
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://bmathaa.org

Volume 10 Issue 4(2018), Pages 1-13.

ON ∇2-STATISTICAL CONVERGENCE OF DOUBLE

SEQUENCES OF ORDER α IN RANDOM 2-NORMED SPACE

ÖMER KİŞİ

Abstract. In this present paper, we introduce the notion of ∇2-statistical

convergence of double sequences of order α, ∇2-statistical Cauchy double se-
quences of order α in random 2-normed spaces and obtain some results. We

display examples which show that our method of convergence is more general

in random 2-normed space.

1. Introduction

The idea of the statistical convergence was given by Zygmund [36] in the first
edition of his monograph published in Warsaw in 1935. The concept of statistical
convergence was introduced by Fast [7] and Steinhaus [34] and then reintroduced
by Schoenberg [31] independently. Over the years, statistical convergence has been
developed in ([3], [13], [14], [21], [25], [29], [35]) and turned out very useful to resolve
many convergence problems arising in Analysis.

Definition 1. ([7]) A number sequence x = (xk) is said to be statistically conver-
gent to the number l if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0.

In this case we write st− limk→∞ xk = l. Statistical convergence is a natural gener-
alization of ordinary convergence. If limxk = l, then st− limxk = l. The converse
does not hold in general.

In literature, several interesting generalizations of statistical convergence have
been appeared. One among these is λ-statistical convergence given by Mursaleen
[23] with a non-decreasing sequence λ = (λn) of positive real numbers tending to
∞ such that λn+1 ≤ λn + 1, λ1 = 1.

The idea of λ-statistical convergence can be connected to the generalized de la
Vallée-Poussin mean. It is defined by

tn (x) =
1

λn

∑
k∈In

xk
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where In = [n− λn + 1, n] .

Definition 2. ([23]) A sequence x = (xk) of numbers is said to be λ -statistical
convergent to a number l provided that for every ε > 0,

lim
n→∞

1

λn
|{k ∈ In : |xk − l| ≥ ε}| = 0.

In this case, the number l is called λ-statistical limit of the sequence x = (xk) and
we write Sλ − limk→∞ xk = l.

Recently, for α ∈ (0, 1] Çolak and Bektaş [2] generalized Definition 2 in terms
of λ-statistical convergence of order α and obtained some analogous results.

The concept of probabilistic normed spaces was initially introduced by A. N.
Sherstnev [33] in 1962. Menger [22] introduced the notion of probabilistic metric
spaces in 1942. The idea of Menger [22] was to use distribution function instead of
non-negative real values of a metric. In last few years these spaces are grown up
rapidly and many detereministic results of linear normed spaces are obtained for
probabilistic normed spaces. For a detailed study on probabilistic functional anal-
ysis, we refer ([1], [17], [26], [32]). In 2005, Golet [16] used the concept of 2-norm of
Gähler [15] and presented generalized probabilistic normed space which he called
random 2-normed space. Gürdal and Pehlivan ([37], [38]) studied statistical con-
vergence in 2-normed spaces and in 2-Banach spaces. Recently, Savaş [39] defined
and studied generalized statistical convergence in random 2-normed space. Esi and
Özdemir [6] introduced and studied the concept of generalized ∆m-statistical con-
vergence of sequences in probabilistic normed space. Esi [5], defined and studied
the notion of ∇-statistical convergence and ∇-statistical Cauchy sequences using
by λ-sequences in random 2-normed spaces, and proved some theorems.

The existing literature on statistical convergence and its generalizations appears
to have been restricted to real or complex sequences, but in recent years these ideas
have been also extended to the sequences in fuzzy normed [40] and intutionistic
fuzzy normed spaces [18], [20], [27] and [28]. Several authors studied on the sets
of fuzzy valued sequences and the characterization of the classes of related matrix
transformations ([8], [9], [10], [11], [12]).

Let R denotes the set of reals and R+
0 = [0,∞). A function f : R → R+

0

is called a distribution function if it is non-decreasing and left-continuous with
inft∈R f (t) = 0 and supt∈R f (t) = 1. We will denote the set of all distribution
functions by D. Also, a distance distribution function is a non decreasing function
F defined on R+ = [0,∞) that satisfies F (0) = 0 and F (∞) = 1; and is left
continuous on (0,∞). Let D+ denotes the set of all distance distribution functions.

A triangular norm, briefly t-norm, is a binary operation ∗ on [0, 1] which is
continuous, commutative, associative, non-decreasing and has 1 as neutral element,
i.e., it is the continuous mapping ∗ : [0, 1]× [0, 1]→ [0, 1] such that for all a, b, c ∈
[0, 1] :

(i) a ∗ 1 = a,
(ii) a ∗ b = b ∗ a,
(iii) c ∗ d ≥ a ∗ b if c ≥ a and d ≥ b,
(iv) (a ∗ b) ∗ c = a ∗ (b ∗ c) .

The ∗ operations a ∗ b = max {a+ b− 1, 0}, a ∗ b = ab, and a ∗ b = min {a, b} on
[0, 1] are t-norms.

In following, we give some useful definitions.
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Definition 3. ([15]) Let X be a real vector space of dimension d > 1 (d may be
infinite). A real valued function ‖., .‖ : X2 → R satisfying the following conditions:

(i) ‖x1, x2‖ = 0, if and only if x1, x2 are linearly dependent.
(ii) ‖x1, x2‖ = ‖x2, x1‖ for all x1, x2 ∈ X,
(iii) ‖αx1, x2‖ = |α| ‖x1, x2‖, for any α ∈ R and
(iv) ‖x1 + x2, x3‖ ≤ ‖x1, x3‖+ ‖x2, x3‖

is called a 2-norm and the pair (X, ‖., .‖) is called a 2-normed space.

Definition 4. ([16]) Let X be a real vector space of dimension d > 1 (d may be
infinite),τ be a triangle function(a binary operation on D+ which is associative,
commutative, nondecreasing and ε0 as a unit) and F : X ×X → D+ (for x, y ∈ X,
F (x, y; t) is the value of F (x, y) at t ∈ R). Then F is called a probabilistic norm
(X,F , τ) a probabilistic 2-normed space if the following conditions are satisfied:

(i) F (x, y; t) = H0 (t), if x, y are linearly dependent, where H0 (t) = 0 if
t ≤ 0 and H0 (t) = 1 if t > 0.

(ii) F (x, y; t) 6= H0 (t), if x, y are linearly dependent.
(iii) F (x, y; t) = F (y, x; t), for all x, y ∈ X,
(iv) F (αx, y; t) = F

(
x, y; t

|α|

)
for every t > 0, α 6= 0 and x, y ∈ X,

(v) F (x+ y, z; t) ≥ τ (F (x, z; t) ,F (y, z; t)), where x, y, z ∈ X.
If (v) is replaced by F (x+ y, z; t1 + t2) ≥ F (x, z; t1)∗F (y, z; t2) for all x, y, z ∈

X and t1, t2 ∈ R+
0 then (X,F , ∗) is called a random 2-normed space.

Example 1. Let (X, ‖., .‖) be a 2-normed space with ‖x, z‖ = |x1z2 − x2z1|; x =
(x1, x2), z = (z1, z2) and a ∗ b = ab for all a, b ∈ [0, 1]. For every x, y ∈ X and
t > 0 we define F (x, y; t) = t

t+‖x,y‖ , then (X,F , ∗) is a random 2-normed space.

Definition 5. ([24]) Let (X,F , ∗) be a random 2-normed space. Then a sequence
x = (xk) is said to be convergent to x0 ∈ X with respect to norm F if for every
ε > 0, t ∈ (0, 1) and non-zero z ∈ X, there exists a positive integer k0 such that
F (xk − x0, z; ε) > 1− t whenever k ≥ k0. It is denoted by F-limxk = x0.

Definition 6. ([24]) Let (X,F , ∗) be a random 2-normed space. Then a sequence
x = (xk) is said to be statistically convergent SR2N convergent to x0 ∈ X with
respect to norm F if for every ε > 0, t ∈ (0, 1) and non-zero z ∈ X,

δ ({k ∈ N : F (xk − x0, z; ε) ≤ 1− t}) = 0.

In this case, we write SR2N -limxk = x0.

Definition 7. ([4]) Let (X,F , ∗) be a random 2-normed space. Then a sequence
x = (xk) is said to be statistically convergent to l with respect to F if for every
ε > 0, t ∈ (0, 1) and non-zero z ∈ X,

lim
n→∞

1

n
|({k ≤ n : F (xk − l, z; ε) ≤ 1− t})| = 0.

In this case, we write SR2N -limxk = l.

Kişi [19] has recently defined the ∇2-statistical convergence of double sequences
in random 2-normed spaces.

Throughout the paper, we consider a random 2-normed space (X, F , ∗) and
λr,s = λrµs be the collection of such sequences λ will be denoted by ∆2.
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Let λ = (λr) and µ = (µs) be two non-decreasing sequences of positive real
numbers, each tending to ∞ and such that λr+1 ≤ λr + 1, λ1 = 1; µs+1 ≤ µs + 1,
µ1 = 1. Let Ir = [r − λr + 1, r], Is = [s− µs + 1, s] and Ir,s = Ir × Is.

For any set X ⊆ N× N, the number,

δλ (X) = P - lim
r,s→∞

1

λr,s
|{(k, l) ∈ Ir × Is : (k, l) ∈ X}| ;

is said to be λ-density of the set X, provided the limit exists, where λr,s = λrµs.

2. Main results

In this section, we define ∇2-statistical convergent double sequence of order
α(0 < α ≤ 1) in random 2-normed space (X,F , ∗). Also, we obtain some basic
properties of this notion in random 2-normed space.

Definition 8. A double sequence x = (xkl) in random 2-normed space (X,F , ∗) is
said to be ∇2-convergent to l ∈ X of order α with respect to F if for each ε > 0,
t ∈ (0, 1) and for non-zero z ∈ X, there exists an positive integer n0 such that

F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

)
> 1 − t whenewer k, l ≥ n0. In this case we write

Fα∇2
− limk,l→∞ xkl = l, and l is called the Fα∇2

−limit of x = (xkl).

Definition 9. A double sequence x = (xkl) in a random 2-normed space (X,F , ∗)
is said to be ∇2-Cauchy of order α with respect to F if for every ε > 0, t ∈ (0, 1)
and for non-zero z ∈ X, there exists positive integers p, q such that

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

(xkl − xmn) , z; ε

 < 1− t,

whenever k,m > p, l, n > q.

Definition 10. A double sequence x = (xkl) in a random 2-normed space (X,F , ∗)
is said to be ∇2-statistical convergent or S∇2

-convergent to l of order α(0 < α ≤ 1)
with respect to F if for every ε > 0 , t ∈ (0, 1) andfor non-zero z ∈ X such that

δ∇2

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

 ≤ 1− t


 = 0.

In other ways we can write∣∣∣∣∣∣
(k, l) ∈ Ir,s : F

 lim
r,s→∞

1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

 ≤ 1− t


∣∣∣∣∣∣ = 0,

or, equivalently,

δ∇2

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

 > 1− t


 = 1,

i.e.,

Sα∇2
− lim
r,s→∞

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

 = 1.
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In this case, we write Sα∇2
(R2N)− limk,l xkl = l or xkl → l

(
Sα∇2

(R2N)
)

and

Sα∇2
(R2N) (X) =

{
x = (xkl) : ∃l ∈ R, Sα∇2

(R2N)− lim
k,l

xkl = l

}
.

The collection of all ∇2-statistically convergent double sequences of order α in
random 2-normed space is symbolized as Sα∇2

(R2N) (X) .

Definition 11. A double sequence x = (xkl) in a random 2-normed space (X,F , ∗)
is said to be ∇2 -statistically Cauchy of order α with respect to F if for every ε > 0,
t ∈ (0, 1) and for non-zero z ∈ X, there exist positive integers p, q such that for all
k,m > p, l, n > q

δ∇2

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

(xkl − xmn) , z; ε

 ≤ 1− t


 = 0,

or, equivalently,

δ∇2

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

(xkl − xmn) , z; ε

 > 1− t


 = 1.

Definition 11, immediately implies the following Lemma.

Lemma 1. Let (X,F , ∗) be a random 2-normed space. If x = (xkl) is a double
sequence in X, then for every ε > 0, t ∈ (0, 1) and for non-zero z ∈ X, the following
statetements are equivalent.

(i) Sα∇2
− limk,l xkl = l.

(ii) δ∇2

({
(k, l) ∈ Ir,s : F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

)
≤ 1− t

})
= 0.

(iii) δ∇2

({
(k, l) ∈ Ir,s : F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

)
> 1− t

})
= 1.

(iv) Sα∇2
− limk,l→∞ F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; ε

)
= 1.

Theorem 2. Let (X,F , ∗) be a random 2-normed space and α ∈ (0, 1] be given. If
x = (xkl) is a double sequence in X such that Sα∇2

(R2N) − limk,l xkl = l exists,
then it is unique.

Proof. Suppose that Sα∇2
(R2N)− limk,l xkl = l′, where l 6= l′. Let ε > 0 be given.

Choose ν > 0 such that

(1− ν) ∗ (1− ν) > 1− ε. (1)

Then, for any t > 0 and for non-zero z ∈ X, we define

K1 (υ, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

(xkl − l) , z;
t

2

 ≤ 1− ν

 ;

K2 (υ, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

(xkl − l′) , z;
t

2

 ≤ 1− ν

 .
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Since

Sα∇2
(R2N)− lim

k,l
xkl = l and Sα∇2

(R2N)− lim
k,l

xkl = l′,

we have

δ∇2 (K1 (υ, t)) = 0 and δ∇2 (K2 (υ, t)) = 0 for all t > 0.

Let K (υ, t) = K1 (υ, t)∪K2 (υ, t), then it is easy to observe that δ∇2
(K (υ, t)) = 0

which immediately implies δ∇2
(Kc (υ, t)) = 1. Let k ∈ Kc (υ, t) = Kc

1 (υ, t) ∩
Kc

2 (υ, t) . Now one can write,

F (l − l′, z; t) ≥ F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z;
t

2

 ∗ F
 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l′, z;
t

2


> (1− ν) ∗ (1− ν) .

It follows by (1) that

F (l − l′, z; t) > (1− ε) .
Since ε is arbitrary, it follows that F (l − l′, z; t) = 1, for all t > 0 and non-zero

z ∈ X. This shows that l = l′.

Theorem 3. Let (X,F , ∗) be a random 2-normed space and α ∈ (0, 1] be given.
Let x = (xkl) and y = (ykl) be two double sequences in X.

(i) If Sα∇2
(R2N) − limk,l xkl = l and 0 6= c ∈ R, then Sα∇2

(R2N) −
limk,l cxkl = cl.

(ii) If Sα∇2
(R2N) − limk,l xkl = l and Sα∇2

(R2N) − limk,l ykl = l′, then
Sα∇2

(R2N)− limk,l (xkl + ykl) = l + l′.

Proof. The proof of the theorem is not so hard so is omitted here.

Theorem 4. Let (X,F , ∗) be a random 2-normed space and α ∈ (0, 1] be given.
If x = (xkl) be a double sequence in X such that Fα∇2

− limk,l→∞ xkl = l, then
Sα∇2

(R2N)− limk,l xkl = l. Hovewer the converse need not be true in general.

Proof. Since Fα∇2
− limk,l→∞ xkl = l, for every ε > 0, t > 0 and for non-zero z ∈ X

there is a positive integer n0 such that

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 > 1− ε, ∀k, l > n0.

The set

K (ε, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 ≤ 1− ε


has at most finitely many terms. Also, since every finite subset of N has δ∇2 -
density zero, consequently we have Sα∇2

(K (ε, t)) = 0. This shows that Sα∇2
(R2N)−

limk,l xkl = l. We next give the following example which shows that the converse
need not be true.

Example 2. Let X = R2 with the 2-norm ‖x, z‖ = ‖x1z2 − x2z1‖ where x =
(x1, x2), z = (z1, z2) and a ∗ b = ab for all a, b ∈ [0, 1]. Let F (xkl, z, t) = t

t+‖x,z‖ ,
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where each t > 0, non-zero z ∈ X, z2 > 0. We define a sequence x = (xkl) as
follows:

1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl =

{
(k, l) , if n−

√
λn + 1 ≤ k ≤ n, m−√µm + 1 ≤ l ≤ m,

(0, 0) , otherwise.

Now for ε > 0, t ∈ (0, 1) , write

K (ε, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 ≤ 1− ε

 ,

where l = (0, 0). Then

K (ε, t) =

(k, l) ∈ Ir,s : t

t+

∣∣∣∣∣ 1
λαr,s

∑
(k,l)∈Ir,s

xkl

∣∣∣∣∣
≤ 1− ε

 , θ = (0, 0)

=

{
(k, l) ∈ Ir,s :

∣∣∣∣∣ 1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl

∣∣∣∣∣ ≥ tε
1−ε > 0

}

= {(k, l) ∈ Ir,s : xkl = (k, l)}

=
{

(k, l) ∈ Ir,s : n−
√
λn + 1 ≤ k ≤ n, m−√µm + 1 ≤ l ≤ m

}
,

so we get

1

λ
α

r,s

|K (ε, t)| ≤ 1

λ
α

r,s

∣∣∣{(k, l) ∈ Ir,s : r −
√
λr + 1 ≤ k ≤ r, s−√µs + 1 ≤ l ≤ s

}∣∣∣ ≤ √λrs
λ
α

r,s

Letting limit, r, s as ∞, we get

δ∇2 (K (ε, t)) = lim
r,s→∞

1

λ
α

r,s

|K (ε, t)| ≤ lim
r,s→∞

√
λrs

λ
α

r,s

= 0.

This shows that xkl → 0
(
Sα∇2

(R2N) (X)
)
.

On the other hand the sequence is not Fα∇2
−convergent to zero as

F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

)
= t

t+

∣∣∣∣∣ 1
λαr,s

∑
(k,l)∈Ir,s

xkl

∣∣∣∣∣

=

 t
t+(k+l)z2

,
if n−

√
λn + 1 ≤ k ≤ n,

m−√µm + 1 ≤ l ≤ m,
1, otherwise.

≤ 1.

Theorem 5. Let (X,F , ∗) be a R2N space and 0 < α ≤ β ≤ 1, then Sα∇2
(X) ⊂

Sβ∇2
(X) and the inclusion is strict for some α and β such that α < β.
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Proof. If 0 < α ≤ β ≤ 1, then for every ε > 0 and t > 0 and non-zero z ∈ X, we
have

1

λ
β
r,s

{
(k, l) ∈ Ir,s : F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

)
≤ 1− ε

}

≤ 1
λ
α
r,s

{
(k, l) ∈ Ir,s : F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

)
≤ 1− ε

}
which immediately implies the inclusion Sα∇2

(X) ⊂ Sβ∇2
(X). We next give an

example that shows the inclusion in Sα∇2
(X) ⊂ Sβ∇2

(X) is strict for some α and β
with α < β.

Example 3. Let X = R2 with the 2-norm ‖x, z‖ = ‖x1z2 − x2z1‖ where x =
(x1, x2), z = (z1, z2) and a ∗ b = ab for all a, b ∈ [0, 1]. Let F (xkl, z, t) = t

t+‖x,z‖ ,

where each t > 0, non-zero z ∈ X, z2 > 0. We define a sequence x = (xkl) as
follows: ∑

(k,l)∈Ir,s

xkl =

{
(1, 0) , if k + l is even,
(0, 0) , if k + l is odd.

For ε > 0, t ∈ (0, 1), if we define

K (ε, t) =

{
(k, l) ∈ Ir,s : F

(
1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − θ, z; t

)
≤ 1− ε

}
, θ = (0, 0)

=

(k, l) ∈ Ir,s : t

t+

∥∥∥∥∥ 1
λαr,s

∑
(k,l)∈Ir,s

xkl−θ,z

∥∥∥∥∥
≤ 1− ε


=

{
(k, l) ∈ Ir,s :

∥∥∥∥∥ 1
λ
α
r,s

∑
(k,l)∈Ir,s

xkl − θ, z

∥∥∥∥∥ ≥ εt
1−ε > 0

}

= {(k, l) ∈ Ir,s : (xkl) = (1, 0)} = {(k, l) ∈ Ir,s : k + l is even} ;

then,

lim
r,s→∞

1

λ
α

r,s

|K (ε, t)| = lim
r,s→∞

1

λ
α

r,s

|{(k, l) ∈ Ir,s : k + l is even}| ≤ lim
r,s→∞

√
λr,s + 1

2λ
α

r,s

= 0

for α > 1. Similarly, for ε > 0, t ∈ (0, 1), if we define

B (ε, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − x0, z; t

 ≤ 1− ε

 , x0 = (1, 0)

then

lim
r,s→∞

1

λ
α

r,s

|B (ε, t)| = lim
r,s→∞

1

λ
α

r,s

|{(k, l) ∈ Ir,s : k + l is odd}| ≤ lim
r,s→∞

√
λr,s + 1

2λ
α

r,s

= 0

for α > 1. This shows that Sα∇2
− limk,l xkl is not unique and we obtain a contra-

diction to theorem 1.
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Example 4. Let
(
R2,F , ∗

)
be a R2N space as defined above. We define a sequence

x = (xkl) as follows:

1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl =

{
(1, 0) , if r −

√
λr + 1 ≤ k ≤ r, s−

√
λs + 1 ≤ l ≤ s,

(0, 0) , otherwise.

Then one can easily see Sβ∇2
− limk,l xkl = 0, i.e., x ∈ Sβ∇2

for 1
2 < β ≤ 1 but

x /∈ Sα∇2
(X) for 0 < α ≤ 1

2 . This shows that the inclusion in Sα∇2
(X) ⊂ Sβ∇2

(X)
is strict.

Theorem 6. Let (X,F , ∗) be a random 2-normed space and α ∈ (0, 1] be given.
If x = (xkl) be a sequence in X, then Sα∇2

− limk,l xkl = l if and only if there

exists a subset K = {km : k1 < k2 < ...} of N such that limr,s→∞
1
λ
α
r,s

|K| = 1 and

Fα∇2
− limk,l→∞ xkl = l.

Proof. First suppose that Sα∇2
− limk,l xkl = l. For t > 0 and non-zero z ∈ X and

s ∈ N, we define

A (s, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 > 1− 1

s


K (s, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 ≤ 1− 1

s


Since Sα∇2

− limk,l xkl = l it follows that

δ∇2
(K (s, t)) = 0

Also, for s = 1, 2, 3, ... and for t > 0, we observe that

A (s, t) ⊃ A (s+ 1, t)

and

lim
r,s→∞

1

λ
α

r,s

|A (s, t)| = 1; i.e., δ∇2 (A (s, t)) = 1. (2)

Now, to prove the result, it is sufficient to prove that Fα∇2
− limk,l→∞ xkl = l.

Suppose that for k ∈ A (s, t), x = (xkl) does not convergent to l with respect to
Fα∇2

. Then, there exists some u > 0 such that(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 ≤ 1− u


for infinitely many terms (xkl). Let

A (u, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 > 1− u


and u > 1

s for s = 1, 2, 3.... This implies that δ∇2
(A (s, t)) = 0, which contradicts

(2) as δ∇2 (A (s, t)) = 1. Hence Fα∇2
− limk,l→∞ xkl = l.

Conversely, suppose that there exists a subset

K = {km : k1 < k2 < ...}
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of N such that limr,s→∞
1
λ
α
r,s

|K| = 1 and Fα∇2
− limk,l→∞ xkl = l. Then for every

ε > 0 and t > 0 and non-zero z ∈ X, there exists a positive integer n0 such that(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 > 1− ε


for all k, l > n0. If we take

K (ε, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 ≤ 1− ε


then it is easy to see that

K (ε, t) ⊂ N× N− {n0 + 1, n0 + 2, ...}

and consequently

δ∇2
(K (ε, t)) ≤ 1− 1 = 0.

Hence, Sα∇2
− limk,l xkl = l.

Finally, we establish the Cauchy convergence criteria of double sequences of order
α in random 2-normed spaces.

Theorem 7. Let (X,F , ∗) be a random 2-normed space and α ∈ (0, 1] be given. A
double sequence x = (xkl) is said to be ∇2-statistical convergent of order α if and
only if it is ∇2-statistical Cauchy of order α.

Proof. Let x = (xkl) be ∇2-statistical convergent sequence of order α. Suppose
that Sα∇2

− limk,l xkl = l. For ε > 0, t > 0 and non-zero z ∈ X choose s > 0 such
that (1− s) ∗ (1− s) > 1− ε. We define

A (s, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z;
t

2

 ≤ (1− s)

 ;

then

Ac (s, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z;
t

2

 > (1− s)

 .

Since Sα∇2
− limk,l xkl = l it follows that δ∇2 (A (s, t)) = 0 and consequently

δ∇2
(Ac (s, t)) = 1. Let (u, γ) ∈ Ac (s, t), then

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xuγ − l, z;
t

2

 > (1− s) .

If we take

B (ε, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − xuγ , z; t

 ≤ (1− ε)

 ,
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then to prove the first part it is sufficient to prove that B (ε, t) ⊂ A (s, t). Let
(k, l) ∈ B (ε, t), which gives

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − xuγ , z; t

 ≤ (1− ε) .

Suppose (k, l) /∈ A (s, t), then

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z; t

 > (1− s) ,

Also it can be easily seen that

1− ε ≥ F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − xuγ , z; t


≥ F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z;
t

2

 ∗ F
 1

λ
α

r,s

∑
(k,l)∈Ir,s

xuγ − l, z;
t

2


≥ (1− s) ∗ (1− s) > 1− ε.

This contradiction shows that B (ε, t) ⊂ A (s, t) and therefore, the theorem is
proved.

Conversely, let x = (xkl) is ∇2 -statistical Cauchy double sequence of order
α but not double ∇2-statistical convergent of order α with respect to F . Now

F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − xuγ , z; t


≥ F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − l, z;
t

2

 ∗ F
 1

λ
α

r,s

∑
(k,l)∈Ir,s

xuγ − l, z;
t

2


≥ (1− s) ∗ (1− s) > 1− ε.

since x is not double ∇2-statistical convergent. Therefore δ∇2
(Bc (t, ε)) = 0, where

B (ε, t) =

(k, l) ∈ Ir,s : F

 1

λ
α

r,s

∑
(k,l)∈Ir,s

xkl − xuγ , z; t

 ≤ 1− ε

 .

and so δ∇2 (B (t, ε)) = 1 , which is contradiction, since x is ∇2-statistical Cauchy
double sequence. Hence x must be ∇2-statistical Cauchy. This completes the
proof.
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