n-QUASI- (A, m) - ISOMETRIC OPERATORS ON A HILBERT SPACE

EL MOCTAR OULD BEIBA, MESSAOUD GUESBA AND SID AHMED OULD AHMED
MAHMOUD

Abstract. A bounded linear operator S on a Hilbert space \mathcal{K} is said to be a n-quasi- (A, m)-isometric if

$$
S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n}=0
$$

for some positive operator A on \mathcal{K} and for some positive integers m and n. This class of operators seems a natural generalization of n-quasi- m-isometric and (A, m)-isometric operators on a Hilbert space (10, 12). First, we extend some results obtained in several papers related to n-quasi- m-isometric operators on a Hilbert space. In particular, some structural properties of this class are established with the help of special kind of operator matrix representation associated with such operators. Then, we give a necessary and sufficient condition for an operator to be a n-quasi- (A, m)-isometry. Finally, we characterize the spectra of these operators.

1. Introduction and terminologies

The concept of m-isometries on a complex Hilbert space has attracted attention of many authors, specially J. Agler and M. Stankus [1] and other authors. A generalization of m-isometries to (A, m)-isometric operators on semi-Hilbertian spaces has been presented by Sid Ahmed et al. in [10. Our goal in this paper is to study the class of n-quasi- m-isometric with respect to a semi-norm $\|.\|_{A}$ induced by a semi-inner product defined by a positive operator A. An operator in this class will be called n-quasi- (A, m)-isometric operator. We give several generalizations of many results on n-quasi- m-isometric operators from [12, [13, ,14] and [15].
Throughout this paper \mathcal{K} stands for a separable complex Hilbert space with inner product $\langle. \mid$.$\rangle and \mathcal{L}[\mathcal{K}]$ is the Banach algebra of all bounded linear operators on \mathcal{K}. $I_{\mathcal{K}}$ denotes, as usual, the identity operator on $\mathcal{K} . \mathcal{L}(\mathcal{K})^{+}$is the cone of positive (semi-definite) operators, i.e.,

$$
\mathcal{L}(\mathcal{K})^{+}=\{A \in \mathcal{L}(\mathcal{K}):\langle A \xi, \mid \xi\rangle \geq 0, \forall \xi \in \mathcal{K}\}
$$

[^0]For every $S \in \mathcal{L}[\mathcal{K}]$ its range is denoted by $\mathcal{R}(S)$, its null space by $\mathcal{N}(S)$ and its adjoint by S^{*}. If $\mathcal{M} \subset \mathcal{K}$ is a subspace, the subspace \mathcal{M} is invariant for S if $S \mathcal{M} \subset \mathcal{M}$.

Also, let $\alpha(S):=\operatorname{dim} \mathcal{N}(S), \beta(S):=\operatorname{dim} \mathcal{K} / \mathcal{R}(S)$ and let $\sigma(S)$ denote the spectrum of $S, \sigma_{a p}(S)$ the approximate point spectrum of $S, \pi_{0}(S)$ the eigenvalues of S, and $\pi_{0 f}(S)$ the eigenvalues of finite multiplicity of S.

A positive operator $(A \neq 0)$ defines a positive semi-definite sesquilinear form:

$$
\langle. \mid .\rangle_{A}: \mathcal{K}^{2} \longrightarrow \mathbb{C},\langle\xi \mid \eta\rangle_{A}:=\langle A \xi \mid \eta\rangle .
$$

The map $\langle. \mid .\rangle_{A}$ induced a semi-norm on a certain subspace of $\mathcal{L}[\mathcal{K}]$, namely, on the subset

$$
\mathcal{L}_{A}[\mathcal{K}]:=\left\{S \in \mathcal{L}[\mathcal{H}]: \exists k>0 /\|S \xi\|_{A} \leq k\|\xi\|_{A}, \quad \forall \xi \in \mathcal{K}\right\}
$$

For $S \in \mathcal{L}[\mathcal{K}]$, it holds

$$
\|S\|_{A}:=\sup \left\{\left(\frac{\|S \xi\|_{A}}{\|\xi\|_{A}}\right), \quad \xi \in \overline{\mathcal{R}(A)}, \quad \xi \neq 0\right\}<\infty
$$

(See for more detail [5, 6, 7]).
Recall that an operator $S \in \mathcal{L}[\mathcal{K}]$ is said to be:
(i) n-Quasi-isometry for some integer $n \geq 1$ ([11], [18]) if

$$
S^{*(n+1)} S^{n+1}-S^{* n} S^{n}=0 \text { or equivalently if } S^{* n}\left(S^{*} S-I_{\mathcal{K}}\right) S^{n}=0
$$

If the relation is verified with $n=1, S$ is called a quasi-isometry (See [14] and [15]).
(ii) A-contraction if $S^{*} A S \leq A$ and n-quasi-contraction, for $n \geq 1$, if S is an $S^{* n} S^{n}$-contraction ([11]).
(iii) A-n-quasi-isometry for some integer $n \geq 1$ if

$$
S^{*(n+1)} A S^{n+1}-S^{* n} A S^{n}=0 \text { or equivalently } S^{* n}\left(S^{*} A S-A\right) S^{n}=0
$$

If the relation is verified with $n=1, S$ is called an A-quasi-isometry (see [18]).
(iv) m-isometry ([1]) if

$$
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} S=0 \quad\left(\Leftrightarrow \sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S^{k} \xi\right\|^{2}=0, \forall \xi \in \mathcal{K}\right)
$$

(v) A - m-isometric operator (or (A, m)-isometric operator) (see [10]) if

$$
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}=0\left(\Leftrightarrow \sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S^{k} \xi\right\|_{A}^{2}=0, \forall \xi \in \mathcal{K}\right)
$$

(vi) n-quasi- m-isometric operator (see [12, [17]) if

$$
S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} S^{k}\right) S^{n}=0
$$

The paper is organized as follow: In Section two, we introduce the concept of n -quasi- (A, m)-isometric operators. Several properties are proved by exploiting the special kind of operator matrix representation associated with such operators. In the course of our investigation, we find some properties of (A, m)-isometries and
n-quasi- m-isometries, which are retained by n-quasi- (A, m)-isometries. However, there are other ones which are shown to be no true for n-quasi- (A, m)-isometries in general. Several spectral properties of n-quasi- (A, m)-isometries are obtained in Section three, concerning the spectrum, the approximate spectrum and Weyl spectrum.

2. n-QUASI- (A, m)-ISOMETRIC OPERATORS

In the sequel, $A \in \mathcal{L}[\mathcal{K}]$ will denote a positive operator. Let m and n be two natural numbers, we define the n-quasi- (A, m)-isometric operator as follows:
Definition 2.1. Let $S \in \mathcal{L}[\mathcal{K}], S$ is said to be an n-quasi-(A, m-isometric operator if there exists a positive operator A on \mathcal{K} such that

$$
\begin{equation*}
S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n}=0 \tag{2.1}
\end{equation*}
$$

It is clear that each (A, m)-isometric operator is an n-quasi-(A, m)-isometric operator and each n-quasi-(A, m)-isometric operator is a $(n+1)$-quasi- (A, m) isometric operator.

Remark. We make the following remarks
(i) If $A=I_{\mathcal{K}}$ every n-quasi- (A, m)-isometric operator is a n-quasi-m-isometric operator.
(ii) Every A-quasi-isometry (or quasi- A-isometry) is an n-quasi- (A, m)-isometric.
(iii) If S is an invertible n-quasi- (A, m)-isometric operator then S is an (A, m) isometry.
(iv) 1-quasi- (A, m)-isometry is simply quasi- (A, m)-isometry.
(v) If $S A=A S$ and A is injective, then every n-quasi- (A, m)-isometric operator is a n-quasi- m-isometric operator.

The following remark is a consequence of definitions of n-quasi- m-isometric operator and n-quasi- (A, m)-isometric operator.
Remark. Let $S \in \mathcal{L}[\mathcal{K}]$ and $A \in \mathcal{L}[\mathcal{K}]^{+}$. The following observations hold:
(i) S is an n-quasi- m-isometric operator if and only if S is an $\left(S^{* n} S^{n}, m\right)$-isometric operator.
(ii) S is an n-quasi- (A, m)-isometric operator if and only if S is an $\left(S^{* n} A S^{n}, m\right)$ -isometric operator.

The following example shows that for fixed operator A, a n-quasi- (A, m)-isometry property is not necessary an (A, m)-isometry for some positive integers n and m.
Example 2.1. Let us consider the operators on $\mathbb{C}^{3}: S=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right)$. By Computing the products $S^{*(n+j)} A S^{n+j}$ and $S^{j} A S^{j}$ for
$j=0,1, \cdots, m$, we show that

$$
S^{* n}\left(\sum_{0 \leq j \leq m}(-1)^{m-j}\binom{m}{j} S^{* j} A S^{j}\right) S^{n}=0
$$

and

$$
\sum_{0 \leq j \leq m}(-1)^{m-j}\binom{m}{j} S^{* j} A S^{j} \neq 0
$$

Therefore, S is a n-quasi-(A, m)-isometric operator but not an (A, m)-isometry.
The following example shows that an n-quasi- (A, m)-isometric operator need not be an n-quasi- m-isometric operator for some positive integers n and m and vice versa.
Example 2.2. Let us consider the operators on $\mathbb{C}^{3}: S=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $A=$ $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.

A direct calculation shows that S is a quasi- A-isometric but not a quasi-isometry.
Theorem 2.1. Let $S \in \mathcal{L}[\mathcal{K}]$ and $A \in \mathcal{L}[\mathcal{K}]^{+}$, then S is an n-quasi-(A, m-isometric operator if and only if

$$
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S^{n+k} \xi\right\|_{A}^{2}=0, \quad \forall \xi \in \mathcal{K}
$$

Proof. follows immediately from Definition 2.8 .
Proposition 2.2. Let $S \in \mathcal{L}[\mathcal{K}]$. If S is a n-quasi-(A, m-isometric operator and $\mathcal{R}\left(S^{n}\right)$ is dense, then S is an (A, m)-isometric operator.

Proof. Immediate consequence of Theorem 2.1.
Theorem 2.3. Let $A, S \in \mathcal{L}[\mathcal{K}]$ with $A \geq 0$ and let \mathcal{M} be an invariant closed subspace for S, P the orthogonal projection on \mathcal{M} and $A_{\mathcal{M}}=P A_{/ \mathcal{M}}$. If S is a n-quasi-(A, m)-isometric operator, then $S_{/ \mathcal{M}}$ is also a n-quasi- $\left(A_{\mathcal{M}}, m\right)$-isometric operator.

Proof. Let $\xi \in \mathcal{M}$, we have

$$
\|\xi\|_{A_{\mathcal{M}}}^{2}=\|\xi\|_{A}^{2}
$$

Thus

$$
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S_{/ \mathcal{M}}^{n+k} \xi\right\|_{A_{\mathcal{M}}}^{2}=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S^{n+k} \xi\right\|_{A}^{2} .=0
$$

This means that $S_{/ \mathcal{M}}$ is an n-quasi- $\left(A_{\mathcal{M}}, m\right)$-isometric operator.
As a consequence of Theorem 2.3 , we have the following result:
Corollary 2.4. Let $S \in \mathcal{L}[\mathcal{K}]$ and let \mathcal{M} be a reducing subspace for S and $A \mathcal{M} \subseteq$ \mathcal{M}. If S is a n-quasi-(A, m)-isometric operator, then $S_{/ \mathcal{M}}$ is also a n-quasi$\left(A_{/ \mathcal{M}}, m\right)$-isometric operator.

Proof. We have $A_{/ \mathcal{M}}=A_{\mathcal{M}}$. This yields the desired result, by applying Theorem 2.1.

The next proposition gives a necessary condition for an operator to be a n-quasi(A, m)-isometry.
Proposition 2.5. Let $A \in \mathcal{L}[\mathcal{K}]^{+}$and $S \in \mathcal{L}_{A}[\mathcal{K}]$. If S is a $n-Q u a s i-(A, m)-$ isometric operator such that $\left\|S^{n}\right\|_{A} \neq 0$, then

$$
\begin{equation*}
2^{\frac{1}{m}} \leq 1+\|S\|_{A}^{2} \tag{2.2}
\end{equation*}
$$

In particular, if S is a n-quasi- A-isometric operator, then

$$
1 \leq\|S\|_{A}
$$

Proof. Since S is a n-quasi- (A, m)-isometric operator, then we have, by Theorem 2.1 .

$$
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S^{n+k} \xi\right\|_{A}^{2}=0, \quad \forall \xi \in \mathcal{H}
$$

Which can be written

$$
\left\|S^{n} \xi\right\|_{A}^{2}=\sum_{1 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|S^{n+k} \xi\right\|_{A}^{2}, \quad \forall \xi \in \mathcal{H}
$$

This implies

$$
\left\|S^{n} \xi\right\|_{A}^{2} \leq\left(\sum_{1 \leq k \leq m}\binom{m}{k}\left\|S^{n+k}\right\|_{A}^{2}\right)\|\xi\|_{A}^{2}, \quad \forall \quad \xi \in \mathcal{H}
$$

which gives

$$
\left\|S^{n} \xi\right\|_{A}^{2} \leq\left(\sum_{1 \leq k \leq m}\binom{m}{k}\left\|S^{n}\right\|_{A}^{2}\|S\|_{A}^{2 k}\right)\|\xi\|_{A}^{2}, \quad \forall \xi \in \mathcal{H}
$$

Therefore

$$
\left\|S^{n} \xi\right\|_{A} \leq\left\|S^{n}\right\|_{A}\left(\sum_{1 \leq k \leq m}\binom{m}{k}\|S\|_{A}^{2 k}\right)^{\frac{1}{2}}\|\xi\|_{A}, \quad \forall \xi \in \mathcal{H} .
$$

Which can be written

$$
\left\|S^{n} \xi\right\|_{A} \leq\left\|S^{n}\right\|_{A}\left(\left(1+\|S\|_{A}^{2}\right)^{m}-1\right)^{\frac{1}{2}}\|\xi\|_{A}, \quad \forall \xi \in \mathcal{H}
$$

Thus

$$
\left\|S^{n}\right\|_{A} \leq\left\|S^{n}\right\|_{A}\left(\left(1+\|S\|_{A}^{2}\right)^{m}-1\right)^{\frac{1}{2}}
$$

Hence

$$
1 \leq\left(\left(1+\|S\|_{A}^{2}\right)^{m}-1\right)^{\frac{1}{2}}
$$

Which yields

$$
2^{\frac{1}{m}} \leq 1+\|S\|_{A}^{2}
$$

Applying 2.2 for $m=1$, we get

$$
1 \leq\|S\|_{A}
$$

Thus, if S is an n-quasi- A-isometric operator, then

$$
1 \leq\|S\|_{A}
$$

This ends the proof.

Set

$$
\begin{equation*}
\mathbf{Q}_{l}^{A}(S):=\sum_{0 \leq k \leq l}(-1)^{l-k}\binom{l}{k} S^{* k} A S^{k}, \quad l \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Proposition 2.6. Let $S \in \mathcal{L}[\mathcal{K}]$, then the following identity holds

$$
\begin{equation*}
\mathbf{Q}_{m+1}^{A}(S)=S^{*} \mathbf{Q}_{m}^{A}(S) S-\mathbf{Q}_{m}^{A}(S) \tag{2.4}
\end{equation*}
$$

In particular, every n-quasi- (A, m)-isometric operator is a n-quasi- (A, k)-isometric operator for each $k \geq m$.
Proof. In view of 2.9, we can write

$$
\begin{aligned}
\mathbf{Q}_{m+1}^{A}(S) & =(-1)^{m+1} A+\sum_{1 \leq k \leq m}(-1)^{m+1-k}\binom{m+1}{k} S^{* k} A S^{k}+S^{* m+1} A S^{m+1} \\
& =(-1)^{m+1} A+\sum_{1 \leq k \leq m}(-1)^{m+1-k}\left(\binom{m}{k}+\binom{m}{k-1}\right) S^{* k} A S^{k}+S^{* m+1} A S^{m+1} \\
& =-\mathbf{Q}_{m}^{A}(S)+S^{*} \mathbf{Q}_{m}^{A}(S) S
\end{aligned}
$$

Thus, we obtain (2.4).
On the other hand, we have from 2.4 that $S^{* n} \mathbf{Q}_{m+1}^{A}(S) S^{n}=0$ whenever $\mathbf{Q}_{m}^{A}(S)=$ 0 .

The outline of the following example is inspired of the paper [16].
Example 2.3. Let $\mathcal{K}=l^{2}(\mathbb{C}):=\left\{\left(\xi_{p}\right)_{p} \subset \mathbb{C} / \sum_{p \geq 0}\left|\xi_{p}\right|^{2}<\infty\right\}$ and consider $\left(e_{p}\right)_{p}$ be an orthonormal basis of \mathcal{K}. Define $S \in \mathcal{L}[\mathcal{K}]$ by $S e_{n}=\left(\frac{n+3}{n+1}\right)^{\frac{1}{2}} e_{n+1}$ and $A e_{n}=\frac{n+1}{n+2} e_{n}$. By computing integers powers of S we may easily check that

$$
\left\|S^{3} e_{n}\right\|_{A}^{2}-2\left\|S^{2} e_{n}\right\|_{A}^{2}+\left\|S e_{n}\right\|_{A}^{2} \neq 0
$$

and similarly, we find that

$$
\left\|S^{4} e_{n}\right\|_{A}^{2}-3\left\|S^{3} e_{n}\right\|_{A}^{2}+3\left\|S^{2} e_{n}\right\|_{A}^{2}-\left\|S e_{n}\right\|_{A}^{2}=0, \quad \forall n \in \mathbb{N}
$$

In view of Theorem 2.1, we see that S is a quasi-($A, 3$-isometry but cannot be a quasi-($A, 2)$-isometry.

Definition 2.2. Let $S \in \mathcal{L}[\mathcal{K}]$ be a n-quasi-(A, m)-isometric operator. We define the (A, m)-exponent of S, denoted $e_{A, m}(S)$, to be the smallest $k \in \mathbb{N}$ such that S is a k-quasi-($A, m)$-isometric.

We give the following example to show that there exists an $(n+1)$ - quasi- (A, m) isometric operator, but not an n-quasi- (A, m)-isometric operator.

Example 2.4. Let $\mathcal{K}=\mathbb{C}^{3}, \quad A=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right) \in \mathcal{L}(\mathcal{K})^{+}$and $S=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \in$ $\mathcal{L}(\mathcal{K})$. By computing $S^{* j}\left(S^{*} A S-A\right) S^{j}$ for $j=1,2$ we show that

$$
S^{*}\left(S^{*} A S-A\right) S \neq 0 \text { and } S^{* 2}\left(S^{*} A S-A\right) S^{2}=0
$$

Hence, the following conclusions hold:
(i) S is not an A-isometry neither an A-quasi-isometry.
(ii) S is a 2 -quasi- $(A, 1)$-isometry (or 2 -quasi- A-isometry) but not a A-quasi-isometry.

Now we are ready to give a sufficient condition for a n-quasi- (A, m)-isometric operator to be a n_{0}-quasi- (A, m)-isometric operator for $n \geq n_{0}$.

Theorem 2.7. Let $S \in \mathcal{L}[\mathcal{K}]$ be an n-quasi-(A, m-isometric operator. The following statements hold.
(1) If $\mathcal{N}\left(S^{*}\right)=\mathcal{N}\left(S^{* 2}\right)$, then S is a quasi-($\left.A, m\right)$-isometry.
(2) If there exists a positive integer n_{0} for which $n \geq n_{0}$ and $\mathcal{N}\left(S^{* n_{0}}\right)=\mathcal{N}\left(S^{* n}\right)$, then S is a n_{0}-quasi-($\left.A, m\right)$-isometric operator.

Proof. (1) Under the assumption that $\mathcal{N}\left(S^{*}\right)=\mathcal{N}\left(S^{* 2}\right)$ it is enough to show that $\mathcal{N}\left(S^{*}\right)=\mathcal{N}\left(S^{* n}\right)$ for all $n \in \mathbb{N}, n \geq 1$. By hypothesis, S is a n-quasi- (A, m) isometry, then we have

$$
S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n}=0
$$

Since $\mathcal{N}\left(S^{*}\right)=\mathcal{N}\left(S^{* n}\right)$, then a direct computation shows that

$$
S^{*}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S=0
$$

which implies that S is a quasi- (A, m)-isometry.
(2) Assume there exists $n_{0} \in \mathbb{N}$ for which $n \geq n_{0}$ and $\mathcal{N}\left(S^{* n_{0}}\right)=\mathcal{N}\left(S^{* n}\right)$. By using the fact that $\mathbf{Q}_{m}^{A}(S)$ is self-adjoint we obtain

$$
S^{* n_{0}} \mathbf{Q}_{m}^{A}(S) S^{n_{0}}=0 \Longleftrightarrow S^{* n} \mathbf{Q}_{m}^{A}(S) S^{n}=0
$$

The statement (ii) follows, and this completes the proof.

Lemma 2.8. Let $S \in \mathcal{L}[\mathcal{K}]$ ba a quasi-($A, 2)$-isometry, then S is a $S^{*} A S$-contractive operator i.e.; $S^{*}\left(S^{*} A S\right) S \geq S^{*} A S\left(i . e . ; ~ S^{* 2} A S^{2} \geq S^{*} A S\right)$.

Proof. Since S is a quasi- $(A, 2)$-isometry it follows that

$$
\begin{equation*}
S^{* 3} A S^{3}=2 S^{* 2} A S^{2}-S^{*} A S \tag{2.5}
\end{equation*}
$$

We use the induction to show that for all $k \geq 1$ we have

$$
\begin{equation*}
S^{* k+2} A S^{k+2}=(k+1) S^{* 2} A S^{2}-k S^{*} A S \tag{2.6}
\end{equation*}
$$

For $k=1$, the equality is obvious. Suppose 2.6 holds for k and prove it for $k+1$. Indeed, we have by multiplying the equation 2.6 on the left by S^{*} and on the right by S we get

$$
\begin{aligned}
S^{* k+3} A S^{k+3} & =(k+1) S^{* 3} A S^{3}-k S^{* 2} A S^{2} \\
& =(k+1)\left(2 S^{* 2} A S^{2}-S^{*} A S\right)-k S^{* 2} A S^{2} \\
& =(k+2) S^{* 2} A S^{2}-(k+1) S^{*} A S
\end{aligned}
$$

This proves 2.6 for $k+1$. In particular,

$$
(k+1) S^{* 2} A S^{2} \geq k S^{*} A S \text { or equivalently }\left(1+\frac{1}{k}\right) S^{* 2} A S^{2} \geq S^{*} A S
$$

Taking $k \longrightarrow \infty$, we get $S^{* 2} A S^{2} \geq S^{*} A S$ or equivalently $S^{*}\left(S^{*} A S\right) S \geq S^{*} A S$. Since $S^{*} A S$ is a positive operator, the desired result follows immediately.

Theorem 2.9. Let $S \in \mathcal{L}[\mathcal{K}]$ and $n, m \in \mathbb{N}$. Then S is a n-quasi-(A, m)-isometric operator if and only if $S=B^{-1} S B$ is a n-quasi- $\left(B^{*} A B, m\right)$-isometric operator for every invertible $B \in \mathcal{L}[\mathcal{K}]$.

Proof. A little calculation yields

$$
\begin{aligned}
& S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} B^{*} A B S^{k}\right) S^{n} \\
= & B^{*} S^{* n}\left(B^{*}\right)^{-1}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} B^{*} S^{* k}\left(B^{*}\right)^{-1} B^{*} A B B^{-1} S^{k} B\right) B^{-1} S^{n} B \\
= & B^{*} S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n} B .
\end{aligned}
$$

It follows immediately that S is a n-quasi- (A, m)-isometric operator if and only if S is a n-quasi- $\left(B^{*} A B, m\right)$-isometric operator.

In the following theorem, we give a necessary and sufficient condition for S to be a n-quasi- (A, m)-isometric operator.
Theorem 2.10. Let $S \in \mathcal{L}[\mathcal{K}]$. If $S^{n} \neq 0$ does not a dense range such that $\overline{\mathcal{R}\left(S^{n}\right)}$ is an invariant subspace for A, then the following statements are equivalent.
(1) S is a n-quasi-($A, m)$-isometric operator.
(2) $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ on $\mathcal{K}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$, where S_{1} is an $\left(A_{1}, m\right)$-isometric operator and $S_{3}^{n}=0$, with $A_{1}=A_{\mid \overline{\mathcal{R}\left(S^{n}\right)}}$.

Proof. This idea comes from proof of [17, Theorem 2.1]. Since $\overline{\mathcal{R}\left(S^{n}\right)}$ is invariant for A and S, we have $A=A_{1} \oplus A_{2}$ with $A_{1}=A_{\mid \overline{\mathcal{R}\left(S^{n}\right)}}$ and $A_{2}=A_{\mid \mathcal{N}\left(S^{* n}\right)}$ and S has a matrix decomposition $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$, relative to the decomposition $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$.

Assume that S is a n-quasi- (A, m)-isometric operator and let $P=\left(\begin{array}{cc}S_{1} & 0 \\ 0 & 0\end{array}\right)$ be the projection onto $\overline{\mathcal{R}\left(S^{n}\right)}$, where $I_{1}=I \mid \overline{\mathcal{R}\left(S^{n}\right)}$, it follows that

$$
P\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) P=0
$$

and so that

$$
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S_{1}^{* k} A_{1} S_{1}^{k}=0
$$

Hence S_{1} is an $\left(A_{1}, m\right)$-isometric operator.
On the other hand, let $x=x_{1}+x_{2} \in \mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$. A simple computation shows that

$$
\begin{aligned}
\left\langle S_{3}^{n} x_{2}, x_{2}\right\rangle & =\left\langle S^{n}(I-P) x,(I-P) x\right\rangle \\
& =\left\langle(I-P) x, S^{* n}(I-P) x\right\rangle=0 .
\end{aligned}
$$

So, $S_{3}^{n}=0$.
$(2) \Rightarrow(1)$ Suppose that $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ onto $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$, with

$$
\Lambda_{m}\left(A_{1}, S\right):=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S_{1}^{* k} A_{1} S_{1}^{k}=0 \text { and } S_{3}^{n}=0
$$

Since $S^{k}=\left(\begin{array}{cc}S_{1}^{k} & \sum_{j=0}^{k-1} S_{1}^{j} S_{2} S_{3}^{k-1-j} \\ 0 & S_{3}^{k}\end{array}\right)$ we have

$$
\begin{aligned}
& S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k} A\right) S^{n} \\
= & \left(\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right)^{* n}\left\{I+\sum_{1 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left(\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right)^{* k}\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right)^{k}\right\} \\
& \times\left(\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right)^{n} \\
= & \binom{\sum_{j=0}^{n-1} S_{3}^{* n-1-j} S_{2}^{*} S_{1}^{* j}}{S_{3}^{* n}}
\end{aligned}
$$

$$
\times\left\{I+\sum_{1 \leq k \leq m}(-1)^{k}\binom{m}{k}\left(\begin{array}{cc}
\sum_{j=0}^{k-1} S_{3}^{* k-1-j} S_{2}^{* k} S_{1}^{* j} C_{1} & S_{3}^{* k} A_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1}^{k} & \sum_{j=0}^{k-1} S_{1}^{j} S_{2} S_{3}^{k-1-j} \\
0 & S_{3}^{k}
\end{array}\right)\right\}
$$

$$
\times\left(\begin{array}{cc}
S_{1}^{n} & \sum_{j=1}^{n-1} S_{1}^{j} S_{2} S_{3}^{n-1-j} \\
0 & S_{3}^{n}
\end{array}\right)
$$

$$
\begin{gathered}
=\left(\begin{array}{cc}
S_{1}^{* n} & 0 \\
\sum_{j=1}^{n-1} S_{3}^{* n-1-j} S_{2}^{*} S_{1}^{* j} & 0
\end{array}\right) \\
\times\left\{\left(\begin{array}{cc}
\Lambda_{m}\left(A_{1}, S_{1}\right) & C \\
D & B
\end{array}\right)\right\} \times\left(\begin{array}{cc}
S_{1}^{n} \sum_{j=1}^{n-1} S_{1}^{j} S_{2} S_{3}^{n-1-j} \\
0 & 0
\end{array}\right) \\
=\left(\begin{array}{cc}
S_{1}^{* n} \Lambda_{m}\left(A_{1}, S_{1}\right) S_{1}^{n} & S_{1}^{* n} \Lambda_{m}\left(A_{1}, S_{1}\right) \sum_{j=1}^{n-1} S_{1}^{j} S_{2} S_{3}^{n-1-j} \\
\left(\sum_{j=1}^{n-1} S_{1}^{j} S_{2} S_{3}^{n-1-j}\right)^{*} \Lambda_{m}\left(A_{1}, S_{1}\right) S_{1}^{n} & \left(\sum_{j=1}^{n-1} S_{1}^{j} S_{2} S_{3}^{n-1-j}\right)^{*} \Lambda_{m}\left(A_{1}, S_{1}\right)\left(\sum_{j=1}^{n-1} S_{1}^{j} S_{2} S_{3}^{n-1-j}\right)
\end{array}\right)
\end{gathered}
$$

Since $\Lambda_{m}\left(A_{1}, S_{1}\right)=0$, it follows that $S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n}=0$.
Thus S is a n-quasi- (m, A)-isometric operator.
In [2], it was proved that if S is an (A, m)-isometric operator on a Hilbert space, then so is S^{k} for each positive integer k. In the following corollary we extend this result to n-quasi- (A, m)-isometric operators.
Corollary 2.11. Under the same hypothesis as in Theorem 2.10, if S is a n-quasi(A, m)-isometric operator, so is S^{k} for each positive integer k.
Proof. If $\mathcal{R}\left(S^{n}\right)$ is dense then S is an (A, m)-isometric operator and so is S^{k} by 2, thoerem 1]. Now, assume that $\mathcal{R}\left(S^{n}\right)$ is not dense, by Theorem 2.10 we write the matrix representation of S on $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ as follows $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ where $S_{1}=S_{\mid \overline{\mathcal{R}}\left(S^{n}\right)}$ is an $\left(A_{1}, m\right)$-isometric operator and $S_{3}^{n}=0$. We notice that

$$
S^{k}=\left(\begin{array}{cc}
S_{1}^{k} & \sum_{j=0}^{k-1} S_{1}^{j} S_{2} S_{3}^{k-1-j} \\
0 & S_{3}^{k}
\end{array}\right)
$$

where S_{1}^{k} is an $\left(A_{1}, m\right)$-isometric operator ([2, Theroem 1]) and $\left(S_{3}^{k}\right)^{n}=0$. Hence S^{k} is an n-quasi- (A, m)-isometric operator by Theorem 2.10 .

Recall that from [10], an operator $S \in \mathcal{L}[\mathcal{K}]$ is said to be A-power bounded, if $\sup _{k}\left\|S^{k}\right\|_{A}<\infty$ or equivalently, there exists $M>0$ so that for every positive integer k and every $\xi \in \mathcal{R}(A)$, one has

$$
\left\|S^{k} \xi\right\|_{A} \leq M\|\xi\|_{A}
$$

In [2, Theorem 1], it was proved that every A-power bounded (A, m)-isometric operator is A-isometric.

Theorem 2.12. Under the same hypotheses as in Theorem 2.10, if $S \in \mathcal{L}[\mathcal{K}]$ is an n-quasi-(A, m-isometric operator which is A-power bounded, Then S is a n-quasi-A-isometry.
Proof. We consider the following two cases:
Case 1: If $\overline{\mathcal{R}\left(S^{n}\right)}$ is dense, then S is an (A, m)-isometric operator which is A-power bounded, thus S is an A-isometry by [2, Theorem 2] and so that S is a n-quasi- A isometry.

Case 2: If $\overline{\mathcal{R}\left(S^{n}\right)}$ is not dense. By Theorem 2.5, we write the matrix representation of S on $\mathcal{K}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ as follows $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ where $S_{1}=S \mid \overline{\mathcal{R}\left(S^{n}\right)}$ is an $\left(A_{1}, m\right)$-isometric operator and $S_{3}^{n}=0$. By taking into account that S is A power bounded, it is easily seen that S_{1} is A_{1}-power bounded from which we deduce that S_{1}-is an A_{1}-isometry. The result now follows by applying the statement (2) of Theorem 2.10

Corollary 2.13. Under the same hypothesis as in Theorem 2.10, if S is a n-quasi(A, m)-isometric operator such that $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ on $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ and $\lambda \in \mathbb{C}, \lambda \neq 0$ then $\mathcal{R}(S-\lambda I)$ is closed if and only if $\mathcal{R}\left(S_{1}-\lambda I\right)$ is closed.
Proof. Assume that $\mathcal{R}(S-\lambda I)$ is closed and let $\left(\xi_{k}\right)_{k}$ be a sequence in $\overline{\mathcal{R}\left(S^{n}\right)}$ such that $\left(S_{1}-\lambda I\right) \xi_{k} \rightarrow \xi$ as $k \rightarrow \infty$. Then $(S-\lambda I)\left(\xi_{k} \oplus 0\right) \rightarrow \xi \oplus 0$. By the assumption, there exists $a \oplus b \in \mathcal{K}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ such that $\xi \oplus 0=(S-\lambda I)(a \oplus b)$. This means that $\xi=\left(S_{1}-\lambda I\right) a+S_{2} b$ and $\left(S_{3}-\lambda I\right) b=0$. Since $S_{3}^{n}=0$, it follows that $\lambda^{n} b=0$ and hence $b=0$. Therefore $\xi=\left(S_{1}-\lambda I\right) a$ and so that $\mathcal{R}\left(S_{1}-\lambda I\right)$ is closed.

Conversely, assume that $\mathcal{R}\left(S_{1}-\lambda I\right)$ is closed and let $\left(\xi_{k} \oplus \tau_{k}\right)_{k}$ be a sequence in $\mathcal{K}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ such that $(S-\lambda I)\left(\xi_{k} \oplus \tau_{k}\right) \rightarrow a \oplus b$, i.e.,

$$
\left\{\begin{array}{l}
\left(S_{1}-\lambda I\right) \xi_{k}+S_{2} \tau_{k} \rightarrow a \\
\left(S_{3}-\lambda\right) \tau_{k} \rightarrow b
\end{array}\right.
$$

Since $\lambda \notin \sigma\left(S_{3}\right)$, it follows that $\tau_{k} \rightarrow\left(S_{3}-\lambda\right)^{-1} b$ and so that

$$
\left(S_{1}-\lambda I\right) \xi_{k} \rightarrow a-S_{2}\left(S_{3}-\lambda\right)^{-1} b .
$$

From the assumptions, there exist $u \oplus v \in \mathcal{K}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ such that

$$
a=\left(S_{1}-\lambda I\right) u+S_{2}\left(S_{3}-\lambda\right)^{-1} b \quad \text { and } b=\left(S_{3}-\lambda I\right) v
$$

which means

$$
a=\left(S_{1}-\lambda I\right) u+S_{2} v \text { and } b=\left(S_{3}-\lambda I\right) v .
$$

Consequently, $(S-\lambda I)(u \oplus v)=a \oplus b$ and hence $\mathcal{R}(S-\lambda I)$ is closed.

Proposition 2.14. Under the same hypothesis as in Theorem 2.10. if S is a n-quasi-(A, m)-isometric operator such that $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ on $\mathcal{K}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus$ $\mathcal{N}\left(S^{* n}\right)$ and $\lambda \in \mathbb{C}, \lambda \neq 0$, then the following statements hold:
(1) $\alpha(S-\lambda I)=\alpha\left(S_{1}-\lambda I\right)$.
(2) $\beta\left(S^{*}-\bar{\lambda} I\right)=\beta\left(S_{1}^{*}-\bar{\lambda} I\right)$.

Proof. (1) Since $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ it is clear that $\mathcal{N}(S-\lambda I)=\mathcal{N}\left(S_{1}-\lambda I\right) \cup\{0\}$ and it follows that

$$
\alpha(S-\lambda I)=\alpha\left(S_{1}-\lambda I\right)
$$

(2) Note that $\xi \oplus \eta \in \mathcal{N}\left(S^{*}-\bar{\lambda} I\right)$ if and only if

$$
\xi \in \mathcal{N}\left(S_{1}^{*}-\bar{\lambda} I\right) \quad \text { and } \quad \eta=\left(S_{3}^{*}-\bar{\lambda}\right)^{-1} S_{2}^{*} \xi .
$$

Consider $\left(\xi_{j} \oplus \eta_{j}\right)_{1 \leq j \leq k}$ be a family of linearly independent vectors in $\mathcal{N}\left(S^{*}-\bar{\lambda} I\right)$.
Then by the above observation we have

$$
\xi_{j} \in \mathcal{N}\left(S_{1}^{*}-\bar{\lambda} I\right) \text { and } \eta_{j}=\left(S_{3}^{*}-\bar{\lambda}\right)^{-1} S_{2}^{*} \xi_{j} \quad \text { for all } j=1,2, \ldots, k
$$

Now, assume that $\sum_{1 \leq j \leq k} \alpha_{j} \xi_{j}=0$, then $\sum_{1 \leq j \leq k} \alpha_{j} \eta_{j}=0$ and so $\sum_{1 \leq j \leq k} \alpha_{j}\left(\xi_{j} \oplus \eta_{j}\right)=0$.
Since $\left(\xi_{j} \oplus \eta_{j}\right)_{1 \leq j \leq k}$ are linearly independent vectors of \mathcal{K}, it follows that $\alpha_{j}=0$ for $j=1,2, \ldots, k$ which means that the vectors $\left(\xi_{j}\right)_{1 \leq j \leq k}$ are linearly independent. Hence

$$
\operatorname{dim} \mathcal{N}\left(S^{*}-\bar{\lambda} I\right) \leq \operatorname{dim} \mathcal{N}\left(S_{1}^{*}-\bar{\lambda} I\right)
$$

Conversely, let $\left(\xi_{j}\right)_{1 \leq j \leq k}$ be linearly independent vectors in $\mathcal{N}\left(S_{1}^{*}-\bar{\lambda} I\right)$.
Taking $\eta_{j}=\left(S_{3}^{*}-\bar{\lambda}\right)^{-1} S_{2}^{*} \xi_{j}$ for $j=1, \cdots, k$., the vectors $\left(\xi_{j} \oplus \eta_{j}\right)_{1 \leq j \leq k}$ belong to $\mathcal{N}\left(S^{*}-\bar{\lambda} I\right)$. Therefore the linear independence of these vectors follows from that of $\left(\xi_{j}\right)_{1 \leq j \leq k}$. Consequently,

$$
\operatorname{dim} \mathcal{N}\left(S^{*}-\bar{\lambda} I\right) \geq \operatorname{dim} \mathcal{N}\left(S_{1}^{*}-\bar{\lambda} I\right)
$$

Hence

$$
\operatorname{dim} \mathcal{N}\left(S^{*}-\bar{\lambda} I\right)=\operatorname{dim} \mathcal{N}\left(S_{1}^{*}-\bar{\lambda} I\right)
$$

Consequently, $\beta\left(S^{*}-\bar{\lambda} I\right)=\beta\left(S_{1}^{*}-\bar{\lambda} I\right)$.
For the concepts of SVEP and Bishop's property (β), we refer the interested readers to [3, 4].

Theorem 2.15. Let $S \in \mathcal{L}[\mathcal{K}]$ be an (A, m)-isometric operator and let $0 \notin \sigma_{p}(A)$, then S has the single-valued extension property.

Proof. Let $\mu_{0} \in \mathbb{C}$ and let \mathbb{U} be any open neighborhood of μ_{0} in \mathbb{C}. Assume that $g: \mathbb{U} \rightarrow \mathcal{K}$ is any analytic function on \mathbb{U} such that

$$
\begin{equation*}
(S-\mu) g(\mu) \equiv 0 \text { on } \mathbb{U} . \tag{2.7}
\end{equation*}
$$

From (2.7), it follows that $\left(S^{k}-\mu^{k}\right) g(\mu)=0$ on \mathbb{U} for all positive integers k.
Since S is an (A, m)-isometric operator, we obtain

$$
0=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k} g(\mu)=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A\left(S^{k}-\mu^{k}+\mu^{k}\right) g(\mu) .
$$

So that

$$
\begin{aligned}
0 & =\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\langle S^{* k} A \mu^{k} g(\mu) \mid g(\mu)\right\rangle \\
& \Rightarrow \sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}|\mu|^{2 k}\langle A g(\mu) \mid g(\mu)\rangle=0 \\
& \Rightarrow\left(1-|\mu|^{2}\right)^{m}\langle A g(\mu) \mid g(\mu)\rangle=0 \quad \forall \mu \in \mathbb{U}
\end{aligned}
$$

Hence, $\langle A g(\mu) \mid g(\mu)\rangle=0=\left\|A^{\frac{1}{2}} g(\mu)\right\| \quad \forall \mu \in \mathbb{U}$.
Since $0 \notin \sigma_{p}(A)$ we have $g(\mu)=0$ on \mathbb{U}. Thus S has the SVEP at every $\mu_{0} \in \mathbb{C}$, i.e., S has the SVEP.

Theorem 2.16. Under the same hypothesis as in Theorem 2.10, if S is a n-quasi- (A, m)-isometric operator such that $0 \notin \sigma_{p}(A)$, then S has the single valued extension property.

Proof. We consider the following two cases:
Case 1: If $\overline{\mathcal{R}\left(S^{n}\right)}$ is dense, then S is an (A, m)-isometric operator, thus S has SVEP by Theorem 2.15
Case 2: If $\overline{\mathcal{R}\left(S^{n}\right)}$ is not dense. By Theorem 2.10 we write the matrix representation of S on $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$ as follows $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ where $S_{1}=S \mid \overline{\mathcal{R}\left(S^{n}\right)}$ is an $\left(A_{1}, m\right)$-isometric operator and $S_{3}^{n}=0$.

Assume that $(S-\mu) g(\mu)=0$ where $g(\mu)=g_{1}(\mu) \oplus g_{2}(\mu)$ on $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$. Obviously we can write

$$
\left(\begin{array}{cc}
S_{1}-\mu & S_{2} \\
0 & S_{3}-\mu
\end{array}\right)\binom{g_{1}(\mu)}{g_{2}(\mu)}=\binom{\left(S_{1}-\mu\right) g_{1}(\mu)+S_{2} g_{2}(\mu)}{\left(S_{3}-\mu\right) g_{2}(\mu)}=\binom{0}{0}
$$

Since S_{3} is nilpotent, it follows that S_{3} has SVEP and hence $g_{2}(\mu)=0$. We deduce that $\left(S_{1}-\mu\right) g_{1}(\mu)=0$. Under the condition that S_{1} is an $\left(A_{1}, m\right)$-isometric operator, S_{1} has the single valued extension property by Theorem 2.15, then $g_{1}(\mu)=0$. Consequently, $g \equiv 0$, so that S has SVEP as required.

Definition 2.3. An operator $S \in \mathcal{L}[\mathcal{K}]$ is said to be a n-quasi-(X,m)-isometric operator if there exists some operator $X \in \mathcal{L}[\mathcal{K}]$ such that

$$
S^{* n}\left(\sum_{0 \leq j \leq m}(-1)^{m-j}\binom{m}{j} S^{* j} X S^{j}\right) S^{n}=0
$$

for some positive integer m.
Remark. If $X=I$, then S is just a n-quasi-m-isometric operator.
(ii) If X is a positive operator A, then S is just a n-quasi-($A, m)$-isometric operator.

Example 2.5. Let $S=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $X=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & -1\end{array}\right) \in \mathcal{L}\left(\mathbb{C}^{3}\right)$. A simple computation shows that

$$
S^{* n}\left(\sum_{0 \leq j \leq m}(-1)^{m-j}\binom{m}{j} S^{* j} X S^{j}\right) S^{n}=0
$$

Therefore S is a n-quasi-(X, m)-isometric operator.

Let $S, X \in \mathcal{L}[\mathcal{K}]$. We define the X-covariance operator of S by

$$
\Delta_{S}^{X}:=\sum_{0 \leq k \leq m-1}(-1)^{m-1-k}\binom{m-1}{k} S^{* k} X S^{k}
$$

Proposition 2.17. Let S be a n-quasi-(X, m)-isometry, then S is a n-quasi- Δ_{S}^{X} isometry.

Proof. Since S is an n-quasi- (X, m)-isometry, it follows that

$$
S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} X S^{k}\right) S^{n}=0
$$

or equivalently

$$
S^{* n}\left(-\Delta_{S}^{X}+S^{*} \Delta_{S}^{X} S\right) S^{n}=0
$$

Consequently,

$$
S^{* n+1} \Delta_{S}^{X} S^{n+1}=S^{* n} \Delta_{S}^{X} S^{n}
$$

and hence S is an n-quasi- Δ_{S}^{X}-isometry.

3. Spectral properties of n-Quasi- (A, m)-isometries

In this section, we study some spectral properties of some n-quasi- (A, m)-isometries. In [10, Proposition 4.1], the authors proved that if S is an (A, m)-isometry such that $0 \notin \sigma_{a p}(A)$ then the approximate point spectrum of S lies in the unit circle of the complex plane \mathbb{C}. i.e

$$
\sigma_{a p}(S) \subset \partial \mathbb{D}:=\{z \in \mathbb{C} /|z|=1\} .
$$

The following theorem generalized [10, Proposition 4.1].
Theorem 3.1. Let $S \in \mathcal{L}[\mathcal{K}]$, be a n-quasi-($A, m)$-isometric operator where A is a positive operator on \mathcal{K}. If $0 \notin \sigma_{\text {ap }}(A)$, then $\sigma_{\text {ap }}(S) \subset \partial \mathbb{D} \cup\{0\}$.

Proof. Let $\lambda \in \sigma_{a p}(S)$ and $0 \notin \sigma_{a p}(A)$. Then there exists a sequence $\left(\xi_{p}\right)_{p \geq 1} \subset \mathcal{K}$, with $\left\|\xi_{p}\right\|=1$ such that $\left(S-\lambda I_{\mathcal{K}}\right) \xi_{p} \rightarrow 0$ as $p \rightarrow \infty$. By induction for each integer $k \geq 0$, we have $\left(S^{k}-\lambda^{k} I_{\mathcal{K}}\right) \xi_{p} \rightarrow 0$ as $p \rightarrow \infty$. Since, S is an n-quasi- (A, m)-isometric
operator, one has

$$
\begin{aligned}
0= & \left\langle\left. S^{* n} \sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k} S^{n} \xi_{p} \right\rvert\, \xi_{p}\right\rangle \\
= & \left\langle\left.\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* n+k} A S^{k} S^{n} \xi_{p} \right\rvert\, \xi_{p}\right\rangle \\
= & \left\langle\left.\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} A\left(\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p}+\lambda^{n+k} \xi_{p}\right) \right\rvert\,\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p}+\lambda^{n+k} \xi_{p}\right\rangle \\
= & \left\langle\left.\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} A\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p} \right\rvert\,\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p}\right\rangle \\
& \left.\left.+\left\langle\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} A\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p}\right| \lambda^{n+k}\right) \xi_{p}\right\rangle \\
& +\left\langle\left.\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} A \lambda^{n+k} \xi_{p} \right\rvert\,\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p}\right\rangle \\
& +\left\langle\left.\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} A \lambda^{n+k} \xi_{p} \right\rvert\, \lambda^{n+k} \xi_{p}\right\rangle .
\end{aligned}
$$

As $\lim _{p \rightarrow \infty}\left(S-\lambda I_{\mathcal{K}}\right) \xi_{p} \rightarrow 0, \lim _{p \rightarrow \infty}\left(S^{n+k}-\lambda^{n+k} I_{\mathcal{K}}\right) \xi_{p} \rightarrow 0$, for $k=0,1, \cdots, m$. Then we have by taking $p \rightarrow \infty$

$$
0=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left(|\lambda|^{2}\right)^{n+k} \lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid \xi_{p}\right\rangle
$$

or equivalently,

$$
|\lambda|^{2 n}\left(1-|\lambda|^{2}\right)^{m} \lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid \xi_{p}\right\rangle=0
$$

Since $0 \notin \sigma_{a p}(A)$, it must be the case that $\lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid \xi_{p}\right\rangle \neq 0$, and so $|\lambda|^{2 n}(1-$ $\left.|\lambda|^{2}\right)^{m}=0$. Consequently, $\lambda=0$ or $|\lambda|=1$. This completes the proof.

Remark. If the condition $0 \notin \sigma_{a p}(A)$ is not satisfied, the conclusion of Theorem 3.1 cannot be true as show by the following example.

Example 3.1. For example, on $\mathcal{K}=\mathbb{C}^{2}$ the matrix operator $S=\left(\begin{array}{ll}0 & 0 \\ 1 & \beta\end{array}\right)$ where $|\beta|^{2}=\frac{1+\sqrt{5}}{2}$ is a n-quasi-(A, m-isometry with $A=\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)$. It is easily to check that $\sigma(S)=\{0, \beta\}$.

Recall that two vectors ξ and $\eta \in \mathcal{K}$ are said to be A-orthogonal if $\langle A \xi \mid \eta\rangle=0$.
The following proposition extend [14, Theorem 2.5].
Proposition 3.2. Let $S \in \mathcal{L}[\mathcal{H}]$ be a n-quasi-(A, m)-isometric operator. If $0 \notin$ $\sigma_{a p}(A)$, then the following statements hold:
(i) $\sigma_{p}(S)^{*}=\left\{\bar{\lambda}, \lambda \in \sigma_{p}(S)\right\} \subset \sigma_{p}\left(S^{*}\right)$.
(ii) $\sigma_{a p}(S)^{*}=\left\{\bar{\lambda}, \lambda \in \sigma_{a p}(S)\right\} \subset \sigma_{a p}\left(S^{*}\right)$,
(iii) Eigenvectors of S corresponding to distinct eigenvalues are A-orthogonal.
(iv) Let λ and $\mu \in \sigma_{a p}(S)$ such that $\lambda \neq \mu$. If $\left(\xi_{p}\right)_{p}$ and $\left(\eta_{p}\right)_{p}$ are two sequences of unit vectors in \mathcal{K} such that $\left\|(S-\lambda) \xi_{p}\right\| \rightarrow 0$ and $\left\|(S-\mu) \eta_{p}\right\| \rightarrow 0 \quad($ as $p \rightarrow \infty$, then we have

$$
\left\langle A \xi_{p} \mid \eta_{p}\right\rangle \rightarrow 0 \quad(\text { as } p \rightarrow \infty)
$$

Proof. (i) Let $\lambda \in \sigma_{p}(S)$. Suppose $\lambda=0$. If $0 \in \mathbb{C}-\sigma_{p}\left(S^{*}\right)$. Since S is a n-quasi(A, m)-isometric operator, we have

$$
S^{* n} \mathbf{Q}_{m}^{A}(S) S^{n}=0
$$

and it follows that

$$
\begin{aligned}
0=S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n} & \Rightarrow 0=\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n} \\
& \Rightarrow 0=S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) \\
& \Rightarrow 0=\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k} .
\end{aligned}
$$

Thus, S is an (A, m)-isometric. But this will contradict the fact that $0 \in \sigma_{p}(S)$.
Consider now $\lambda \neq 0$. Choose a non-zero vector $\xi \in \mathcal{K}$ such that $S \xi=\lambda \xi$. Since S is a n-quasi- (A, m)-isometric operator, we have

$$
\begin{aligned}
S \xi=\lambda \xi & \Rightarrow S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) \lambda^{n} \xi=0 \\
& \Rightarrow S^{* n}\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} A \xi=0 \\
& \Rightarrow\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} S^{* n} A \xi=0
\end{aligned}
$$

If $\left(I_{\mathcal{K}}-\lambda S^{*}\right)$ is bounded from below, then so is $\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m}$ and hence there exists a positive constant $C>0$ such that

$$
\left\|\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} \xi\right\| \geq C\|\xi\|, \quad \forall \xi \in \mathcal{K}
$$

In particular

$$
\left\|\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} S^{* n} A \xi\right\| \geq C\left\|S^{* n} A \xi\right\| .
$$

We find $S^{* n} A \xi=0$. But then

$$
0=\left\langle S^{* n} A \xi \mid \xi\right\rangle=\left\langle A \xi \mid S^{n} \xi\right\rangle=\bar{\lambda}^{n}\langle A \xi \mid \xi\rangle
$$

Since $0 \notin \sigma_{p}(A)$ it follows that $\langle A \xi \mid \xi\rangle=\left\|A^{\frac{1}{2}} \xi\right\| \neq 0$ and hence $\lambda=0$, contradiction. This shows that $\left(I_{\mathcal{K}}-\lambda S^{*}\right)$ is not bounded from below. From Theorem 3.1 we have $|\lambda|=1$, and then $\left(I_{\mathcal{K}}-\lambda S^{*}\right)=\lambda\left(\bar{\lambda} I_{\mathcal{K}}-S^{*}\right)$. We conclude that $\bar{\lambda} I_{\mathcal{K}}-S^{*}$ is not bounded from below. This proves the statement in (i).
(ii) Let $\lambda \in \sigma_{a p}(S)$. If $\lambda=0$, then as argued above, one can show that $0 \in \sigma_{a p}\left(S^{*}\right)$. Assume that λ is non-zero. Choose a sequence $\left(\xi_{p}\right)_{p}$ of unit vectors of \mathcal{K} such that
$\left.\| S-\lambda I_{\mathcal{K}}\right) \xi_{p} \| \rightarrow 0$ as $p \rightarrow \infty$, and we can choose $\gamma>0$ such that $\left\|A \xi_{p}\right\| \geq \gamma\left\|\xi_{p}\right\|$. for all p. Since $\sigma_{a p}(S)-\{0\} \subseteq \partial \mathbb{D}$ (by Theorem 3.1), we have

$$
\begin{aligned}
0= & S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n} \xi_{p} \\
= & S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A\left(S^{n+k}-\lambda^{n+k} I_{\mathcal{K}}+\lambda^{n+k} I_{\mathcal{K}}\right) \xi_{p}\right) \\
= & S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A\left(S^{n+k}-\lambda^{n+k} I_{\mathcal{K}}\right) \xi_{p}\right) \\
& +S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A \lambda^{n+k} I_{\mathcal{K}} \xi_{p}\right) \\
= & S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A\left(S^{n+k}-\lambda^{n+k} I_{\mathcal{K}}\right) \xi_{p}\right)+\lambda^{n} S^{n *}\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} A \xi_{p}
\end{aligned}
$$

Since, $\lim _{p \rightarrow \infty}\left\|S^{* k} A\left(S^{n+k}-\lambda^{n+k}\right) \xi_{p}\right\|=0$ for $j=0,1, \cdots, m$ we get

$$
\left\|S^{n *}\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} A \xi_{p}\right\|=\frac{1}{|\lambda|^{n}}\left\|S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A\left(S^{n+k}-\lambda^{n+k} I_{\mathcal{K}}\right) \xi_{p}\right)\right\| \rightarrow 0, \text { as } p \rightarrow \infty
$$

Hence, $\left\|\left(I-\lambda S^{*}\right)^{m} S^{n *} A \xi_{p}\right\| \rightarrow 0$, as $p \rightarrow \infty$.
If $\left(I-\lambda S^{*}\right)$ is bounded from below, then so is $\left(I-\lambda S^{*}\right)^{m}$ and hence there exists a positive constant $C>0$ such that

$$
\left\|\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} \xi\right\| \geq C\|\xi\|, \quad \forall \xi \in \mathcal{K}
$$

In particular

$$
\left\|\left(I_{\mathcal{K}}-\lambda S^{*}\right)^{m} S^{* n} A \xi_{p}\right\| \geq C\left\|S^{* n} A \xi_{p}\right\|
$$

We find $\left\|S^{* n} A \xi_{p}\right\| \rightarrow 0$, as $p \rightarrow \infty$. Thus we have

$$
\begin{aligned}
0 & =\lim _{p \rightarrow \infty}\left\langle S^{* n} A \xi_{p} \mid \xi_{p}\right\rangle \\
& =\lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid S^{n} \xi_{p}\right\rangle \\
& =\lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid\left(S^{n}-\lambda^{n}\right) \xi_{p}\right\rangle+\lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid \lambda^{n} \xi_{p}\right\rangle \\
& =\bar{\lambda}^{n} \lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid \xi_{p}\right\rangle .
\end{aligned}
$$

So $\bar{\lambda}^{n}=0$ or $\lambda=0$, a contradiction. We conclude that $\bar{\lambda} I_{\mathcal{K}}-S^{*}$ is not bounded from below. This proves the statement in (ii).
(iii) Let λ and μ be two distinct eigenvalues of S and suppose that $S \xi=\lambda \xi$ and $S \eta=\mu \eta$. If λ or μ is zero the desired result is obvious. Now assume the $\lambda \neq 0$ and
$\mu \neq 0$. Since S is an n-quasi- (A, m)-isometry, then

$$
\begin{aligned}
0 & =\left\langle\left. S^{* n}\left(\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} S^{* k} A S^{k}\right) S^{n} \xi \right\rvert\, \eta\right\rangle \\
& =\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\langle A S^{n+k} \xi \mid S^{n+k} \eta\right\rangle \\
& =(\lambda \bar{\mu})^{n}(1-\lambda \bar{\mu})^{m}\langle A \xi \mid \eta\rangle \\
& =(\lambda \bar{\mu})^{n}\left(|\mu|^{2}-\lambda \bar{\mu}\right)^{m}\langle A \xi \mid \eta\rangle \quad \text { (by Theorem 3.1) } \\
& =(\lambda \bar{\mu})^{n}(\bar{\mu})^{m}(\mu-\lambda)^{m}\langle A \xi \mid \eta\rangle .
\end{aligned}
$$

As $\lambda \neq \mu$ it follows that $\langle A \xi \mid \eta\rangle=0$ as required.
(iv) Let $\lambda, \mu \in \sigma_{a p}(S)$ such as $\lambda \neq \mu$. Consider $\left(\xi_{p}\right)_{p} \subset \mathcal{K}$ and $\eta_{p} \subset \mathcal{K}$ with $\left\|\xi_{p}\right\|=\left\|\eta_{p}\right\|=1$ and

$$
\left\|\left(S-\lambda I_{\mathcal{K}}\right) \xi_{p}\right\| \rightarrow 0 \text { and }\left\|\left(S-\mu I_{\mathcal{K}}\right) \eta_{p}\right\| \rightarrow 0, \text { as } p \rightarrow \infty
$$

If $\lambda=0$ or $\mu=0$, then clearly $\left\langle A \xi_{p} \mid \eta_{p}\right\rangle \rightarrow 0 ;$ as $p \rightarrow \infty$.
Assume that $\lambda \neq 0$ or $\mu \neq 0$. Since for all $j \in\{0,1, \cdots, m\}$ we have

$$
\left\|\left(S^{n+j}-\lambda^{n+j} I_{\mathcal{K}}\right) \xi_{p}\right\| \rightarrow 0 \text { and }\left\|\left(S^{n+j}-\mu^{n+j} I_{\mathcal{K}}\right) \eta_{p}\right\| \rightarrow 0, \text { as } p \rightarrow \infty
$$

An analogous calculation as in the statement (iii) gives

$$
0=(\lambda \bar{\mu})^{n}(\bar{\mu})^{m}(\mu-\lambda)^{m} \lim _{p \rightarrow \infty}\langle A \xi \mid \eta\rangle .
$$

Then clearly $\lim _{p \rightarrow \infty}\left\langle A \xi_{p} \mid \eta_{p}\right\rangle=0$ as required.
Theorem 3.3. Under the same hypothesis as in Theorem 2.8, if S be a n-quasi(A, m)-isometric operator such that $S=\left(\begin{array}{cc}S_{1} & S_{2} \\ 0 & S_{3}\end{array}\right)$ on $\mathcal{H}=\overline{\mathcal{R}\left(S^{n}\right)} \oplus \mathcal{N}\left(S^{* n}\right)$, then the following properties hold:
(i) $\sigma(S)=\sigma\left(S_{1}\right) \cup\{0\}$
(ii) $\sigma_{w}(S) \cup \pi_{0}(S) \backslash\{0\}=\sigma_{w}\left(S_{1}\right) \cup \pi_{0}\left(S_{1}\right) \backslash\{0\}$.

Proof. (i) From [9, Corollary 7], it follows that $\sigma(S) \cup W=\sigma\left(S_{1}\right) \cup \sigma\left(S_{3}\right)$, where W is the union of certain of the holes in $\sigma(S)$ which is a subsets of $\sigma\left(S_{1}\right) \cap \sigma\left(S_{3}\right)$. Further $\sigma\left(S_{3}\right)=\{0\}$ and $\sigma\left(S_{1}\right) \cap \sigma\left(S_{3}\right)$ has no interior points. So we have by [9, Corollary 8]

$$
\sigma(S)=\sigma\left(S_{1}\right) \cup \sigma\left(S_{3}\right)=\sigma\left(S_{1}\right) \cup\{0\}
$$

(ii) By Corollary 2.9 and proposition 2.9, it follows that

$$
\sigma_{w}(S) \backslash\{0\}=\sigma_{w}\left(S_{1}\right) \backslash\{0\} \text { and } \pi_{0}(S) \backslash\{0\}=\pi_{0}\left(S_{1}\right) \backslash\{0\}
$$

Consequently,

$$
\sigma_{w}(S) \cup \pi_{0}(S) \backslash\{0\}=\sigma_{w}\left(S_{1}\right) \cup \pi_{0}\left(S_{1}\right) \backslash\{0\} .
$$

References

[1] J. Agler and M. Stankus,m-isometric transformations of Hilbert Space I, Integral Equations Operator Theory 21 (1995) 387-429.
[2] M. F. Ahmadi, Powers of A-m-isometric operators and their supercyclicity, Bull. Malays. Math. Sci. Soc. 39 (3) (2016), 901-911.
[3] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[4] P. Aiena, Property (w) and perturbations II, J. Math. Anal. Appl. 342 (2008) 830-837.
[5] M. L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (7) (2008) 1460-1475.
[6] M. L. Arias, G. Corach, M.C. Gonzalez, Metric properties of projections in semi- Hilbertian spaces, Integral Equations Operator Theory 62 (1) (2008) 11-28.
[7] M. L. Arias, G. Corach, M. C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75:3-4(2009), 635-653.
[8] T. Bermúdez, A. Saddi and H. Zawy, (A, m)-Isometries on Hilbert spaces, Linear Algebra and its Applications 540 (2018) 95-111.
[9] J. Kyu Han, H. Youl Lee, and W. Young Lee, Invertible completions of 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119-123.
[10] O. A. Mahmoud Sid Ahmed and A. Saddi, A-m-Isomertic operators in semi-Hilbertian spaces, Linear Algebra and its Applications 436 (2012) 3930-3942.
[11] M. Mbekhta and L. Suciu, Classes of operators similar to partial isometries ,Integr. equ. oper. theory 63 (2009), 571-590.
[12] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-European Journal of Mathematics Vol. 9, No. 4 (2016) 1650073 (8 pages)..
[13] S. Mecheri and S. M. Patel, On quasi-2-isometric operators, Linear and Multilinear Algebra and its applications,66 (5), 1019-1025, 2018.
[14] S. M. Patel, A note on quasi-isometries, Glas. Mat. 35 (55) (2000) 307-312.
[15] S. M. Patel, A note on quasi-isometries II, Glas. Mat. 38 (58) (2003) 111?-120.
[16] R. Rabaoui. A. Saddi, (A, m)-Isometric Unilateral Weighted Shifts in Semi-Hilbertian Spaces. Bull. Malays. Math. Sci. Soc.
[17] J. Shen and F. Zuo, Spectral properties of k-quasi-2-isometric operators, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 22, Number 3 (August 2015), Pages 275-283.
[18] L. Suciu, Quasi-isometries in semi-Hilbertian spaces, Linear Algebra and its Applications 430 (2009) 2474-2487.

El Moctar Ould Beiba
Department of Mathematics and Computer Sciences
Faculty of Sciences and Techniques, University of Nouakchott Al Aasriya
P.O. Box 5026, Nouakchott, Mauritania

E-mail address: elbeiba@yahoo.fr
Messaoud Guesba
Department of Mathematics, University of El Oued 39000 Algeria
E-mail address: guesbamessaoud2@gmail.com
Sid Ahmed Ould Ahmed Mahmoud
Mathematics Department, College of Science, Jouf University
Sakaka P.O.Box 2014. Saudi Arabia
E-mail address: sidahmed@ju.edu.sa, sidahmed.sidha@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47B99, 47A05.
 Key words and phrases. Semi-inner product; m-isometry; (A, m)-isometry; n-quasi- m isometries; spectrum.
 (C)2020 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted July 25, 2020. Published October 31, 2020.
 Communicated by Salah Mecheri.

