Critical point equation on K-paracontact manifolds

Avijit Sarkar and Gour Gopal Biswas

Abstract

A. Besse posed a conjecture that a solution of a critical point equation is Einstein. The aim of our paper is to prove the conjecture for K-paracontact metrics.

M.S.C. 2010: 53C15, 53D25.

Key words: Paracontact manifold; K-paracontact manifold; Miao-Tam equation; Euler-Lagrange equation; total curvature; Einstein manifolds.

1 Introduction

Let M be a n-dimensional compact oriented manifold and \mathcal{M} be the set of all Riemannian metrics of unit volume on M. The scalar curvature r_{g} is a non-linear function of the matric g. The differential at the point g in the direction of a $(0,2)$ tensor field h is given by [2]

$$
\begin{equation*}
r_{g}^{\prime}(h)=-\Delta_{g}\left(\operatorname{tr}_{g} h\right)+\delta_{g}\left(\delta_{g} h\right)-g\left(S_{g}, h\right) \tag{1.1}
\end{equation*}
$$

where Δ_{g} is the negative Laplacian operator, δ_{g} is the divergence operator and S_{g} is Ricci tensor of g. The L^{2}-adjoint $\left(r_{g}^{\prime}\right)^{*}$ of r_{g}^{\prime} is given by the formula

$$
\begin{equation*}
\left(r_{g}^{\prime}\right)^{*} \gamma=-\left(\Delta_{g} \gamma\right) g+\nabla_{g}^{2} \gamma-\gamma S \tag{1.2}
\end{equation*}
$$

for any C^{∞}-function γ on M, where ∇_{g}^{2} is the Hessian operator of g.
Definition 1.1. Let $\left(M^{n}, g\right), n>2$ be a compact Riemannian manifold with boundary ∂M. Then g is called a critical metric if there exists a smooth function λ on M^{n} such that

$$
\begin{equation*}
\left(r_{g}^{\prime}\right)^{*} \lambda=g \tag{1.3}
\end{equation*}
$$

on M and $\lambda=0$ on ∂M. The function λ is known as the potential function.
The metrics which satisfy (1.3) are known as Miao-Tam critical metrics and we refer equation (1.3) as Miao-Tam equation. In [4], Miao-Tam equation has been studied
on almost Kenmotsu manifolds. Miao and Tam[6] themselves have classified Einstein and conformally flat Riemannian manifolds satisfying Miao-Tam equation. In [5], the authors studied certain contact metric manifolds satisfying Miao-Tam equation.
The total scalar curvature functional $\Gamma: \mathcal{M} \rightarrow \mathbb{R}$ is defined by

$$
\Gamma(g)=\int_{M} r_{g} d v_{g}
$$

where r_{g} is the scalar curvature and $d v_{g}$ the volume form determined by the metric and orientation. The Euler-Lagrange equation of the functional Γ restricted over $\left\{g \in \mathcal{M}: r_{g}=\right.$ constant $\}$ on a compact orientable manifold (M, g) can be written as critical point equation

$$
\begin{equation*}
\left(r_{g}^{\prime}\right)^{*} \tilde{\lambda}=z_{g} \tag{1.4}
\end{equation*}
$$

where z_{g} denotes the traceless Ricci tensor of M and $\tilde{\lambda}$ is a C^{∞}-function on M. If $\tilde{\lambda}$ is constant then from (1.4) we see that the metric g is Einstein. In this paper we consider $\tilde{\lambda}$ is a non-constant function. The equation $\left.\left(r_{g}^{\prime}\right)\right)^{*} \tilde{\lambda}=0$ is known as FischerMarsden equation.
In [2], A. Besse posed a conjecture that the solution of critical point equation is Einstein. In the paper [1], the authors proved that the conjecture is true for half conformally flat case. In [3], the authors proved that a K-contact metric satisfying critical point equation is Einstein and isometric to a unit sphere. They also proved that a (κ, μ)-contact metric satisfying critical point equation is flat and isometric to $E^{n+1} \times S^{n}(4)$.
In this paper we would like to study K-paracontact manifolds satisfying Miao-Tam equation and critical point equation. After the introduction we give required preliminaries in Section 2. Section 3 contains the study of K-paracontact manifolds satisfying Miao-Tam equation. In Section 4, we study K-paracontact manifolds satisfying Euler-Lagrange equation of total scalar curvature. The last section contains supporting example.

2 Preliminaries

Let M be a manifold of dimension $(2 n+1)$. Let φ be a $(1,1)$ tensor field, ξ a vector field and η a 1-form on M. Then the triple (φ, ξ, η) is called an almost paracontact structure on M, if the following conditions are satisfied :
i) $\varphi^{2} X=X-\eta(X) \xi, \quad \eta(\xi)=1$,
ii) $\varphi(\xi)=0, \quad \eta \circ \varphi=0$,
iii) the eigendistributions \mathcal{D}^{+}and \mathcal{D}^{-}of φ corresponding to the eigenvalues 1 and -1 , respectively have equal dimension n.
If an almost paracontact manifold admits a pseudo-Riemannian metric such that

$$
\begin{equation*}
g(\varphi X, \varphi Y)=-g(X, Y)+\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for all $X, Y \in \chi(M)$, the set of all smooth vector fields on M, then we say that $(M, \varphi, \xi, \eta, g)$ is an almost paracontact metric manifold. Form (2.1) we have

$$
\begin{equation*}
g(\varphi X, Y)=-g(X, \varphi Y), \quad \eta(X)=g(X, \xi) \tag{2.2}
\end{equation*}
$$

for all $X \in \chi(M)$.
The fundamental 2-form of an almost paracontact metric manifold (M, φ, ξ, η, g) is defined by $F(X, Y)=g(X, \varphi Y)$. If $d \eta=F$, then the manifold $(M, \varphi, \xi, \eta, g)$ is said to be paracontact metric manifold.

If ξ is a Killing vector field i.e. $h=\frac{1}{2} £_{\xi} \varphi=0$, where $£$ is the Lie derivative, then $(M, \varphi, \xi, \eta, g)$ is called K-paracontact manifold. In a K-paracontact manifold the following relations hold :

$$
\begin{gather*}
\nabla_{X} \xi=-\varphi X, \tag{2.3}\\
R(X, \xi) \xi=-X+\eta(X) \xi, \tag{2.4}\\
R(\xi, X) Y=\left(\nabla_{X} \varphi\right) Y, \tag{2.5}\\
\left(\nabla_{\varphi X} \varphi\right) \varphi Y-\left(\nabla_{X} \varphi\right) Y=2 g(X, Y) \xi-(X+\eta(X) \xi) \eta(Y) \tag{2.6}
\end{gather*}
$$

for all $X, Y, Z \in \chi(M)$, where ∇ is the Levi-Civita connection of the pseudo-Riemannian metric and R is the Riemannian curvature tensor. For details see [7].

Lemma 2.1 In a K-paracontact manifold $(M, \varphi, \xi, \eta, g)$,

$$
\begin{equation*}
Q \xi=-2 n \xi \tag{2.7}
\end{equation*}
$$

where Q is the Ricci operator.
Proof : From Proposition 2.4 of [7], we have

$$
\begin{aligned}
2 g\left(\left(\nabla_{X} \varphi\right) Y, Z\right) & =-g\left(N^{(1)}(Y, Z), \varphi X\right)-2 d \eta(\varphi Z, X) \eta(Y) \\
& +2 d \eta(\varphi Y, X) \eta(Z)
\end{aligned}
$$

for all $X, Y, Z \in \chi(M)$, where $N^{(1)}(Y, Z)=\varphi^{2}[Y, Z]+[\varphi Y, \varphi Z]-\varphi[\varphi Y, Z]-\varphi[Y, \varphi Z]-$ $2 d \eta(Y, Z) \xi$.
Using (2.5) in the above equation and noting that $d \eta(X, Y)=g(X, \varphi Y)$, we obtain

$$
\begin{equation*}
g(R(X, \xi) Y, Z)=\frac{1}{2} g\left(N^{(1)}(Y, Z), \varphi X\right)-g(X, Z) \eta(Y)+g(X, Y) \eta(Z) \tag{2.8}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \cdots, e_{n}, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{n}^{\prime}, \xi\right\}$ be a local orthogonal φ-basis with $g\left(e_{i}, e_{j}\right)=$ $\delta_{i j}, g\left(e_{i}^{\prime}, e_{j}^{\prime}\right)=-\delta_{i j}, e_{i}^{\prime}=\varphi e_{i}$ where $i, j \in\{1,2, \cdots, n\}$. Contracting (2.8) over X and Z with respect to this φ-basis we get (2.7).

Lemma 2.2. [4] Let a Riemannian manifold $\left(M^{n}, g\right)$ satisfies the Miao-Tam equation. Then the curvature tensor R can be expressed as

$$
\begin{align*}
R(X, Y) D \lambda & =(X \lambda) Q Y-(Y \lambda) Q X+\lambda\left(\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X\right) \\
& +(X f) Y-(Y f) X, \tag{2.9}
\end{align*}
$$

for any vector fields X, Y on M, where $f=-\frac{r \lambda+1}{n-1}$ and D is the gradient operator. Moreover,

$$
\begin{equation*}
\nabla_{X} D \lambda=\lambda Q X+f X \tag{2.10}
\end{equation*}
$$

for all vector fields X on M.
Lemma 2.3. [3] Let $(g, \tilde{\lambda})$ be a non-trivial solution of the critical point equation (1.4) on an n-dimensional Riemannian manifold M. Then the curvature tensor R can be written as

$$
\begin{align*}
R(X, Y) D \tilde{\lambda} & =(X \tilde{\lambda}) Q Y-(Y \tilde{\lambda}) Q X+(\tilde{\lambda}+1)\left(\nabla_{X} Q\right) Y \\
& -(\tilde{\lambda}+1)\left(\nabla_{Y} Q\right) X+(X \tilde{f}) Y-(Y \tilde{f}) X \tag{2.11}
\end{align*}
$$

for all vector field X and Y on $M, \tilde{f}=-r\left(\frac{\tilde{\lambda}}{n-1}+\frac{1}{n}\right)$ and r is the scalar curvature of g. Also

$$
\begin{equation*}
\nabla_{X} D \tilde{\lambda}=(\tilde{\lambda}+1) Q X+\tilde{f} X . \tag{2.12}
\end{equation*}
$$

for all vector fields X on M.

3 K-paracontact manifolds satisfying Miao-Tam equations.

In this section, we study K-paracontact manifolds satisfying Miao-Tam equation. Here we prove the following:

Theorem 3.1. Let $(M, \varphi, \xi, \eta, g)$ be a K-paracontact manifold of dimension $(2 n+1)$. If there is a function $\lambda: M \rightarrow \mathbb{R}$ such that (g, λ) satisfies the Miao-Tam equation, then it is Einstein.

Proof : Since ξ is Killing vector field, $£_{\xi} Q=0$. By (2.3) this equation gives

$$
\begin{equation*}
\left(\nabla_{\xi} Q\right) X=Q \varphi X-\varphi Q X \tag{3.1}
\end{equation*}
$$

for all $X \in \chi(M)$. Taking covariant derivative of (2.7) along an arbitrary vector field X, we get

$$
\begin{equation*}
\left(\nabla_{X} Q\right) \xi=Q \varphi X+2 n \varphi X \tag{3.2}
\end{equation*}
$$

Putting $X=\xi$ and replacing Y by X in (2.9) and using (3.1) and (3.2), we have

$$
\begin{align*}
R(\xi, X) D \lambda & =(\xi \lambda) Q X+2 n(X \lambda) \xi-\lambda \varphi Q X-2 n \lambda \varphi X \\
& +(\xi f) X-(X f) \xi . \tag{3.3}
\end{align*}
$$

Taking inner product of (3.3) with an arbitrary vector field Y and using (2.5), we get

$$
\begin{align*}
& g\left(\left(\nabla_{X} \varphi\right) Y, D \lambda\right)+(\xi \lambda) g(Q X, Y)+2 n(X \lambda) \eta(Y) \\
-\quad & \lambda g(\varphi Q X, Y)-2 n \lambda g(\varphi X, Y)+(\xi f) g(X, Y)-(X f) \eta(Y)=0 \tag{3.4}
\end{align*}
$$

Replacing X by φX and Y by φY in (3.4) and using (2.7), we get

$$
\begin{align*}
& g\left(\left(\nabla_{\varphi X} \varphi\right) \varphi Y, D \lambda\right)+(\xi \lambda) g(Q \varphi X, \varphi Y) \\
+\quad & \lambda g(Q \varphi X, Y)+2 n \lambda g(\varphi X, Y)-(\xi f) g(X, Y)+(\xi f) \eta(X) \eta(Y)=0 \tag{3.5}
\end{align*}
$$

Subtracting (3.5) from (3.4) and using (2.6), we obtain

$$
\begin{aligned}
& 2 \xi(f-\lambda) g(X, Y)+X\{(2 n+1) \lambda-f\} \eta(Y) \\
+\quad & \xi(\lambda-f) \eta(X) \eta(Y)+(\xi \lambda) g(Q X, Y)-(\xi \lambda) g(Q \varphi X, \varphi Y) \\
-\quad & \lambda g(\varphi Q X, Y)-\lambda g(Q \varphi X, Y)-4 n \lambda g(\varphi X, Y)=0
\end{aligned}
$$

By antisymmetrization with respect to X and Y in the above equation, we have

$$
\begin{aligned}
& X\{(2 n+1) \lambda-f\} \eta(Y)-Y\{(2 n+1) \lambda-f\} \eta(X) \\
-\quad & 2 \lambda g(Q \varphi X, Y)-2 \lambda g(\varphi Q X, Y)-8 n \lambda g(\varphi X, Y)=0
\end{aligned}
$$

Substituting X by φX and Y by φY in the above equation and using (2.7), we get

$$
\begin{equation*}
\lambda[g(Q \varphi X, Y)+g(\varphi Q X, Y)]=-4 n \lambda g(\varphi X, Y) \tag{3.6}
\end{equation*}
$$

Since λ does not vanish in the interior of M, the last equation gives

$$
\begin{equation*}
Q \varphi X+\varphi Q X=-4 n \varphi X \tag{3.7}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \cdots, e_{n}, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{n}^{\prime}, \xi\right\}$ be a local orthogonal φ-basis with $g\left(e_{i}, e_{j}\right)=$ $\delta_{i j}, g\left(e_{i}^{\prime}, e_{j}^{\prime}\right)=-\delta_{i j}, e_{i}^{\prime}=\varphi e_{i}$ where $i, j \in\{1,2, \cdots, n\}$. Using equation (2.1), $g\left(Q e_{i}, e_{i}\right)=-g\left(\varphi Q e_{i}, \varphi e_{i}\right)$. Using this φ-basis, (2.7) and (3.7), we compute the scalar curvature

$$
\begin{aligned}
r & =\sum_{i=1}^{n} g\left(Q e_{i}, e_{i}\right)-\sum_{i=1}^{n} g\left(Q \varphi e_{i}, \varphi e_{i}\right)+g(Q \xi, \xi) \\
& =-\sum_{i=1}^{n} g\left(\varphi Q e_{i}+Q \varphi e_{i}, \varphi e_{i}\right)-2 n \\
& =-2 n(2 n+1)
\end{aligned}
$$

From Lemma 2.2, we have $f=-\frac{r \lambda+1}{2 n}$. Since $r=-2 n(2 n+1)$, it follows that

$$
\begin{equation*}
(2 n+1) \lambda-f=\frac{1}{2 n} \tag{3.8}
\end{equation*}
$$

Taking inner product of (3.3) with $D \lambda$ and using (3.8), we obtain

$$
\begin{equation*}
(\xi \lambda)(Q D \lambda+2 n D \lambda)+\lambda(Q \varphi D \lambda+2 n \varphi D \lambda)=0 \tag{3.9}
\end{equation*}
$$

Putting $X=D \lambda$ in (3.7), we have

$$
\begin{equation*}
Q \varphi D \lambda=-\varphi Q D \lambda-4 n \varphi D \lambda \tag{3.10}
\end{equation*}
$$

Using (3.10) in (3.9), we get

$$
\begin{equation*}
(\xi \lambda)(Q D \lambda+2 n D \lambda)-\lambda(\varphi Q D \lambda+2 n \varphi D \lambda)=0 \tag{3.11}
\end{equation*}
$$

Now operating φ on the above equation and using (2.7), we obtain

$$
\begin{equation*}
\lambda(Q D \lambda+2 n D \lambda)-(\xi \lambda)(\varphi Q D \lambda+2 n \varphi D \lambda)=0 \tag{3.12}
\end{equation*}
$$

Combining (3.11) and (3.12), we get

$$
\left((\xi \lambda)^{2}-\lambda^{2}\right)(Q D \lambda+2 n D \lambda)=0
$$

From the above equation we have either (i) $Q D \lambda+2 n D \lambda=0$, or (ii) $(\xi \lambda)= \pm \lambda$.
Case (i) : In this case $Q D \lambda+2 n D \lambda=0$. Taking covariant differentiation of this equation along an arbitrary vector field X and using (2.10), we obtain

$$
\left(\nabla_{X} Q\right) D \lambda+\lambda Q^{2} X+(f+2 n \lambda) Q X+2 n f X=0
$$

Contracting this equation over X with respect to an orthonormal basis $\left\{E_{i}\right\}$, we get

$$
g\left(\left(\nabla_{E_{i}} Q\right) D \lambda, E_{i}\right)+\lambda|Q|^{2}-4 n^{2}(2 n+1) \lambda=0
$$

Using the formula $\operatorname{div} Q X=\frac{1}{2} X r$ in the above equation and noting that scalar curvature is constant, we have $\lambda|Q|^{2}-4 n^{2}(2 n+1) \lambda=0$. Since λ does not vanish in interior of M, it follows that $|Q|^{2}=4 n^{2}(2 n+1) \lambda$.
Now using $r=-2 n(2 n+1)$,

$$
\left|Q-\frac{r}{2 n+1} I\right|^{2}=|Q|^{2}-\frac{2 r^{2}}{2 n+1}+\frac{r^{2}}{2 n+1}=0
$$

Since the length of the symmetric tensor $Q-\frac{r}{2 n+1} I$ vanish, we must have $Q-\frac{r}{2 n+1} I=$ 0 . Since $r=-2 n(2 n+1)$, we get $Q X=-2 n X$ for all $X \in \chi(M)$. This shows that M is Einstein.
Case (ii) : If $\xi \lambda=\lambda$, then $\xi(\xi \lambda)=\xi \lambda=\lambda$. Also if $\xi \lambda=-\lambda$, then $\xi(\xi \lambda)=-\xi \lambda=\lambda$. In either case $\xi(\xi \lambda)=\lambda$. Putting $X=\xi$ in (2.10), taking inner product with ξ and using (2.7), we have

$$
\xi(\xi \lambda)=-2 n \lambda+f
$$

Since $\xi(\xi \lambda)=\lambda$, using (3.8) the above equation implies $\frac{1}{2 n}=0$, a contradiction. Therefore, only Case (i) holds.

4 K-paracontact manifolds satisfying Euler-Lagrange equation of total scalar curvature.

In this section, we study K-paracontact manifolds satisfying Euler-Lagrange equation of total scalar curvature. Here, we prove the following:

Theorem 4.1. Let $(\underset{\sim}{\lambda}, \varphi, \xi, \eta, g)$ be a K-paracontact manifold of dimension $(2 n+1)$. If there is a function $\tilde{\lambda}: M \rightarrow \mathbb{R}$ such that $(g, \tilde{\lambda})$ satisfies the critical point equation, then it is Einstein and $(g, \tilde{\lambda})$ satisfies Fischer-Marsden equation.

Proof : Putting $X=\xi$ and replacing Y by X in (2.11) and using (3.1) and (3.2), we have

$$
\begin{align*}
R(\xi, X) D \tilde{\lambda} & =(\xi \tilde{\lambda}) Q X+2 n(X \tilde{\lambda}) \xi-(\tilde{\lambda}+1) \varphi Q X \\
& -2 n(\tilde{\lambda}+1) \varphi X+(\xi \tilde{f}) X-(X \tilde{f}) \xi \tag{4.1}
\end{align*}
$$

Taking inner product in (4.1) with Y and using (2.5), we obtain

$$
\begin{align*}
& g\left(\left(\nabla_{X} \varphi\right) Y, D \tilde{\lambda}\right)+(\xi \tilde{\lambda}) g(Q X, Y)-2 n(\tilde{\lambda}+1) g(\varphi X, Y) \\
+\quad & \{2 n(X \tilde{\lambda})-X \tilde{f}\} \eta(Y)-(\tilde{\lambda}+1) g(\varphi Q X, Y)+(\xi \tilde{f}) g(X, Y)=0 \tag{4.2}
\end{align*}
$$

Substituting X by φX and Y by φY in (4.1), we get

$$
\begin{align*}
& g\left(\left(\nabla_{\varphi X} \varphi\right) \varphi Y, D \tilde{\lambda}\right)+(\xi \tilde{\lambda}) g(Q \varphi X, \varphi Y)+2 n(\tilde{\lambda}+1) g(\varphi X, Y) \\
+\quad & (\tilde{\lambda}+1) g(Q \varphi X, Y)-(\xi \tilde{f}) g(X, Y)+(\xi \tilde{f}) \eta(X) \eta(Y)=0 \tag{4.3}
\end{align*}
$$

Subtracting (4.3) from (4.2) and using (2.6), we have

$$
\begin{aligned}
& 2 \xi(\tilde{f}-\tilde{\lambda}) g(X, Y)+X\{(2 n+1) \tilde{\lambda}-\tilde{f}\} \eta(Y) \\
+\quad & \xi(\tilde{\lambda}-\tilde{f}) \eta(X) \eta(Y)+(\xi \tilde{\lambda}) g(Q X, Y)-(\xi \tilde{\lambda}) g(Q \varphi X, \varphi Y) \\
-\quad & (\tilde{\lambda}+1)\{g(\varphi Q X, Y)+g(Q \varphi X, Y)+4 n g(\varphi X, Y)\}=0
\end{aligned}
$$

Antisymmetrizing the above equation, we get

$$
\begin{aligned}
& X\{(2 n+1) \tilde{\lambda}-\tilde{f}\} \eta(Y)-Y\{(2 n+1) \tilde{\lambda}-\tilde{f}\} \eta(X) \\
-\quad & 2(\tilde{\lambda}+1)[g(Q \varphi X, Y)+g(\varphi Q X, Y)+4 n g(\varphi X, Y)]=0
\end{aligned}
$$

Setting $X=\varphi X$ and $Y=\varphi Y$ in the above equation, we have

$$
(\tilde{\lambda}+1)[g(Q \varphi X, Y)+g(\varphi Q X, Y)+4 n g(\varphi X, Y)]=0
$$

Since $\tilde{\lambda}$ is a non-constant function, the above equation gives

$$
\begin{equation*}
Q \varphi X+\varphi Q X=-4 n \varphi X \tag{4.4}
\end{equation*}
$$

Continuing the same processes as in the proof of Theorem 3.1, we have

$$
r=-2 n(2 n+1)
$$

From Lemma 2.3, we get $\tilde{f}=-r\left(\frac{\tilde{\lambda}}{2 n}+\frac{1}{2 n+1}\right)$. Since $r=-2 n(2 n+1)$, it follows that

$$
\begin{equation*}
(2 n+1) \tilde{\lambda}-\tilde{f}=-2 n \tag{4.5}
\end{equation*}
$$

Proceeding in the same way as in proof of the Theorem 3.1, we obtain

$$
\left\{(\xi \tilde{\lambda})^{2}-(\tilde{\lambda}+1)^{2}\right\}(Q D \tilde{\lambda}+2 n D \tilde{\lambda})=0
$$

From the above equation we have either (i) $Q D \tilde{\lambda}+2 n D \tilde{\lambda}=0$ or, (ii) $\xi \tilde{\lambda}= \pm(\tilde{\lambda}+1)$.
Case (i): By similar argument as in the proof of Theorem 3.1, we get g is Einstein metric. Since g is Einstein, $z_{g}=0$. Therefore from (1.4) we have $\left(r_{g}^{\prime}\right)^{*} \tilde{\lambda}=0$. This proves that $(g, \tilde{\lambda})$ satisfies the Fischer-Marsden equation.
Case (ii) : In this case $\xi \lambda= \pm(\tilde{\lambda}+1)$. Therefore $\xi(\xi \tilde{\lambda})= \pm(\xi \lambda)=\tilde{\lambda}+1$. Putting $X=\xi$ in (2.12), then taking inner product with ξ, we get

$$
\xi(\xi \tilde{\lambda})=-2 n(\tilde{\lambda}+1)+\tilde{f}
$$

As $\xi(\xi \tilde{\lambda})=\tilde{\lambda}+1$, we arrive in a contradiction by (4.5). So only Case (i) holds.

5 Example

In this section, we construct an example of a K-paracontact manifold which satisfies Miao-Tam equation, critical point equation and Fischer-Marsden equation.

We consider the three dimensional manifold $M=\left\{(x, y, z):(x, y, z) \in \mathbb{R}^{3}\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. Define the almost paracontact structure (φ, ξ, η) on M by

$$
\varphi\left(e_{1}\right)=e_{2}, \quad \varphi\left(e_{2}\right)=e_{1}, \quad \varphi\left(e_{3}\right)=0, \quad \xi=e_{3}, \quad \eta=-d z
$$

where $e_{1}=e^{z} \frac{\partial}{\partial x}, e_{2}=e^{z}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right), e_{3}=-\frac{\partial}{\partial z} . e_{1}, e_{2}, e_{3}$ are linearly independent at each point of M. we have

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{1}, e_{3}\right]=e_{1}, \quad\left[e_{2}, e_{3}\right]=e_{2}
$$

Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{1}\right)=-g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1, \quad g\left(e_{i}, e_{j}\right)=0, i \neq j
$$

where $i, j=1,2,3$.
By the linearity property of g and φ, we have

$$
g(\varphi X, \varphi Y)=-g(X, Y)+\eta(X) \eta(Y)
$$

It is easy to verify that, (M, ϕ, ξ, η, g) is a K-paracontact manifold. Let ∇ be the Levi-Civita connection with respect to g. Then by Koszul formula

$$
\begin{array}{cc}
\nabla_{e_{1}} e_{1}=-e_{3}, & \nabla_{e_{1}} e_{2}=0, \\
\nabla_{e_{2}} e_{1}=0, & \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{3}=e_{2} \\
e_{1}, & \nabla_{e_{3}} e_{2}=0,
\end{array} \nabla_{e_{3}} e_{3}=0
$$

The components of the curvature tensor $R(X, Y) Z$ are

$$
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, \quad R\left(e_{1}, e_{2}\right) e_{2}=e_{1}, \quad R\left(e_{1}, e_{2}\right) e_{3}=0
$$

$$
\begin{gathered}
R\left(e_{1}, e_{3}\right) e_{1}=e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} \\
R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{2}, e_{3}\right) e_{2}=-e_{3}, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}
\end{gathered}
$$

The Ricci tensor is given by

$$
S(X, Y)=g\left(R\left(e_{1}, X\right) Y, e_{1}\right)-g\left(R\left(e_{2}, X\right) Y, e_{2}\right)+g\left(R\left(e_{3}, X\right) Y, e_{3}\right)
$$

for all $X, Y \in \chi(M)$. Using the components of the curvature tensor in the above, we have

$$
\begin{gathered}
S\left(e_{1}, e_{1}\right)=-S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-2 \\
S\left(e_{1}, e_{2}\right)=S\left(e_{2}, e_{3}\right)=S\left(e_{1}, e_{3}\right)=0
\end{gathered}
$$

In view of above relation,

$$
S(X, Y)=-2 g(X, Y), \text { and } r=-6
$$

for all $X, Y \in \chi(M)$. So the manifold is Einstein.
Let $\lambda=e^{-z}+\frac{1}{2}$. By direct computation we have

$$
D \lambda=\left(\lambda-\frac{1}{2}\right) e_{3} \text { and } \Delta_{g} \lambda=3\left(\lambda-\frac{1}{2}\right)
$$

Also $\nabla_{X} D \lambda=\left(\lambda-\frac{1}{2}\right) X$, for all $X \in \chi(M)$. Hence

$$
-\left(\Delta_{g} \lambda\right) g(X, Y)+g\left(\nabla_{X} D \lambda, Y\right)-\lambda S(X, Y)=g(X, Y)
$$

for all $X, Y \in \chi(M)$. This implies that g satisfies Miao-Tam equation and the example varifies Theorem 3.1.
Again taking $\tilde{\lambda}=e^{-z}$, similarly it can be verified that

$$
-\left(\Delta_{g} \tilde{\lambda}\right) g(X, Y)+g\left(\nabla_{X} D \tilde{\lambda}, Y\right)-\tilde{\lambda} S(X, Y)=z_{g}=0
$$

for all $X, Y \in \chi(M)$. This implies that g satisfies critical point equation. Also g satisfies Fischer-Marsden equation. Hence the example verifies Theorem 4.1.

Acknowledgements. The second author is financially supported by UGC, Ref. ID. 423044.

References

[1] A. Barros, E. Ribeiro Jr., Critical Point Equation on four-dimensional compact manifolds, Math. Nachr. 287 (2014), 1618-1623.
[2] A. Besse, Einstein Manifolds, Springer-Verlag, New York (2008).
[3] A. Ghosh, D. S. Patra, The critical point equation and contact geometry, arXiv:1711.05935v1 [math.DG] 16 Nov 2017.
[4] D. S. Patra, A. Ghosh, Certain almost Kenmotsu metrics satisfying the MiaoTam Equation, arXiv:1701.04996v1 [math.DG] 18 Jan 2017.
[5] D. S. Patra, A. Ghosh, Certain contact metrics satisfying the Miao-Tam critical condition, Ann. Polon. Math. 116 (2016), 263-271.
[6] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. PDE. 36 (2009), 141-171.
[7] S. Zamkovoy, Canonical connections on para-contact manifolds, Ann. Global Anal. Geom. 36 (2009), 37-60.

Authors' address:
Avijit Sarkar
Department of Mathematics, University of Kalyani,
Kalyani, Pin-741235,
West Bengal, India.
Email:avjaj@yahoo.co.in
Gour Gopal Biswas
Department of Mathematics, University of Kalyani,
Kalyani, Pin-741235,
West Bengal, India.
Email: ggbiswas6@gmail.com

