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TOTALLY - MEASURABILITY ON SIGNED MEASURABLE
SPACES FOR QUASI-NORMED SPACES VALUED FUNCTIONS

ENKELEDA ZAJMI KOTONAJ

ABSTRACT. In this paper our aim is to identify the properties of totally mea-
surable functions with values in a quasi normed space, defined in a measurable
space. We are focused on the case when the measurable space is equipped
with a signed measure and defining the concept of convergence according to
outer measure of a sequence of functions we have proof a convergence theorem
which is one of the results obtained.

1. INTRODUCTION

The notion of totally measurable functions in case of finitely purely atomic mea-
sure and atomic multimeasure spaces is studied in [1] and [2]. Authors in [1], under
the assumptions that X is a Banach space, measure is a set multifunction of finite
variation valued in P(X) and the functions are scalar have achieved some results on
totally measurable. The paper [2] presents some results on finitely purely atomic
measure spaces. The idea is similar to that of [1], but the functions are valued in
a Banach space X, namely vector valued functions and the measure is real valued
and positive.

This paper research’s focus is totally - measurability of quasi - normed spaces val-
ued functions, when the measure is assumed to be a signed measure. The primary
aim is to extend, if it is possible, the properties observed in [1] and [2] and further
by introducing the concept of convergence according to outer measure, to study a
convergence theorem, (Proposition 3.3 ). Presentation of the absolute variation of
a signed measure as |m| = m™ +m~ ([4], Definition 10.6, Theorem10.5), allows us
to extend the concept of the m - totally measurable function in the case of signed
measure and further to show the truth of Remark 3.11.4 ([2]) in this case. Using
the concept of convergence according to outer measure and quasi-norm properties
presented in [5], we have given an equivalent definition of total measurability (Def-
inition 3.3). After that, using this definition and the Riesz’s Theorem, we have
shown that total measurability brings measurability. In closing this paper, the
Egoroff’s Theorem allows us to shown that in the case of finite measurable spaces
according to |m/|, the concepts of total measurability and measurability coincide. If
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the condition of being finite is removed, we have noticed by way of example that
this compatibility does not apply.

2. PRELIMINARIES

Let T be a nonempty set, P(T) the family of all subsets of T and ¥ a o - algebra
of subsets of T. A partition of T is a finite family P = (A;) ;=1 in 3 such that
Al' n Aj = @, 7 7éj and U?:lAi =T.

Definition 2.1. (/2] Definition 3.8)

(i) If P = (A;) i=1,..n, P’ = (Bj) j=1,...m are two partitions of T, then P’ is said
to be finer than P (denoted by P < P' or P' > P ) if for every j € {1,...,m} there
exists i; € {1,...,n} so that B; C A;; .

(i1) The common refinement of two partitions P = (A;)i=1,...n and P’ = (B;)j=1,...m
is the partition P A P' = (A; M Aj)i=1,...nij=1,...m -

Let m : ¥ — [-00,+00] be an arbitrary set function, with m(() = 0.

Definition 2.2. (/4] Definition 10.1)

The set function m is said to be a signed measure if

1.For every A € ¥, m(A) # —oo or for every A € ¥, m(A) # +o0.
2.For every sequence of sets (Ap)nen in X such that, Ap, N An, =0 if ny # na,
mM(UnenAn) = Y, cn™m(An) (0 - additivity property ).

Definition 2.3. (/2] Definition 2.1)

The set function m : 3 — [0, +o00] with m(B) = 0 is said to be:

(i) monotone measure if m(A) < m(B) for every A, B € ¥ with A C B.

(#) null-additive measure if m(AU B) = m(A), for every A, B € ¥ with m(B) = 0.
(ii5) o - null - additive measure if m(UpenAn) = 0 as soon as A, € ¥ and
m(A,) =0 for alln € N.

(iv) subadditive measure if m(AU B) < m(A) +m(B) for every A,B € X.

(v) finitely additive measure if m(AU B) = m(A) + m(B), for every A,B € 3,
with AN B = .

(vi) o - subadditive measure if m(US_, Ap) < 307, m(Ay), for every (A,)nen C X,
s0 that Up2 1A, € 2.

(vii) o - additive measure if m(UAyn) = > oy m(Ay), for every (Ap)nen C %,
so that U321 A, € X and A,NA; =0 fori#j,4,5€{L,..,n}.

Remark 2.1. (/3])
If m : ¥ — [0,+00] is monotone and subadditive, then m is null - additive. A
subadditive monotone measure is sometimes called a submeasure.

Definition 2.4. (/2] Definition 3.1)
Let m : ¥ — [0,4+00] be an arbitrary set functions, with m(0) = 0.
(i) A set A € ¥ is said to be an atom of m if m(A) > 0 and for every B € X, with
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B C A, we have m(B) =0 or m(A\ B) = 0.
(i) m is said to be finitely purely atomic (and T a finitely purely atomic space) if
there is a finite disjoint family (A;)7—; C ¥ of atoms of m so that T = U4 A,.

Lemma 2.1. ([1], Remark 3.7)

Let m : ¥ — [0,400] be a non-negative set function, with m(@) =0 and let A € X
be an atom of m.

(i) If m is monotone measure and the set B € ¥ is so that B C A and m(B) > 0,
then B is also an atom of m and m(A\ B) = 0. Moreover, if m is null - additive,
then m(B) = m(A).

(i) If m is monotone and null-additive measure, then for every finite partition
(B))y of X, there exists a unique ip € {1,2...,n} so that m(B;,) = m(A) and
m(B;) =0 for every i € {1,2...,n}, i # io.

Definition 2.5. ([4], Definition 3.1)
The set function m* : P(T) — [0, +o00] with m*(0) = 0 called outer measure on T
if it is monotone and o - subadditive measure.

So, an outer measure is a submeasure on T.

Definition 2.6. (/5], Definition 1.1)

Let X be a vector space. A function || . ||: X — [0,400) is said to be quasi - norm
on X if the following conditions hold:

(i) ]| z||=0<x=0.

(i) for every x € X and for every A ER | || Az ||=|A || z ||

(iii) for every z,y € X , e +y K K(||z || + || v ||) where K > 1 is a constant
independent from variables x and y.

The smallest of constant K, such that the above conditions hold, is called the mod-
ulus of concavity of quasi - norm || . ||.

If the vector space X is equipped with a quasi - norm || . || on X, then (X,| . ||)
is called quasi - normed space.

Let m : 3 — [—o00,+00| be an arbitrary set functions, with m(0) = 0.
In the same way to Definition 3.9 to [2], we can give the following definition.

Definition 2.7. A vector function f: T — X is said to be:

(i) m-totally-measurable ( on T ) if for every e > 0, there exists a partition of T,
(Ao C X, with {Ay, As, ..., A} C X\{0}, such that the following two conditions
hold:

(1) |m|(Ap) = SUP{Zézl Im(A;)|} < e ; where (A;)_, is a partition of Ay and
supremum is extended over all finite partitions of set Ag.

|m| is called absolute variation of m.

(2) supsea, || f(t) — f(s)|I<e, forallie{l,2,..,n}.

(i) The vector function f is called m-totally-measurable on B € X if the restriction
flB is m-totally-measurable on (B,X g, mpg), where ¥g = {ANB: A€ X} and
mp = m|§;B .
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Recall that :

([4], Definition 10.3) (i) A set P € ¥ is called a positive set, according to signed
measure m, if for every P’ € ¥ such that P’ C P, m(P’) > 0.

A set N € X is called a negative set, according to signed measure m, if for every
N’ € 3 such that N' C N, m(N’) <0.

A set Q € X is called a null set, according to signed measure m, if for every Q' € ¥
such that Q' C Q, m(Q’) = 0.

([4], Definition 10.4, Theorem 10.3) (ii) As claimed by the Hanh decomposition of
signed measure m, we can write m = mT —m™ where VA € ¥, mT(A) = m(ANP),
m~(A) = —m(ANN), P and N are respectively positive and negative set of m and
PUN=T,6,PNnN=0.

([4], Definition 10.6, Theorem10.5) (iii) m™,m~,|m| = m*™ +m™ are o— additive,
monotone, non negative measures on T.

([4], Definition 6.9, Proposition 6.22 (ii)) (iv) A function f : T — X is called a
simple function if f(z) = >, aixa,(z), where x a, are characteristic functions on
a finite partition of T.

Let X be a quasi - normed space. Now we are giving an example of m-totally-
measurable functions on T.

Example 1.

Every simple function f : T — X is m-totally-measurable function on T.

Proof

The proof is immediate, if we take Ag = O and A; for i = 1,...,n the sets of parti-
tion above. So, |m|(Ag) = |m|(0) =0 < &, for every e > 0.

On the other hand, sup;sca, || f(t) — f(s) ||= supisea, || ai —a; |=0 < ¢, for
every € > 0.

Remark 2.2. If f : T — X is m-totally-measurable, then fis m*-, m™- and |m|-
totally-measurable.

Proof

If Im|(Ap) < & then, 0 < (m™ +m™)(Ag) = mT(Ag) + m™ (Ap) < €.

That implies, m*(Ag), m™ (4g) < e.

Therefore, |m™|(Ag) = sup{d p_; m*(Ag) : Up_;(Ax) = Ao} <m™T(Ag) <e

(this implies from the fact that m™ is o- additive, monotone , non negative measure
onT ).

Remark 2.3. If the vector function f : T — X is both m™- and m™ -totally-
measurable, then f is m-totally-measurable.

The proof is immediately from the equality (1) |m|(Ag) = m™T(Ag) + m™~(4o) <
e+e=2=¢.

Remark 2.4. ([2/, Remark 3.11.2) (i) If the vector function f : T — X is m-
totally-measurable on T, then fis m-totally-measurable on every A € X.. (The same
proposition hold in case when m is a signed measure, because of equality (1), that
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hold for every Ay € ¥ 4, and the fact that m*, m™, are o- additive, monotone , non
negative measures on T).

([2], Remark 3.11.4) (ii) [1] If m is null - additive and monotone measure, and
A C T is an atom for m, then a function f: T — X is m-totally-measurable on A
if and only if :

infueusuprsev || f(t) = f(s) |=0,
where U is the family of all atoms contained in A.

3. TOTALLY MEASURABLE FUNCTIONS AND CONVERGENCE THEOREMS

The same proposition with Remark 2.4 (ii) can formulated for signed measure.

Remark 3.1. If m is a signed measure and A C T is an atom for |m|, then a
function f:T — X is m-totally-measurable on A if and only if :

infueusuptseu || f(t) — f(s) [[=0
where U is the family of all atoms contained in A.
Proof
Suppose that the function f : T — X is m-totally-measurable on A. From Definition
2.7, for every e > 0, there exists a partition (A;)? oy C B4 with {A1, Ag,..., A} C
Y4\ {0} such that:
1. Im|(Ap) < ¢
2. supysea, || f(£) — f(s) |I<e,Vie{l,2,..,n}
Thus, if U C A and U is an atom for |m|, then |m|(U) > 0 and for every
B CU,B e X either /m|(B) =0 or |m|(U \ B) =0.
On the other hand, A is also an atom for |m|. Therefore, |m|(A\U) =0 and so,
the monotony of |m| imply that U C U, A; and (A\U) C Ag (for some e > 0).
Furthermore, since the collection (A;)7—q C X4 is a partition of T, only one of sets,
let say Ay where k € {1,2,...,n}, has a positive measure |m| and the other sets has
measure |m| zero.
IfU C Ay, then supyseu || f(t) — f(s) [<e.
Otherwise, denote Uy = U N Ag. Thus |m|(U) = |m|(Ur).
For every B C Uy C U, we have |[m|(B) =0 or |m|(U\B) =0. If |m|(B) # 0, then
|m|(U\B) =0 and (U;\B) C (U\ B) that imply 0 < |m|(U;\B) < |m|(U\B) = 0.
So, the set Uy is an atom for |m| and Uy C Ay. This completes the proof.
Conversely, suppose that infyecysuptscu || f(t) — f(s) |= 0, where U is the family
of all atoms contained in A. From Definition of infinum, for every e > 0 exists an
atom U € U such that sup, seu || f(t) — f(s) |I<e.
The set U C A is an atom for |m| and A is also an atom for |m|, so |m|(A\U) = 0.
Denote Ay = A\ U A, = U. The family {Ao, A1} is a partition of A and
Im|(Ao) = 0, suptsea,=v || f(t) — f(s) ||< €. Thus, the partition {Ao, A1} is
such that the conditions of Definition 2.7 holds. So, the function f is m-totally-
measurable on A.

Let m : ¥ — [—00,400] a signed measure. The following proposition hold.
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Proposition 3.1. If f,g : T — X are m-totally-measurable functions and k € R
then kf and f + g are also m- totally-measurable.

Proof

The first claim is immediately according to Definition 2.7. Let proof the second
claim.

For every € > 0, there exists partitions Pr = {A;}{_y and Py = {B;}7 y of T
such that |m|(Ao) < 5%, |m|(Bo) < 5%, where K is modulus of concavity of
quasi-norm || . || on X, and sup;sca, || f(t) — f(s) [[< 5% for i € {1,...,n},
suprsen, | F(t) — £(5) 1< 55 for j € {1,..,m}.

Define another partition P3 of T as following.

Take COO = AO U Bo, Cz'j = Al N Bj fOTi S {17 ...,Tl},j S {1, ,m}

We can see easily that the family P3 = {C’ij}?:&jzo is a partition of T and
ml(Coo) < [m|(Ao) + m| (Bo) < ¢ + 55 = & < <.

Let see the second condition.

For everyi e {1,..,n}, j€{l,...,m} and t,s € C;; have:

| £(2) + g(t) — (f(s) + 9(s)) 1< K || £(8) — f(s) I| +K || o(8) — g(s) |

< Ksuppsea, | 1(0) = 1(s) | +Ksupnses, | [(t) - £(5) <.

So, suptsec,; || f(t)—f(s) [|<e. Thus for partition P the conditions of Definition
2.7 holds. This complete the proof.

The third claim is clear from equality f — g = f + (—g) and first claim.

Now let formulate the following interesting proposition:

Proposition 3.2. If (f, : T — X)nen is a sequence of m-totally-measurable func-
tions on T that is uniformly converge on function f : T — X for everyt € T , then
the function fis also m-totally-measurable on T.

Proof

Since (frn : T — X)nen 18 uniformly converge on function f : T — X for every
t € T, then exists a ng € N such that, for every n > ng and for every t € T,
| Fult) = £ 1< .

Thus, || £(t) — £(5) 1< K(| Falt) = 8 1|+ 1| falt) = £() 1) < K || fult) = £(2) |
FR2 | fult) = Fal3) | +K2 1| fuls) = 1(5) 1< Ke+ K2+ K2 || fult) ~ fa(s) || for
everyt,s € T andn > ng.

From Definition 2.7,we can write that, for some n > ng and for every € > 0, there
exists a partition of T, (Ai);l(g) C %, with {Ay, A, ..., Apyny} € E\{0} , such that
the following two conditions hold:

(1) Im|(Ao) < e ; (2) suprsea, || fu(t) — fu(s) < e, Vie {1,2,...,m(n)} .

So, the above inequalities imply that || f(t) — f(s) |< Ke + 2K?%c = €' for every
t,s€ A;, i €{1,2,....,m(n)}.

The result in above proposition also holds when then sequence (f,,(t))nen converges
uniformly to f(t) almost everywhere according to |m| for t € T. In this case, take
the partition (A" of T such that Ay = AgUB, A, = A;\ B for everyi=1,...,n,
where B is denoted a subset of T with |m|(B) = 0.

Let us give the following two definitions and let us see what is their impact.
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Definition 3.1. (The convergence according to outer measure) .

Let m : ¥ — [0, +00] be a positive monotone measure on T. The sequence of func-
tions (fn, : T — X)nen converges according to outer measure m* to a function
[T = X iflimpsyoom™{t €T || fr(t) — f(t) |> 0} =0 for every o > 0.

Definition 3.2. The function m* : P(T) — [0,400] such that, for every A C T,
m*(A) =inf{m(B) : B € £, A C B}, called outer measure on T generated from m.

Remark 3.2. If m: X — [0,+00] is a positive monotone measure on T and m* is
the outer measure generated from m, then for every A € 3, m(A) = m*(A).
Proof

For every A € ¥, m(A) € {m(B) : B € ¥, A C B} implies that m*(A) < m(A).
On the other hand, for every B € ¥ with A C B we have m(A) < m(B) implies
that m(A) < inf{m(B): Be€ X, A C B} =m*(4).

Let m : ¥ — [—o00,+00] be a signed measure and |m|* be the outer measure
generated from |m|.

Proposition 3.3. If (f, : T — X)nen 48 a sequence of m-totally-measurable func-

tions converges according to |m|* to a function f: T — X, then the function fis

also m-totally-measurable.

Proof

Let (fn, : T — X)nen be a sequence of m-totally-measurable functions that converges

according to |m|* to a function f:T — X.

For every € > 0, there exists a natural number ng such that, for every n > ng we

have |m|*{t € T :|| fn(t) — f(t) |> e} <e.

Denote A™ = {teT:| fult)— f(t) |> €} and B = T\Aé”). For everyn > ny,

\m\*(Agn)) < & and for every t,s € B™ we have I fn(t) — f(t) < €. Fiz a natural

number n > ng and from inequality || f(t) — f(s) |< K || fu(t) — f(t) || +K? ||

() = fu(8) || +K2 || fal(s) — f(s) || (see proof of above proposition ) we can write:
() = f(s) II< Ke + K%+ K2 || fult) — fu(s) |,

for every t,s € BE").

Since fr is m-totally-measurable on T, then find a partition (A;)§ of T such that,
(Ai)iso C 2, with {(Ai)io } ©€ S\{0}, Im|(Ao) < € and suptsea, || fu(t)—fu(s) [I<
e fori=1,...,n. Denote By the smallest set in ¥ such that (Aé”) UAp) C By (this
set is By = Npex{B : (A§") U Ay) C B}) and B; = (T \ By) N A; for every
i=1,...,n. So, the collection (B;)}_, is a partition of T such that:
[ml(By) = m|*(Bo) < [m|*(AL"”) + [ml*(Ap) = [m|*(AL") + [m| (o) < 2¢
and supt se; || fn(t) = fn(s) |< suprsea, || fu(t) — fu(s) |<e.
Thus B; € B, A; implies that:

supsep; || f(t) = f(s) < (K + K?)e + K2supysea, || fult) = fu(s) 1<
(K +2K?)e=¢
This completes the proof.
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We can formulate another equivalent definition of m-totally-measurable function.

Definition 3.3. The vector function f : T — X is called m-totally-measurable
on T, if there exists a sequence of simple functions that converge according to out
measure |m|* to f.

Remark 3.3. Definition 2.7 and Definition 3.3 of m-totally-measurable functions,
are equivalent.

Proof

Suppose that Definition 2.7 holds. Take the numerical sequence €,, = ﬁ and define
the simple functions sequence @, (t) = Zf(%) aixar(t) for every n € N, where a;

is equal with a whatever f(t) fort € A} and {A}}, 2, M) s the partition of T corre-
sponding to €.

Thus, |ml(A3) < 2 and suppsear | £(t) = £(5) 1< & for alli € {1,2, ... k(n)}.
Let proof that, the ¢, (t) sequence converges accordmg to out measure |m|* to f.
For every o > 0 ewists a ng € N such that, o > 55 L for every n > ny.

Denote AT = {t € T :|| pn(t)— f(t) ||> o}. Smce <pn(t) = f(s) for some s € A} we
have AT C Ay for every n > ng, that implies |m[*(AZ) < |m[*(A4F) = |m|(A}) <
2. 8o, limp,—yoo|m[*(AZ) = 0, that is our claim.

Conwversely, suppose that exists a simple functions sequence @, : T — X that con-
verges according to out measure |m|* to f. Let proof that the function f is m-totally-
measurable on T according to definition 2.7. Take o = 557, where K is modulus
of concavity of quasi-norm on X. For every § > 0 exists ng € N such that, for
every n > ng , ImP*{t € T :|| pn(t) = f(t) [|> 5%} < § . Fiz some n > ng and
denote By = {t € T :|| on(t) — f(t) > 5%} It is clear that |m|*(By) < 5 and
form Definition 3.2 we can write: For every § > 0 exists a set By € ¥ such that,
By C By and |m|*(By) < |m|(Bg) < |m|*(Bo) + § < €.

Denote (BY)* = T\By = {1 € T pult)—F(1) < sic}. Fpult) = X1 a fxap (8),
then (By)© = (BY)° N (Uil An) = WD ((By)e n AP) = Ul Cy where C; =
(Bj)¢ N A} for every i =0,...,n

It is clear that C; € ¥ and for every t € Cy, || pn(t) — f() [|=l al* — f(t) ||
Since, for every t,s € G, || f(t) = f(s) [|< K[| i = f(t) [| +K || a3 — f( :
then supy sec; || f(t) — f(s) |< e. Thus take the partition By, Cy,Ch,...,Cy, of T
that is in accordance with the terms of Definition 2.7.

Remark 3.4. Every m-totally-measurable function f : T — X is also m-measurable
function.

Proof

From Definition 3.3, exists a simple functions sequence @, : T — X that converges
according to measure |m|* to function f.

Since |m| = m* +m™ from Definition 3.2 we can write (m™*)* 4+ (m™)* < |m|* .
So from limp_ 4 oo|m|*{|| pn(t) — f(t) ||> o} = 0 we conclude that the sequence p,
converges according to, both measures (m™)* and (m™)*, to function f.

The well known Theorem of Riesz ([4], Theorem 9.2) implies that, exists a subse-
quence op, of o that converges pointwise to f. (This result is true in both spaces

(T,m™*) and (T,m™) )



TOTALLY - MEASURABILITY ON SIGNED MEASURABLE SPACES 91

So, the function f is both m*-measurable and m™-measurable on T. This implies
that f is m-measurable on T.

Egoroff’s Theorem and the fact that uniformly convergence of a function sequence
implies the according to measure convergence, we can conclude that:

If |m|(T) < +o00, then every m-measurable functions sequence that converge to
a m-measurable function f converge according to measure |m| to function f also.
Finally:

Remark 3.5. If (X, | . ||) is a normed space and the measure |m| is finite, then
every m - measurable function f: T — X is also m-totally-measurable.

So, the notions m - measurable function and m-totally-measurable function coin-
cides in conditions of Remark 3.5.

Take the function f :[0,1] — [0, 1] such that f(z) =1in A C C, A ¢ B(R) where C'is
Cantor set and B(R) is collections of Borel set in R, and f(x) = 2in [0,1]\ A. It is
not Borel measurable, because f~(—00,2) = A ¢ B(R), but the function f is Borel
totally-measurable, because we can find a partition {C,[0,1]\ C} of [0,1] such that
|m|(C) = MC) =0 < €, where X is denoted the Lebesgue measure in R. Further-
more, for every t,s € [0,1]\ C we have f(t) = f(s) =2 thus |f(t) — f(s)|=0< e
that imply sup; scpoapnc|f(t) — f(s)| =0 <e.

So, we conclude that the set of m-measurable functions is a subset of m-totally-
mesurable functions set.
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