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Abstract. We study various aspects and properties of polarized symplec-
tic manifolds. We give a new proof of the Darboux theorem for symplectic
manifolds equipped with Lagrangian foliation using only quadratures.

We give a special interest to the study of Poisson structures subordinate
to a real polarization, in this case, the polarized Hamiltonians are locally
affine mappings with respect to the affine structure of the Lagrangian
foliation. Also, we show that polarized Hamiltonians consist of all real
smooth mappings whose the associated vector Hamiltonian field preserves
the Lagrangian foliation. We give some examples and properties of these
objects.

The study of the integrability of the almost polarized symplectic manifolds
are given in this work.
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1 Introduction

A symplectic manifold (M, θ) is said to be polarized if it is equipped with a Lagrangian
foliation F. The notion of polarized symplectic manifold plays an important role in
the geometric quantization of Kostant-Souriau ([11],[17]). Interesting properties of
the geometry of Lagrangian foliations are given by A. Weinstein [16] and P. Dazord
[5]. The natural model of polarized symplectic manifold is the cotangent bundle T ∗M
(phase space), equipped with the Liouville form and the real polarization defined by
the vertical foliation of the fibration πM : T ∗M −→M .

In symplectic geometry, the Darboux’s theorem plays a fundamental role;
of course, this theorem is first proved by induction by G.Darboux himself. An

other proof based on the Moser Lemma is given by A. Weinstein (in 1977).
The Darboux theorem for symplectic manifolds equipped with Lagrangian folia-

tions, is given by I. Vaisman in (1989) in the context of Poisson structures on foliated
manifolds. In this work I will reproduce the proof of Darboux’s theorem for the

*Balkan Journal of Geometry and Its Applications, Vol.25, No.1, 2020, pp. 1-18.
© Balkan Society of Geometers, Geometry Balkan Press 2020.



2 A.Awane

k−symplectic structures ([1], [2]), in the case of k = 1, i.e., for symplectic manifolds
equipped with a Lagrangian foliation, using exclusively quadratures, i.e., operations
of integration, elimination (application of the implicit function theorem) and partial
differentiation.

A Hamiltonian vector field X of (M, θ) is said to be polarized if, in addition, X
preserve the foliation F. A Hamiltonian mapping H, (a smooth real function on M)
is said to be polarized if the associated Hamiltonian vector field XH is polarized.

The set of all polarized Hamiltonian mappings, denoted by H (M,F), is a proper
linear subspace of C∞ (M) and it admits a natural law of Lie algebra {, } satisfying in
addition, the Leibniz identity with respect to polarized Hamiltonian mappings. The
pair (H (M,F) , {, }) is called polarized Poisson structure subordinate to the polarized
symplectic structure (θ,F). In this paper, we show that, the Lagrangian foliation F is
affine and each polarized Hamiltonian mapping H is a locally affine function on this
foliation. Also, we show that the set H (M,F) consists of all smooth real functions H
on M so that XH preserve the foliation F.

In this work, we give some properties and examples of polarized Hamiltonians; and
we study the polarized Poisson structure subordinate to a polarized symplectic struc-
ture and we give a natural polarized symplectic structure on the space hom

(
G,R2

)
,

for an arbitrary real Lie algebra G.
In the last part, we study the almost symplectic polarized structures and we

prove that such a structure is integrable if and only if its the Bernard’s tensor of the
corresponding G−structure vanishes identically.

2 Polarized linear spaces

Let E be an R−linear space of dimension 2n, θ be an exterior 2−form on E and let
F be a linear subspace E of codimension n.

Definition 2.1. We say that (θ, F ) is a polarized symplectic structure on the space
E if: (i) θ is nondegenerate. (ii) ∀x, y ∈ F ; θ(x, y) = 0R.

The following theorem gives the classification of linear polarized symplectic struc-
tures.

Theorem 2.1. If (θ, F ) is a polarized symplectic structure on E, then there is a basis
(ei, e

′
i)1≤i≤n of E∗ such that

θ =

n∑
j=1

ωj ∧ ω
′j , F = kerω

′1 ∩ · · · ∩ kerω′k,

where (ωi, ω′i)1≤i≤n is the dual basis of (ei, e
′
i)1≤i≤n.

(ei, e
′
i)1≤i≤n is called a polarized symplectic basis.

Proof. Let f1, · · · , fn, g1, · · · , gn be a basis of E such that F is spanned by the vectors
f1, · · · , fn, and let

{
γ1, · · · , γn, ω′1, · · · , ω′n} be its dual basis. The second condition
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of the definition of a polarized symplectic structure allows us to see that the bilinear
form θ takes the following form:

θ =

n∑
i,j=1

(
bjiγ

i + cjiω
′i
)
∧ ω′j ,

where bji , c
j
i ∈ R. For all j = 1, · · · , n we take

ωj =

n∑
i=1

(
bjiγ

i + cjiω
′i
)
, µj =

n∑
i=1

bjiγ
i.

The set {γj | j = 1, ..., n} is a basis of the dual space F ∗ of F . In fact, if an element
x ∈ F satisfies γj(x) = 0, for all j, then the linear forms i(x)θ vanish identically,
and it follows from the non-degeneracy of θ that x = 0. The linear forms µj are
independent in F ∗, and consequently they form a basis of F ∗. The linear forms ωj

are independent in E∗, the system (
ωj , ω′j)

1≤j≤n

is a basis of E∗, and we have:

θ =

n∑
j=1

ωj ∧ ω
′j .

Let (ei, e
′
i)1≤i≤n be a basis of E having

(
ωj , ω′j)

1≤j≤n
for a dual basis. The bases

f1, · · · , fn, g1, · · · , gn and (ei, e
′
i)1≤i≤n are related by:

fi = bjiej ; gi = cjiej + e′i.

This proves, in particular, that the vectors ej belong to F , and that F = kerω
′1 ∩ · ·

· ∩ kerω′n. �

Let E be a linear space of dimension 2n equipped with a polarized symplectic
structure (θ, F ).

The automorphisms of E which preserve (θ, F ) is a Lie group, denoted by Sp(1, n;E),
and called a polarized symplectic group of E.

Let Sp(1, n;R) be the group of matrices of polarized symplectic automorphisms of
E expressed in the polarized symplectic basis (ei, e

′
i)1≤i≤n of E. The group Sp(1, n;R)

consists of all matrices of the type(
A C

0
(
A−1

)T )
where A,C are matrices n×n with entries in R, A is invertible and ACT = CAT .

Proof. Let f ∈ Sp(1, n;E), and i.i′ = 1, · · ·, n. Write

f (ei) = aliel ; f(e′i) = bliel + cmi e
′
m,
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where, aji , b
j
i , c

j
i ∈ R, because each element of Sp(k, n;E) leaves invariant the linear

subspace F .
The relationship θ

(
f (ei) , f

(
e′j
))

= θ
(
ei, e

′
j

)
= δij implies that

θ
(
aliel, c

m
j e

′
m

)
= alic

m
j δlm = δij ,

so,
ATC = In,

where A =
(
aij
)
, B =

(
bij
)
and C =

(
cij
)
. Then the matrices A and C are

invertible and
C =

(
A−1

)T
.

Also, we have
θ
(
f (e′i) , f

(
e′j
))

= θ
(
e′i, e

′
j

)
= 0,

then
θ
(
bliel + cmi e

′
m, b

l′

j el′ + cm
′

j e′m′

)
= bm

′

i cm
′

j − cmi b
m
j ,

so,
BTC = CTB.

Then, the matrix of f with respect to the polarized symplectic basis is of the the
expected form. �

We denote by sp(1, n;E) the Lie algebra of the polarized symplectic group Sp(1, n;E).
sp(1, n;E) is identified with the tangent space of the Lie group Sp(1, n;E) in the iden-
tity mapping IdE of E; it consists of all endomorphisms u of E satisfying the relation

(∀x, y ∈ E) (u(F )⊆F, θ(u(x), y) + θ(x, u(y)) = 0) .

In terms of sets of matrices, we denote by sp(1, n;R) the Lie algebra of the polar-
ized symplectic group Sp(1, n;R).

The Lie algebra sp(1, n;R) consists of all matrices of the type(
A S
0 −AT

)
where A,S are n× n real matrices with S symmetric.

Proof. Let u ∈ sp(1, n;E), and i = 1, ..., n. Write

u (ei) = aliel

and
u (e′i) = bliel + cmi e

′
m.

The relationship θ (u(x), y) + θ (x, u(y)) = 0, for all x, y ∈ E, implies that: C = −AT

and BT = B. Then the matrix of u with respect to the polarized symplectic basis is
in the desired form. �

We observe that Sp(1, n;R) is of dimension n(3n+1)
2 .
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3 Polarized symplectic manifolds

All manifolds considered in this work are supposed to be smooth and connected.
LetM be a differentiable manifold of even dimension 2n equipped with a foliation

F of codimension n and let θ be a differential 2−form on M . We denote by E, the
sub-bundle of TM defined by the tangent vectors to the leaves of F.

Definition 3.1. We say that (θ, E) is a polarized symplectic structure on M , if: (i)
θ is closed. (dθ = 0); (ii) θ is nondegenerate. (iii) θ(X,Y ) = 0 for all X,Y ∈ Γ (E).

3.1 Examples

1. Polarized symplectic structure on the cotangent bundle. Let T ∗M be the cotan-
gent bundle of an n−dimensional manifold M and let πM : T ∗M −→ M the
natural projection of this fibration. It is well known that the total space of this
fibration, provided with the form θ = dλ is a symplectic manifold, λ being the
Liouville form on the cotangent bundle. Of course λ is defined by

〈Xu, λu〉 = 〈(πM )∗ (Xu) , ωx〉

for all u = (x, ωx) ∈ T ∗M, X ∈ Γ (T (T ∗M)). With respect to a local coordinate
system

(
U = (q1, . . . , qn, p1, . . . , pn)

)
of T ∗M over

(
U,ϕ = (q1, . . . , qn)

)
, we have

λU =

n∑
i=1

pidqi , θU =

n∑
i=1

dpi ∧ dqi.

The pair (θ;F), defined by the differential 2−form θ and the vertical foliation
given by the fibration πM , is a polarized symplectic structure on the cotangent
bundle T ∗M.

2. The spheres S2n don’t admit polarized symplectic structures for all n ≥ 1.

3. Symplectic polarized structure on hom
(
G,R2

)
. Let G be a real Lie algebra of

dimension n. Let (ei)1≤i≤n be a basis of G and
(
ωi
)
1≤i≤n

be its dual basis

and let hom
(
G,R2

)
= G∗ ⊗ R2 be the linear space of linear mappings from

G with values in R2 . The space hom
(
G,R2

)
is generated by linear mappings

ωi⊗e, ωi⊗f (1 ≤ i ≤ n), where
(
e, f
)
is the canonical basis of R2. Any element

u of hom
(
G,R2

)
is written in a unique form u =

∑n
i=1

(
xiω

i ⊗ e+ yiω
i ⊗ f

)
and

can be represented by the matrix(
x1 . . . xn
y1 · · · yn

)
where xi, yi are real numbers. We equip the space hom

(
G,R2

)
with the coordi-

nate system (xi, yi)1≤i≤n. It is clear that hom
(
G,R2

)
is a differentiable manifold

of dimension 2n. We endow naturally this space with the polarized symplectic
structure (θ,F), where

θ =

n∑
i=1

dxi ∧ dyi,
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and the foliation F is given by the equations dy1 = 0, · · · , dyn = 0.

Note that this structure does not depend on the Lie algebra law of G. The law
of G will appear in the study of polarized Poisson manifolds on hom

(
G,R2

)
.

3.2 Local model of a polarized symplectic structure

We have the Darboux’s theorem concerning polarized symplectic manifolds ([1],[3]):

Theorem 3.1. Let (M, θ,F) be a polarized manifold of dimension 2n. Then, for every
point p of M there is an open U of M containing p equipped with local coordinates
(xi, yi)1≤i≤n such that the differential forms θ is represented on U by

θ =

n∑
i=1

dxi ∧ dyi

and the foliation F is defined by the equations

dy1 = 0, ..., dyn = 0.

Proof. It follows from the Frobenius theorem that there exists a system of local coor-
dinates (x, y) =

(
x1, · · · , xn, y1, · · · , yn

)
defined on an open neighbourhood U of M

containing p such that the derivatives

∂

∂x1
, · · · , ∂

∂xn

generate the tangent space of the leaves at every point of U . The problem is of a
local nature, therefore we can assume that U is an open neighborhood of R2n and
p = 0. The two form θ is locally exact (Poincare’s lemma), then we can assume that
the differential forms θ can be written on the open set U in the form

θ = d

(
n∑

u=1

fudxu +

n∑
s=1

gsdy
s

)

where fu and gs are smooth functions on U ; thus

θ =
∑

u,v
∂fu

∂xv
dxv ∧ dxu +

∑n
u,t=1

∂fu

∂yt dy
t ∧ dxu

+
∑n

v,s=1
∂gs
∂xv

dxv ∧ dys +
∑n

t,s=1
∂gs
∂yt dy

t ∧ dys,

so,

θ =
∑

u<v

(
∂fv

∂xu
− ∂fu

∂xv

)
dxu ∧ dxv+

+
∑n

u,s=1

(
∂gs
∂xu

− ∂fu

∂ys

)
dxu ∧ dys +

∑
t<s

(
∂gs
∂yt − ∂gt

∂ys

)
dyt ∧ dys,

F is Lagrangian, then
∂fu

∂xv
=
∂fv

∂xu
,
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for all u, v = 1; · · · , n. For each i = 1, · · · , n, we put:

xi = gi −
n∑

u=1

xu∫
0

∂fu

∂yi
(0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ.

So,

xi = gi−
∫ x1

0
∂f1

∂yi (ξ, x2, · · · , xn, y) dξ

−
∫ x2

0
∂f2

∂yi (0, ξ, x3, · · · , xn, y) dξ
−

∫ x3

0
∂f3

∂yi (0, 0, ξ, x4, · · · , xn, y) dξ
− · · ·
−

∫ xn

0
∂fn

∂yi (0, 0, · · · , 0, ξ, y) dξ.

Then we have

∂xi

∂xv
= ∂gi

∂xv
−
∑v−1

u=1
∂

∂xv

∫ xu

0
∂fu

∂yi (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
− ∂

∂xv

∫ xv

0
∂fv

∂yi (0, · · · , 0, ξ, xv+1, · · · , xn, y) dξ.

But

∂
∂xv

∫ xu

0
∂fu

∂yi (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
=

∫ xu

0
∂2fu

∂xv∂yi (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
=

∫ xu

0
∂2fu

∂yi∂xv
(0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ

=
∫ xu

0
∂

∂xu

∂fv

∂yi (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
=

[
∂fv

∂yi (0, · · · , 0, ξ, xu+1, · · · , xn, y)
]xu

0
=

[
∂fv

∂yi (0, · · · , 0, xu, · · · , xn, y)− ∂fv

∂yi (0, · · · , 0, xu+1, · · · , xn, y)
]
.

Then

∂xi

∂xv
= ∂gi

∂xv
−
∑v−1

u=1

[
∂fv

∂yi (0, · · · , 0, xu, · · · , xn, y)− ∂fv

∂yi (0, · · · , 0, xu+1, · · · , xn, y)
]

−∂fv

∂yi (0, · · · , 0, xv, xv+1, · · · , xn, y)
= ∂gi

∂xv
− ∂fv

∂yi (x1, · · · , xn, y)
= ∂gi

∂xv
(x, y)− ∂fv

∂yi (x, y) .

On the other hand, we have

∂xs

∂yt − ∂xt

∂ys = ∂gs
∂yt −

(∑n
u=1

∫ xu

0
∂2fu

∂yt∂ys (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
)

− ∂gt
∂ys +

(∑n
u=1

∫ xu

0
∂2fu

∂ys∂yt (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
)

= ∂gs
∂yt − ∂gt

∂ys .

By the relationship

θ =
∑n

u,s

(
∂gs
∂xu

− ∂fu

∂ys

)
dxu ∧ dys +

∑
t<s

(
∂gs
∂yt − ∂gt

∂ys

)
dyt ∧ dys

and
∂xi

∂xv
=
∂gi
∂xv

(x, y)− ∂fv

∂yi
(x, y) ;

∂xs

∂yt
− ∂xt

∂ys
=
∂gs
∂yt

− ∂gt
∂ys

,
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we deduce that

θ =
∑n

v,i

(
∂gi
∂xv

− ∂fv

∂yi

)
dxv ∧ dyi +

∑n
t<s

(
∂xs

∂yt − ∂xt

∂ys

)
dyt ∧ dys

=
∑n

i=1

∑n
v=1

∂xi

∂xv
dxv ∧ dyi +

∑n
s,t

∂xs

∂yt dy
t ∧ dys

=
∑n

s=1

(
∂xs

∂xv
dxv +

∂xs

∂yt dy
t
)
∧ dys

=
∑n

s=1 dxs ∧ dys,

this proves that

θ =

n∑
i=1

dxi ∧ dyi.

It remains to show that the local Pfaffian forms dxi and dyi are linearly independent
at each point of U . For this, it suffices to show that the Pfaffian forms

ωs =

n∑
u=1

(
∂gs
∂xu

− ∂fu

∂ys

)
dxu

(s = 1, · · · , n) are linearly independent at each point of U. Let us show for this purpose

that the matrix B = (bus ) is invertible where b
u
s = ∂gs

∂xu
− ∂fu

∂ys . Let X = (X1, · · · , Xn) ∈
Rn such that BXt = 0. Then the local vector field

X = X1
∂

∂x1
+ · · ·+Xn

∂

∂xn

belongs to the characteristic subspace Cx (θ) at each point of U, i.e. i(X)θx = 0; the
non degeneracy of θ proves that X = 0, consequently, X = (0, · · · , 0); and we deduce
that the matrix B is invertible. �

Definition 3.2. The local coordinates systems (xi, yi)1≤i≤n constitute an atlas of
M , and the local coordinates systems (xi, yi)1≤i≤n are called adapted coordinates
systems.

Let (xi, yi)1≤i≤n and (xi, yi)1≤i≤n be two local adapted coordinate systems defined
on an open neighbourhood W of M such that

θW =

n∑
j=1

dxj ∧ dyj =
n∑

i=1

dxi ∧ dyi.

We have:

xi (x, y) , yi (y)

for all i, because these charts are foliated with respect to the foliation F.

Therefore,
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θW =
∑n

i=1 dxi ∧ dyi

=
∑n

i=1

(∑n
j=1

∂xi

∂xj dx
j + ∂xi

∂yj dy
j
)
∧
∑n

r=1
∂yi

∂yr dy
r

=
∑n

i=1

∑n
j,r=1

∂xi

∂xj
∂yi

∂yr dx
jdyr

+
∑n

i=1

∑n
j,r=1

(
∂xi

∂yj
∂yi

∂yr

)
dyjdyr

=
∑n

r=1

(∑n
j=1

∑n
i=1

∂xi

∂xj
∂yi

∂yr dx
j
)
dyr

+
∑n

i=1

∑
j<r

(
∂xi

∂yj
∂yi

∂yr − ∂xi

∂yr
∂yi

∂yj

)
dyjdyr

=
∑n

r=1 dxr ∧ dyr.

Then

∂xi

∂yj
∂yi

∂yr = ∂xi

∂yr
∂yi

∂yj ;

n∑
j=1

n∑
i=1

∂xi

∂xj
∂yi

∂yr
dxj = dxr,

so ∑n
i=1

∂xi

∂xr
∂yi

∂yr = 1∑n
i=1

∂xi

∂xj
∂yi

∂yr = 0 for j 6= r.

Then,
∂

∂xr

(∑n
i=1 x

i ∂y
i

∂yr

)
= 1

∂
∂xj

(∑n
i=1 x

i ∂y
i

∂yr

)
= 0 for j 6= r,

so, (∑n
i=1 x

i ∂y
i

∂yr

)
= xr + ϕr (y)∑n

i=1 x
i ∂y

i

∂yr = ψ(xr, y).

But

xi ∂y
i

∂yr
∂yr

∂ys = ∂yr

∂ys xr + ∂yr

∂ysϕr (y) ,

then

xi ∂y
i

∂ys = ∂yr

∂ys xr + ∂yr

∂ysϕr (y)

so,
xiδ i

s =
∂yr

∂ys xr + ∂yr

∂ysϕr (y)

consequently, {
xs = ∂yr

∂ys xr +
∂yr

∂ysϕr (y) = ∂yr

∂ys xr + φr (y)

ys = ys (y) .

The expressions of these changes of coordinates in this atlas allow to deduce the
following theorem:

Proposition 3.2. The Lagrangian foliation F is affine.

This means that any leaf of the foliation F is equipped with a structure of lo-
cally affine manifold. This theorem has been proved by several authors through the
connection of R. Bott ([11] [5]). The non degeneracy of θ allows us to see that the
mapping

ζ : TM −→ T ∗M, v 7−→ i(v)θ
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is an isomorphism of vector bundles over M , and consequently, ζ defines an isomor-
phism from X (M) onto A 1(M).

We denote by µ : A 1(M) −→ X (M) the inverse isomorphism of ζ, and for each
α ∈ A 1(M), we denote by Xα, the vector field on M associated with α by this
isomorphism: µ (α) = Xα.

Let TM/E be the quotient bundle

TM/E =
∪

x∈M

TxM/Ex , ν : TM −→ TM/E = νE

and let ν∗E be the dual bundle of νE:

ν*E =
∪

x∈M

ν*Ex =
∪

x∈M

(TxM/Ex)
*.

The mapping ζ induces an isomorphism of vector bundles from E onto ν*E.
In terms of local coordinates, (x1, . . . , xn, y1, . . . , yn), ν*E is spanned by the Pfaf-

fian forms dy1, · · · , dyn and ζ expresses the duality ∂
∂xi 7−→ dyi between the geometry

along the leaves and the transverse geometry of F.
Recall that, [12], a real function f ∈ C∞ (M) is said to be basic, if for any vector

field Y tangent to F, the function Y (f) is identically zero. We denote by A 0
b (M,F)

the subring of C∞ (M) which consists of all basic functions.
We recall also, that a vector field X ∈ X(M) is said to be foliate, or that it is an

infinitesimal automorphism of F, if in the neighborhood of any point of M , the local
one parameter group associated to X leaves the foliation F invariant. We denote by
I (M,F) the space of all foliate vector fields.

For each vector field X tangent to F, the Pfaffian form α = ζ (X) belongs to the
annihilator Ann (E) of E.

4 Polarized Hamiltonian Vector Fields

Definition 4.1. A vector field X ∈ X(M) is said to be locally polarized Hamiltonian
if: (i) X is foliate; (ii) the Pfaffian form ζ(X) is closed.

We denote by H0 (M,F) the real linear space of locally polarized Hamiltonian
vector fields

H0 (M,F) = {X ∈ I (M,F) | d(ζ(X)) = 0} .

An element X ∈ I (M,F) is called a polarized Hamiltonian vector field if the
Pfaffian form ζ(X) is exact. We denote by H (M,F) the real linear space which
consists of all polarized Hamiltonian vector fields.

The image ζ(H(M,F)) is a linear subspace of A1(M). We take

H(M,F) = d−1 (ζ(H(M,F))) ,

where d is the exterior differentiation operator.

Proposition 4.1. For all H ∈ C∞ (M), the following are equivalent:

1. H ∈ H(M,F).
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2. there is a unique polarized vector field XH ∈ H(M,F) such that: i (XH) θ =
ζ(XH) = −dH.

Let X be a locally polarized Hamiltonian vector field. In a neighborhood U of an
arbitrary point of M , equipped with a local coordinate system (xi, yi)1≤i≤n, there is
a mapping H ∈ C∞ (U) such that ζ(X) = −dH. And consequently, the equations of
the motion of X are given by the following differential system, called the Hamilton’s
equations of X: 

dxi

dt = − ∂H
∂yi

dyi

dt = ∂H
∂xi

∂H
∂xi ∈ A 0

b (M).

Locally, the expressions of H and X are

H =

n∑
j=1

aj(y
1, ..., yn)xj + b(y1, ..., yn)

and

X = −
n∑

s=1

 n∑
j=1

xj
∂aj
∂ys

+
∂b

∂ys

 ∂

∂xs
+

n∑
j=1

aj
∂

∂yj

respectively, where aj , b ∈ A 0
b (U,FU ).

A real function on M is said to be locally affine on the foliation F if its restriction
on each leaf of F is locally affine function.

From the Hamilton equations we deduce the following proposition:

Proposition 4.2. For each H ∈ C∞ (M), the following properties are equivalent:

1. H ∈ H(M ;F);

2. H is locally affine function on the foliation F.

Corollary 4.3. H(M ;F) is the set a(M ;F) of all smooth real functions on M which
are locally affine functions on the foliation F:

H(M ;F) = a(M ;F).

Each element of H(M,F) is called a polarized Hamiltonian mapping and XH is
called the polarized Hamiltonian vector field associated with the polarized Hamilto-
nian H.

So, we have a mapping,

ρ : H(M,F) −→ H(M,F); H 7−→ XH ,

between polarized Hamiltonians and associated polarized Hamiltonian vector fields,
and also the following commutative diagram:

H(M,F)
ζ−→ A 1(M)

↖ ↗
ρ H(M,F) −d
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5 Polarized Poisson structures subordinate to a po-
larized symplectic structure

The hypotheses and notations are those of the preceding paragraph.

Let H,K∈ H(M,F) and XH , XK the associated polarized Hamiltonian vector
fields. Then the Lie bracket [XH , XK ] is a polarized Hamiltonian vector field and it
is associated with {K,H} = θ (XH , XK) i.e. [XH , XK ] = X{K,H}.

The mapping (H,K) 7−→ {H,K} from H(M,F) × H(M,F) into H(M,F), defines
a real Lie algebra structure on H(M,F), and satisfies in addition the Leibniz identity
with respect to polarized Hamiltonian mappings. {H,K} is called the polarized Pois-
son bracket of the polarized HamiltoniansH andK and the Lie algebra (H(M,F), {, })
is called polarized Poisson structure subordinate to the polarized symplectic structure
(θ, E).

Proposition 5.1. We have the following properties:

1. A 0
b (M) is an abelian Lie subalgebra of H(M,F).

2. H (M,F) is a real Lie algebra.

3.
[
H0 (M,F) ,H0 (M,F)

]
⊂ H (M,F).

4. H (M,F) is an ideal of H0 (M,F).

5. The sequence of Lie algebras:

0 −→ R −→ H(M,F)
−ρ−→ H (M,F) ↪→ H0(M,F) −→ H0 (M,F) /H(M,F) −→ 0

is exact.

Let (H(M,F), {, }) be the polarized Poisson structure subordinate to the polarized
symplectic structure (θ, E). Let P be the natural Poisson tensor associated with
symplectic form θ:

P (α, β) = −θ (Xα, Xβ)

for all α, β ∈ A 1(M).

Proposition 5.2. We have the following properties:

1. P (dH, dK) = {H,K} ,∀H,K ∈ H(M,F).

2. P (dH, dK) = −XH(K), ∀H,K ∈ H(M,F).

3. P vanishes on the annihilator of E in the space A 1(M).

4. P is nondegenerate.

With respect to a Darboux’s local coordinates system (xi, yi)1≤i≤n, the bracket
{H,K} is given by
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{H,K}U =

n∑
i=1

(
∂H

∂yi
∂K

∂xi
− ∂H

∂xi
∂K

∂yi

)

=

n∑
i=1

(
∂

∂yi

)
∧
(

∂

∂xi

)
(dH, dK) .

So, we see that at every point of U we have

P = −
n∑

i=1

∂

∂xi
∧ ∂

∂yi
.

With respect to a local coordinate system (xi, yi)1≤i≤n, we have

P = −
n∑

i=1

∂

∂xi
∧ ∂

∂yi
.

Let H ∈ C∞ (M) such that XH ∈ I (M,F) then with respect to the coordinates
(xi, yi)1≤i≤n we have:

XH = Xi (x, y) ∂
∂xi + Y i (y) ∂

∂yi

= P (dH, .)

= P
(

∂H
∂xi dx

i + ∂H
∂yi dy

i; .
)

= ∂H
∂yi

∂
∂xi − ∂H

∂xi
∂

∂yi ,

then
∂H

∂yi
= Xi (x, y) and

∂H

∂xi
= −Y i (y)

so,

H = −
∑

Y j (y)xj ,

and

XH = −
∑

xj
∂Y j(y)

∂yi j

+ Y i (y)
∂

∂yi
.

We deduce the following result:

Proposition 5.3. H (M,F) is the set of differentiable mappings H ∈ C∞ (M) such
that the associated vector field XH preserve the foliation:

H (M,F) = {H ∈ C∞ (M) | XH ∈ I (M,F)} .

6 Associated Poisson structures with the polarized
symplectic structure on hom

(
G,R2

)
Let (G, [, ]) be a real Lie algebra of dimension n endowed with a basis (ei)1≤i≤n . Let(
ωi
)
1≤i≤n

its dual basis.
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We denote by Ck
ij the structural constants of G: [ei, ej ] = Ck

ijek.

We endow hom
(
G,R2

)
with the natural polarized symplectic structure (θ,F) de-

fined by the differential 2−form θ =
∑n

i=1 dx
i∧dyi and the foliation F defined by the

equations dy1 = 0, · · · , dyn = 0.
Every element X of hom

(
G,R2

)
can be written in the following form:

X =

n∑
i=1

(
xiωi ⊗ e+ yiωi ⊗ f

)
=

(
x1 . . . xn

y1 . . . yn

)
.

The linear mapping X : G−→R2 transforms u =
∑n

i=1

(
ujej

)
into

X (u) =

n∑
i=1

(
xiui

)
e+

n∑
i=1

(
yiui

)
f.

In terms of matrices we have

X (u) =

(
x1 . . . xn

y1 . . . yn

) u1
...
un

 .

The polarized Hamiltonians of the polarized symplectic structure are the differentiable
functions H ∈ C∞ (hom (G,R2

))
defined at X by expressions of the type

H (X) =

n∑
j=1

aj(y
1, ..., yn)xj + b(y1, ..., yn),

where a1, . . . , an, b are basic functions.
The Polarized Poisson bracket of Polarized Hamiltonians

H =

n∑
j=1

aj(y
1, ..., yn)xj + b(y1, ..., yn) ; K =

n∑
j=1

a′j(y
1, ..., yn)xj + b′(y1, ..., yn),

is given by

{H,K} =
∑n

i=1

(
∂H
∂yi

∂H
∂xi − ∂H

∂xi
∂K
∂yi

)
=

(
xj

∂aj

∂yi + ∂b
∂yi

)
a′i − ai

(
xj

∂a′
j

∂yi + ∂b′

∂yi

)
=

(
a′i

∂aj

∂yi
− ai

∂a′
j

∂yi

)
xj + a′i

∂b
∂yi − ai

∂b′

∂yi .

We use here the Einstein summation convention. The bracket, so defined, allows
to provide H

(
hom

(
G,R2

)
,F
)
with a polarized Poisson structure subordinate to the

real polarization (θ,F) .

7 The linear polarized Poisson structure of hom
(
G,R2

)
In addition to the Poisson structure subordinate to the real natural polarization on

hom
(
G,R2

)
, we can define another polarized Poisson structure

(
a
(
hom

(
G,R2

)
,F
)
; {, }L

)
,

so-called the linear polarized Poisson structure of (G, [, ]).
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Let H ∈ a
(
hom

(
G,R2

)
,F
)
, X ∈ hom

(
G,R2

)
and j1 : G∗ −→ hom

(
G,R2

)
be the

mapping defined by
j1(ω

i) = ωi ⊗ e.

The compososed mappings

G∗ j1−→ Hom
(
G,R2

) dHX−→ R

is completely defined by

(dHX ◦ j1)
(
ωi
)
= dHX

(
ωi ⊗ e

)
=
∂H

∂xi
(X) = ai,

consequently, dHX ◦ j1 =
∑n

i=1 aiei. We define

{H,K}L (X) = pr1 〈[dHX ◦ j1, dKX ◦ j1] , X〉

pr1 being the first projection (x, y) 7−→ x, R2 −→ R. Then,

{H,K}L (X) = pr1 〈[dHX ◦ j1, dKX ◦ j1] , X〉
=

∑n
i,j=1 pr1

⟨[
aiei, a

′jej
]
, X
⟩

=
∑n

i,j=1 pr1
⟨
aia

′
jC

k
ijek, X

⟩
=

∑n
i,j=1 aia

′
j

∑n
m=1 C

m
ij x

m

=
∑

1≤i<j≤n

∑n
m=1 C

m
ij

(
aia′j − aja′i

)
xm.

Proposition 7.1.
(
H
(
hom

(
G,R2

)
,F
)
; {, }L

)
is a polarized Poisson structure on

the foliated manifold
(
hom

(
G,R2

)
,F
)
, called the linear polarized Poisson structure

of the Lie algebra G.

We give here the linear polarized Poisson structures corresponding to simple ex-
amples.

1. G is abelian Lie algebra. In this case {, }L = 0; Consequently,
(
a
(
hom

(
G,R2

)
,F
)
; {, }L

)
is the abelian polarized Poisson structure.

2. G is the Heisenberg’s Lie algebra H1 of dimension 3. The Lie algebra law
of H1 is given by [e1, e2] = e3. And so for all H,K ∈ a

(
hom

(
H1,R2

)
,F
)

X ∈ hom
(
H1,R2

)
where, H (X) = ai

(
y1, y2, y3

)
xi+b

(
y1, y2, y3

)
and K (X) =

a′i
(
y1, y2, y3

)
xi + b′

(
y1, y2, y3

)
, we have

{H,K}L (X) = (a1a
′
2 − a2a

′
1)x

3.

8 Almost polarized symplectic structures

Let M be a differentiable manifold of dimension 2n. We say that M is an almost
polarized symplectic manifold if for every x ∈M the tangent space TxM is equipped
with a polarized symplectic structure of linear spaces

(θx, Fx).
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Of course, we assume that this structure is smooth, i.e., for every x0 ∈ M there
exist an open neighborhood Uo of x0 in M and a smooth cross-section (ωi, ω′i)1≤i≤n :
U0 −→ R∗ (U0) of the bundle of coframes of M such that

θP|U0
=

n∑
i=1

ωi ∧ ω′i, F|U0
= kerω′1 ∩ ... ∩ kerω′n.

A linear connection π on an almost polarized symplectic manifold is adapted to
the almost polarized symplectic structure if, with respect to an adapted cross-section
of the bundle of coframes of M , the connection form takes its values in the polarized
symplectic Lie algebra sp(1, n;R); in other words, the components of the connection
(πu

v ) =
(
αi
j , β

i
j , σ

i
j , γ

i
j

)
with respect to an adapted cross-section satisfy

βi
j = 0 ; σi

j = σj
i , γij = −αj

i

Let ω be the fundamental form of frames bundle R (M) .

The components T a of the torsion T of the linear connection are related to those
of the connection form (πu

v ) and the fundamental form ω of the frames bundle by the
relation

Tu = dωu + πu
v ∧ ωv.

An almost polarized symplectic structure on a 2n−dimensional manifold M is
equivalent to a given G−structure with G = Sp(1, n;R). Such a Sp(1, n;R)−structure
is integrable if this almost polarized symplectic structure corresponds to a polarized
symplectic structure. Consequently we can return to the calculation of the Bernard’s
tensor in order to integrate this G−structure. But the vanishing of this tensor is
equivalent to the existence of an adapted connection without torsion. Therefore we
are going to study the problem of the existence of such a connection. Recall the
following theorem:

Theorem 8.1. ([4],[15]) If a G−structure on a differentiable manifoldM is integrable
then the Bernard’s tensor vanishes identically.

The reverse is false in the general case. In the case of an almost polarized sym-
plectic structure there is an equivalence between the integrability and the vanishing
of this tensor (or the existence of an adapted connection without torsion).

The almost polarized symplectic structure is integrable, if and only if, about every
point of M we can find a coordinate neighborhood U with a local coordinate system
(xi, yi)1≤i≤n, such that

θ|U =

n∑
i=1

dxi ∧ dyi and F|U = ker dy1 ∩ ... ∩ ker dyn.

Theorem 8.2. Let M be a 2n−dimensional manifold equipped with an almost po-
larized symplectic structure such that the distribution x 7−→ F (x) is integrable. Then
the almost polarized symplectic structure is integrable if and only if the manifold M
admits an adapted connection without torsion.
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Proof. Let π be an adapted connection without torsion. Then for any adapted cross-
section (ωi, ω′i)1≤i≤n, we have

dωj = −(αj
s ∧ ωs + σj

s ∧ ω′s) and dω′j = =γjs ∧ ω′s.

The differential of θ vanishes, in fact we have

dθ = =αj
s ∧ ωs∧ω′j − σj

s ∧ ω′s∧ω′j + ωj ∧ γjs ∧ ω′s = 0.

It results from the Darboux’s theorem that every point of M has a coordinate neigh-
borhood U with coordinate system (xi, yi)1≤i≤n, such that

θ|U =

n∑
i=1

dxi ∧ dyi and F|U = ker dy1 ∩ ... ∩ ker dyn.

�

Remark 8.1. An integrable Sp(1, n;R)−structure is of infinite type because the Lie
algebra sp(1, n;R) contains a matrix of rank 1.
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[4] D. Bernard, Sur la géométrie différentielle des G-structures, Ann. de l’Institut
Fourier, 10 (1960), 151-270.
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