2r2
√
ρα+ r

√
ρ

α
+ αr. (3.13)

let λ1 = 1 in (3.11) and (3.12)

l2 : (αr)k1 + rk2 = 1− 2r2
√
ρα+ 2αr. (3.14)

let λ1 = −1 in (3.11) and (3.12)

l3 : (2− αr)k1 − rk2 = 4− 2r

√
ρ

α
+ 2r2

√
ρα. (3.15)

The stable eigenvalues lies in the triangular region bounded by l1, l2 and l3.

4. Numerical results

In this part, we illustrate the bifurcation diagrams, phase portraits, and Lya-
punov exponents of the discrete system (3.2) using numerical simulation to verify
the previous results and to demonstrate some additional fascinating complicated
dynamical behaviors that occur in systems. Maximum Lyapunov exponents are
known to measure the exponential divergence of initially near state-space trajec-
tories and are widely used to indicate chaotic behavior. we choose the parameter
α, ρ as a bifurcation parameters (varied parameter) and the other parameters are
taken as fixed parameters and consider the intial point near the fixed point typically
taken as (0.1,0.1).

For system (3.2)

• Case 1: varying ρ in range 80 ≤ ρ ≤ 200 and fixing r = 0.1, 0.25, α =
2, 2.5, 3

• Case 2: varying α in range 0 ≤ α ≤ 20 and fixing r = 0.2, ρ = 110, 120, 140

In Case 1, exploring the effects of varying ρ within the range of 80 to 200 while
keeping r fixed at 0.1 and 0.25, and α fixed at 2, 2.5, and 3, the bifurcation and
maximal Lyapunov exponent diagrams, presented in Figure (2). The changes in α
distinctly influence the bifurcation diagrams, leading to stability loss at specific α
values: 5.544 for Figure (2a), 5.24 for Figure(2c), and 4.295 for Figure(2e). While
the maximal Lyapunov exponent serves as a crucial indicator for detecting chaos.
Figures (2b), (2d) and 2f) corresbonding to α = 5, 5.5, 7 reveal that certain Lya-
punov exponents surpass 0, signifying the presence periods amidst chaotic regions.

For Case 2, where α ranges from 0 to 20 while maintaining r at 0.2 and ρ at
110, 120, and 140, Figure (3) provides an in-depth analysis of the system’s bifur-
cation and chaos concerning variations in ρ. At ρ = 125, the system undergoes a
Neimark-Sacker bifurcation, characterized by equivalent modulus eigenvalues. Fig-
ures (3a), (3c) and (3e) shows the Niemark-Sacker bifuraction and the correspond-
ing maximal lypanove exponent gives in Figures (3b),(3d) and (3f). These findings
illuminate the intricate dynamics and bifurcation phenomena within the system,
offering valuable insights into its behavior across different parameter regimes.
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The phase portrait is a visual representation of the trajectories or paths that
a dynamical system takes in its state space. The reference to Figure (4), we note
that when ρ exceeds 140, there appears a circular curve enclosing the fixed point
(0.1984, 0.0397), and its radius becomes larger with respect to the growth of ρ, and
the circle is transformed to another curve.

(a) (b)

(c) (d)

(e) (f)

Figure 2. The bifurcation and maximal Lyapunov exponent of
the considered system with ρ.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. The bifurcation and maximal lypanove exponent of the
considered system with α.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. The phase diagram of system (3.2) with α = 5.

To investigate how the state feedback control the unstable fixed point, we have
run a few numerical simulations, where the fixed parameter values are as follows:
α = 5, r = 0.25, ρ = 60. The feedback gain is k1 = −0.4, k2 = −0.2, and the
starting value is (0.01, 0.01). The bounded triangle for the stabilize the fixed point
for α = 5, r = 0.2, ρ = 120 is shown in Figure (5). Figure (6) illustrates how a
chaotic state is brought to a stable point (0.2887, .0577).
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Figure 5. The bounded triangle for the stabilize the fixed point
for α = 5, r = 0.2, ρ = 120

(a) The time series for x (b) The time series for y

Figure 6. The time series for the controlled system with r =
0.2, ρ = 120, α = 5 for k1 = −0.4, k2 = −0.2

5. Conclusion

The paper investigates the dynamic behavior of the Riccati differential equation
in- influenced by α−distributed delay and its discretization. The study reveals sig-
nificant insights into the stability and overall dynamics of the system. Variations in
the distributed delay parameter can cause shifts in system stability. The method of
controlling chaos in a discrete system is discussed. By implementing specific control
strategy to stabilize the chaotic behavior, the system dynamics become predictable
and manageable. These techniques provide valuable insights into managing systems
and enhancing their stability.

The system’s dynamics are highly sensitive to changes in key parameters, ne-
cessitating careful tuning for practical applications. Distributed delay introduces
rich dynamics. The system in this paper offers a more straightforward framework
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for analysis due to its lack of delays, but the system in paper [7] presents discrete
delay dynamics. The results have broad implications for fields like biology, popula-
tion dynamics, and control theory, providing a deeper understanding and valuable
insights for designing and controlling systems with distributed delay dynamics.
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