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Abstract. A. Besse posed a conjecture that a solution of a critical point
equation is Einstein. The aim of our paper is to prove the conjecture for
K-paracontact metrics.
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1 Introduction

Let M be a n-dimensional compact oriented manifold and M be the set of all Rieman-
nian metrics of unit volume on M . The scalar curvature rg is a non-linear function
of the matric g. The differential at the point g in the direction of a (0,2) tensor field
h is given by [2]

(1.1) r′g(h) = −∆g(trgh) + δg(δgh)− g(Sg, h),

where ∆g is the negative Laplacian operator, δg is the divergence operator and Sg is
Ricci tensor of g. The L2-adjoint (r′g)

∗ of r′g is given by the formula

(1.2) (r′g)
∗γ = −(∆gγ)g +∇2

gγ − γS

for any C∞-function γ on M , where ∇2
g is the Hessian operator of g.

Definition 1.1. Let (Mn, g), n > 2 be a compact Riemannian manifold with
boundary ∂M . Then g is called a critical metric if there exists a smooth function λ
on Mn such that

(1.3) (r′g)
∗λ = g

on M and λ = 0 on ∂M . The function λ is known as the potential function.

The metrics which satisfy (1.3) are known as Miao-Tam critical metrics and we refer
equation (1.3) as Miao-Tam equation. In [4], Miao-Tam equation has been studied

∗Balkan Journal of Geometry and Its Applications, Vol.25, No.1, 2020, pp. 117-126.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2020.



118 Avijit Sarkar and Gour Gopal Biswas

on almost Kenmotsu manifolds. Miao and Tam[6] themselves have classified Einstein
and conformally flat Riemannian manifolds satisfying Miao-Tam equation. In [5], the
authors studied certain contact metric manifolds satisfying Miao-Tam equation.
The total scalar curvature functional Γ : M → R is defined by

Γ(g) =

∫
M

rgdvg

where rg is the scalar curvature and dvg the volume form determined by the metric
and orientation. The Euler-Lagrange equation of the functional Γ restricted over
{g ∈ M : rg = constant} on a compact orientable manifold (M, g) can be written as
critical point equation

(1.4) (r′g)
∗λ̃ = zg

where zg denotes the traceless Ricci tensor of M and λ̃ is a C∞-function on M . If

λ̃ is constant then from (1.4) we see that the metric g is Einstein. In this paper we
consider λ̃ is a non-constant function. The equation (r′g)

∗λ̃ = 0 is known as Fischer-
Marsden equation.
In [2], A. Besse posed a conjecture that the solution of critical point equation is
Einstein. In the paper [1], the authors proved that the conjecture is true for half
conformally flat case. In [3], the authors proved that a K-contact metric satisfying
critical point equation is Einstein and isometric to a unit sphere. They also proved
that a (κ, µ)-contact metric satisfying critical point equation is flat and isometric to
En+1 × Sn(4).
In this paper we would like to study K-paracontact manifolds satisfying Miao-Tam
equation and critical point equation. After the introduction we give required pre-
liminaries in Section 2. Section 3 contains the study of K-paracontact manifolds
satisfying Miao-Tam equation. In Section 4, we study K-paracontact manifolds sat-
isfying Euler-Lagrange equation of total scalar curvature. The last section contains
supporting example.

2 Preliminaries

Let M be a manifold of dimension (2n+ 1). Let φ be a (1, 1) tensor field, ξ a vector
field and η a 1-form on M . Then the triple (φ, ξ, η) is called an almost paracontact
structure on M , if the following conditions are satisfied :

i) φ2X = X − η(X)ξ, η(ξ) = 1,

ii) φ(ξ) = 0, η ◦ φ = 0,

iii) the eigendistributions D+ and D− of φ corresponding to the eigenvalues 1 and
−1, respectively have equal dimension n.

If an almost paracontact manifold admits a pseudo-Riemannian metric such that

(2.1) g(φX,φY ) = −g(X,Y ) + η(X)η(Y ),
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for all X,Y ∈ χ(M), the set of all smooth vector fields on M , then we say that
(M,φ, ξ, η, g) is an almost paracontact metric manifold. Form (2.1) we have

(2.2) g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ),

for all X ∈ χ(M).

The fundamental 2-form of an almost paracontact metric manifold (M,φ, ξ, η, g)
is defined by F (X,Y ) = g(X,φY ). If dη = F , then the manifold (M,φ, ξ, η, g) is said
to be paracontact metric manifold.

If ξ is a Killing vector field i.e. h = 1
2£ξφ = 0, where £ is the Lie derivative,

then (M,φ, ξ, η, g) is called K-paracontact manifold. In a K-paracontact manifold
the following relations hold :

(2.3) ∇Xξ = −φX,

(2.4) R(X, ξ)ξ = −X + η(X)ξ,

(2.5) R(ξ,X)Y = (∇Xφ)Y,

(2.6) (∇φXφ)φY − (∇Xφ)Y = 2g(X,Y )ξ − (X + η(X)ξ)η(Y )

for allX,Y, Z ∈ χ(M), where∇ is the Levi-Civita connection of the pseudo-Riemannian
metric and R is the Riemannian curvature tensor. For details see [7].

Lemma 2.1 In a K-paracontact manifold (M,φ, ξ, η, g),

(2.7) Qξ = −2nξ

where Q is the Ricci operator.

Proof : From Proposition 2.4 of [7], we have

2g((∇Xφ)Y, Z) = −g(N (1)(Y, Z), φX)− 2dη(φZ,X)η(Y )

+ 2dη(φY,X)η(Z)

for all X,Y, Z ∈ χ(M), where N (1)(Y, Z) = φ2[Y, Z]+[φY, φZ]−φ[φY,Z]−φ[Y, φZ]−
2dη(Y, Z)ξ.
Using (2.5) in the above equation and noting that dη(X,Y ) = g(X,φY ), we obtain

(2.8) g(R(X, ξ)Y, Z) =
1

2
g(N (1)(Y, Z), φX)− g(X,Z)η(Y ) + g(X,Y )η(Z).

Let {e1, e2, · · · , en, e′1, e′2, · · · , e′n, ξ} be a local orthogonal φ-basis with g(ei, ej) =
δij , g(e′i, e

′
j) = −δij , e′i = φei where i, j ∈ {1, 2, · · · , n}. Contracting (2.8) over X

and Z with respect to this φ-basis we get (2.7).
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Lemma 2.2. [4] Let a Riemannian manifold (Mn, g) satisfies the Miao-Tam
equation. Then the curvature tensor R can be expressed as

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ((∇XQ)Y − (∇Y Q)X)

+ (Xf)Y − (Y f)X,(2.9)

for any vector fields X,Y on M , where f = − rλ+1
n−1 and D is the gradient operator.

Moreover,

(2.10) ∇XDλ = λQX + fX,

for all vector fields X on M .

Lemma 2.3. [3] Let (g, λ̃) be a non-trivial solution of the critical point equation
(1.4) on an n-dimensional Riemannian manifold M . Then the curvature tensor R can
be written as

R(X,Y )Dλ̃ = (Xλ̃)QY − (Y λ̃)QX + (λ̃+ 1)(∇XQ)Y

− (λ̃+ 1)(∇Y Q)X + (Xf̃)Y − (Y f̃)X(2.11)

for all vector field X and Y on M , f̃ = −r
(

λ̃
n−1 + 1

n

)
and r is the scalar curvature

of g. Also

(2.12) ∇XDλ̃ = (λ̃+ 1)QX + f̃X.

for all vector fields X on M .

3 K-paracontact manifolds satisfying Miao-Tam equa-
tions.

In this section, we study K-paracontact manifolds satisfying Miao-Tam equation.
Here we prove the following:

Theorem 3.1. Let (M,φ, ξ, η, g) be a K-paracontact manifold of dimension (2n+1).
If there is a function λ : M → R such that (g, λ) satisfies the Miao-Tam equation,
then it is Einstein.

Proof : Since ξ is Killing vector field, £ξQ = 0. By (2.3) this equation gives

(3.1) (∇ξQ)X = QφX − φQX

for all X ∈ χ(M). Taking covariant derivative of (2.7) along an arbitrary vector field
X, we get

(3.2) (∇XQ)ξ = QφX + 2nφX.

Putting X = ξ and replacing Y by X in (2.9) and using (3.1) and (3.2), we have

R(ξ,X)Dλ = (ξλ)QX + 2n(Xλ)ξ − λφQX − 2nλφX

+ (ξf)X − (Xf)ξ.(3.3)
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Taking inner product of (3.3) with an arbitrary vector field Y and using (2.5), we get

g((∇Xφ)Y,Dλ) + (ξλ)g(QX,Y ) + 2n(Xλ)η(Y )

− λg(φQX, Y )− 2nλg(φX, Y ) + (ξf)g(X,Y )− (Xf)η(Y ) = 0.(3.4)

Replacing X by φX and Y by φY in (3.4) and using (2.7), we get

g((∇φXφ)φY,Dλ) + (ξλ)g(QφX,φY )

+ λg(QφX, Y ) + 2nλg(φX, Y )− (ξf)g(X,Y ) + (ξf)η(X)η(Y ) = 0.(3.5)

Subtracting (3.5) from (3.4) and using (2.6), we obtain

2ξ(f − λ)g(X,Y ) +X{(2n+ 1)λ− f}η(Y )

+ ξ(λ− f)η(X)η(Y ) + (ξλ)g(QX,Y )− (ξλ)g(QφX,φY )

− λg(φQX, Y )− λg(QφX, Y )− 4nλg(φX, Y ) = 0.

By antisymmetrization with respect to X and Y in the above equation, we have

X{(2n+ 1)λ− f}η(Y )− Y {(2n+ 1)λ− f}η(X)

− 2λg(QφX, Y )− 2λg(φQX, Y )− 8nλg(φX, Y ) = 0.

Substituting X by φX and Y by φY in the above equation and using (2.7), we get

(3.6) λ[g(QφX, Y ) + g(φQX, Y )] = −4nλg(φX, Y ).

Since λ does not vanish in the interior of M , the last equation gives

(3.7) QφX + φQX = −4nφX.

Let {e1, e2, · · · , en, e′1, e′2, · · · , e′n, ξ} be a local orthogonal φ-basis with g(ei, ej) =
δij , g(e′i, e

′
j) = −δij , e′i = φei where i, j ∈ {1, 2, · · · , n}. Using equation (2.1),

g(Qei, ei) = −g(φQei, φei). Using this φ-basis, (2.7) and (3.7) , we compute the
scalar curvature

r =

n∑
i=1

g(Qei, ei)−
n∑

i=1

g(Qφei, φei) + g(Qξ, ξ)

= −
n∑

i=1

g(φQei +Qφei, φei)− 2n

= −2n(2n+ 1).

From Lemma 2.2, we have f = − rλ+1
2n . Since r = −2n(2n+ 1), it follows that

(3.8) (2n+ 1)λ− f =
1

2n
.

Taking inner product of (3.3) with Dλ and using (3.8), we obtain

(3.9) (ξλ)(QDλ+ 2nDλ) + λ(QφDλ+ 2nφDλ) = 0.
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Putting X = Dλ in (3.7), we have

(3.10) QφDλ = −φQDλ− 4nφDλ.

Using (3.10) in (3.9), we get

(3.11) (ξλ)(QDλ+ 2nDλ)− λ(φQDλ+ 2nφDλ) = 0.

Now operating φ on the above equation and using (2.7), we obtain

(3.12) λ(QDλ+ 2nDλ)− (ξλ)(φQDλ+ 2nφDλ) = 0.

Combining (3.11) and (3.12), we get

((ξλ)2 − λ2)(QDλ+ 2nDλ) = 0.

From the above equation we have either (i) QDλ+ 2nDλ = 0, or (ii) (ξλ) = ±λ.
Case (i) : In this case QDλ + 2nDλ = 0.Taking covariant differentiation of this
equation along an arbitrary vector field X and using (2.10), we obtain

(∇XQ)Dλ+ λQ2X + (f + 2nλ)QX + 2nfX = 0.

Contracting this equation over X with respect to an orthonormal basis {Ei}, we get

g((∇EiQ)Dλ,Ei) + λ|Q|2 − 4n2(2n+ 1)λ = 0.

Using the formula divQX = 1
2Xr in the above equation and noting that scalar

curvature is constant, we have λ|Q|2 − 4n2(2n+ 1)λ = 0. Since λ does not vanish in
interior of M , it follows that |Q|2 = 4n2(2n+ 1)λ.
Now using r = −2n(2n+ 1),∣∣∣∣Q− r

2n+ 1
I

∣∣∣∣2 = |Q|2 − 2r2

2n+ 1
+

r2

2n+ 1
= 0.

Since the length of the symmetric tensor Q− r
2n+1I vanish, we must have Q− r

2n+1I =
0. Since r = −2n(2n + 1), we get QX = −2nX for all X ∈ χ(M). This shows that
M is Einstein.
Case (ii) : If ξλ = λ, then ξ(ξλ) = ξλ = λ. Also if ξλ = −λ, then ξ(ξλ) = −ξλ = λ.
In either case ξ(ξλ) = λ. Putting X = ξ in (2.10), taking inner product with ξ and
using (2.7), we have

ξ(ξλ) = −2nλ+ f.

Since ξ(ξλ) = λ, using (3.8) the above equation implies 1
2n = 0, a contradiction.

Therefore, only Case (i) holds.

4 K-paracontact manifolds satisfying Euler-Lagrange
equation of total scalar curvature.

In this section, we study K-paracontact manifolds satisfying Euler-Lagrange equation
of total scalar curvature. Here, we prove the following:
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Theorem 4.1. Let (M,φ, ξ, η, g) be a K-paracontact manifold of dimension (2n+1).
If there is a function λ̃ : M → R such that (g, λ̃) satisfies the critical point equation,
then it is Einstein and (g, λ̃) satisfies Fischer-Marsden equation.

Proof : Putting X = ξ and replacing Y by X in (2.11) and using (3.1) and (3.2),
we have

R(ξ,X)Dλ̃ = (ξλ̃)QX + 2n(Xλ̃)ξ − (λ̃+ 1)φQX

− 2n(λ̃+ 1)φX + (ξf̃)X − (Xf̃)ξ.(4.1)

Taking inner product in (4.1) with Y and using (2.5), we obtain

g((∇Xφ)Y,Dλ̃) + (ξλ̃)g(QX,Y )− 2n(λ̃+ 1)g(φX, Y )

+ {2n(Xλ̃)−Xf̃}η(Y )− (λ̃+ 1)g(φQX, Y ) + (ξf̃)g(X,Y ) = 0.(4.2)

Substituting X by φX and Y by φY in (4.1), we get

g((∇φXφ)φY,Dλ̃) + (ξλ̃)g(QφX,φY ) + 2n(λ̃+ 1)g(φX, Y )

+ (λ̃+ 1)g(QφX, Y )− (ξf̃)g(X,Y ) + (ξf̃)η(X)η(Y ) = 0.(4.3)

Subtracting (4.3) from (4.2) and using (2.6), we have

2ξ(f̃ − λ̃)g(X,Y ) +X{(2n+ 1)λ̃− f̃}η(Y )

+ ξ(λ̃− f̃)η(X)η(Y ) + (ξλ̃)g(QX,Y )− (ξλ̃)g(QφX,φY )

− (λ̃+ 1){g(φQX, Y ) + g(QφX, Y ) + 4ng(φX, Y )} = 0.

Antisymmetrizing the above equation, we get

X{(2n+ 1)λ̃− f̃}η(Y )− Y {(2n+ 1)λ̃− f̃}η(X)

− 2(λ̃+ 1)[g(QφX, Y ) + g(φQX, Y ) + 4ng(φX, Y )] = 0.

Setting X = φX and Y = φY in the above equation, we have

(λ̃+ 1)[g(QφX, Y ) + g(φQX, Y ) + 4ng(φX, Y )] = 0.

Since λ̃ is a non-constant function, the above equation gives

(4.4) QφX + φQX = −4nφX.

Continuing the same processes as in the proof of Theorem 3.1, we have

r = −2n(2n+ 1)

From Lemma 2.3, we get f̃ = −r
(

λ̃
2n + 1

2n+1

)
. Since r = −2n(2n+1), it follows that

(4.5) (2n+ 1)λ̃− f̃ = −2n

Proceeding in the same way as in proof of the Theorem 3.1, we obtain

{(ξλ̃)2 − (λ̃+ 1)2}(QDλ̃+ 2nDλ̃) = 0.
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From the above equation we have either (i) QDλ̃+ 2nDλ̃ = 0 or, (ii) ξλ̃ = ±(λ̃+ 1).

Case (i) : By similar argument as in the proof of Theorem 3.1, we get g is Einstein
metric. Since g is Einstein, zg = 0. Therefore from (1.4) we have (r′g)

∗λ̃ = 0. This

proves that (g, λ̃) satisfies the Fischer-Marsden equation.
Case (ii) : In this case ξλ = ±(λ̃ + 1). Therefore ξ(ξλ̃) = ±(ξλ) = λ̃ + 1. Putting
X = ξ in (2.12), then taking inner product with ξ, we get

ξ(ξλ̃) = −2n(λ̃+ 1) + f̃ .

As ξ(ξλ̃) = λ̃+ 1, we arrive in a contradiction by (4.5). So only Case (i) holds.

5 Example

In this section, we construct an example of a K-paracontact manifold which satisfies
Miao-Tam equation, critical point equation and Fischer-Marsden equation.

We consider the three dimensional manifold M = {(x, y, z) : (x, y, z) ∈ R3}, where
(x, y, z) are the standard coordinates in R3. Define the almost paracontact structure
(φ, ξ, η) on M by

φ(e1) = e2, φ(e2) = e1, φ(e3) = 0, ξ = e3, η = −dz

where e1 = ez ∂
∂x , e2 = ez

(
∂
∂x − ∂

∂y

)
, e3 = − ∂

∂z . e1, e2, e3 are linearly independent

at each point of M . we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Let g be the Riemannian metric defined by

g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1, g(ei, ej) = 0, i ̸= j

where i, j = 1, 2, 3.
By the linearity property of g and φ, we have

g(φX,φY ) = −g(X,Y ) + η(X)η(Y ).

It is easy to verify that, (M,ϕ, ξ, η, g) is a K-paracontact manifold. Let ∇ be the
Levi-Civita connection with respect to g. Then by Koszul formula

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

The components of the curvature tensor R(X,Y )Z are

R(e1, e2)e1 = e2, R(e1, e2)e2 = e1, R(e1, e2)e3 = 0,
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R(e1, e3)e1 = e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2.

The Ricci tensor is given by

S(X,Y ) = g(R(e1, X)Y, e1)− g(R(e2, X)Y, e2) + g(R(e3, X)Y, e3)

for all X,Y ∈ χ(M). Using the components of the curvature tensor in the above, we
have

S(e1, e1) = −S(e2, e2) = S(e3, e3) = −2,

S(e1, e2) = S(e2, e3) = S(e1, e3) = 0.

In view of above relation,

S(X,Y ) = −2g(X,Y ), and r = −6

for all X,Y ∈ χ(M). So the manifold is Einstein.
Let λ = e−z + 1

2 . By direct computation we have

Dλ =

(
λ− 1

2

)
e3 and ∆gλ = 3

(
λ− 1

2

)
.
Also ∇XDλ =

(
λ− 1

2

)
X, for all X ∈ χ(M). Hence

−(∆gλ)g(X,Y ) + g(∇XDλ, Y )− λS(X,Y ) = g(X,Y )

for allX,Y ∈ χ(M). This implies that g satisfies Miao-Tam equation and the example
varifies Theorem 3.1.
Again taking λ̃ = e−z, similarly it can be verified that

−(∆gλ̃)g(X,Y ) + g(∇XDλ̃, Y )− λ̃S(X,Y ) = zg = 0,

for all X,Y ∈ χ(M). This implies that g satisfies critical point equation. Also g
satisfies Fischer-Marsden equation. Hence the example verifies Theorem 4.1.
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