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Abstract. This paper deals with almost pseudo Ricci symmetric mani-
folds admitting W2−curvature tensor. We determine several properties of
these manifolds and give an example for the existence of such manifolds
satisfying certain conditions.
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1 Introduction

In the late twenties, because of the important role of symmetric spaces in differential
geometry, Cartan [2], who, in particular obtained a classification of those spaces
established Riemannian symmetric spaces.

Let (Mn, g) be an n-dimensional Riemannian manifold with the metric g and let
∇ be the Levi-Civita connection of (Mn, g). A Riemanian manifold is called locally
symmetric [2] if ∇R = 0, where R is the Riemannian curvature tensor of (Mn, g).
This condition of local symmetric is equivalent to the fact that every point pϵMn, the
local geodesic symmetry F (p) is an isometry [18]. The class of Riemannian symmetric
manifolds is very natural generalization of the class of manifolds of constant curvature.

During the last five decades the notion of locally symmetric manifolds have been
weakended by many authors in several ways to a different extend such as conformally
symmetric manifolds by Chaki and Gupta [5], recurrent manifolds introduced by
Walker [27], conformally recurrent manifolds by Adati and Miyazawa [1], conformally
symmetric Ricci-recurrent spaces by Roter [17], pseudo-Riemannian manifolds with
recurrent concircular curvature tensor by Olszak and Olszak [23], semi-symmetric
manifolds by Szabo [3], pesudo symmetric manifolds introduced by Chaki [25], weakly
symmetric manifolds by Tamassy and Binh [22], projective symmetric manifolds by
Soos [6], etc.

The Einstein equations [18], imply that the energy-momentum tensor is of van-
ishing divergence. This requirement is satisfied [6] if the energy- momentum tensor
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is covariant-constant. In the paper [6], Chaki and Ray had shown that a general
relativistic spacetime with covariant-constant energy-momentum tensor is Ricci sym-
metric, that is, ∇S = 0 where S is the Ricci tensor of the spacetime. If however
∇S ̸= 0, then such a spacetime may be called pseudo Ricci symmetric. It can be
said that the Ricci symmetric condition is only a special case of the pseudo Ricci
symmetric condition. It is, therefore, meaningful to study the properties of pseudo
Ricci symmetric spacetimes in general relativity.

Let Q be the symmetric endomorphism corresponding to the Ricci tensor as indi-
cated below

S(X,Y ) = g(QX,Y ),

for all vector fields X and Y.
A non-flat Riemannian manifold is called pseudo Ricci symmetric and denoted by

(PRS)n if the Ricci tensor S of type (0, 2) of the manifold is non-zero and satisfies
the condition

(1.1) (∇ZS)(X,Y ) = 2A(Z)S(X,Y ) +A(X)S(Y,Z) +A(Y )S(X,Z),

where ∇ denotes the Levi-Civita connection and A is a non-zero 1−form such that

(1.2) g(X, ρ) = A(X),

for all vector fields X, ρ being the vector field corresponding to the associated 1−form
A. If in (1.1), the 1−form A = 0, then the manifold reduces to Ricci symmetric
manifold or covariantly constant

(1.3) (∇ZS)(X,Y ) = 0.

The notion of pseudo Ricci symmetry is different from that of R. Deszcz [12].
So, the pseudo Ricci symmetric manifolds have some importance in general the-

ory of relativity. By this motivation, Chaki and Kawaguchi [7] generalized the pseudo
Ricci symmetric manifolds and introduced the notion of almost pseudo Ricci sym-
metric manifold as

(1.4) (∇ZS)(X,Y ) = [A(Z) +B(Z)]S(X,Y ) +A(X)S(Y, Z) +A(Y )S(X,Z),

where A and B are two non-zero 1−forms and ∇ denotes the operator of the covariant
differentiation with respect to the metric g. In such a case, A and B are called
the associated 1−forms and an n−dimensional manifold of this kind is denoted by
A(PRS)n.

If B = A, then the equation (1.3) reduces to (1.1), that is, A(PRS)n reduces
to a pseudo Ricci symmetric manifold [4]. Thus, pseudo Ricci symmetric manifold
is a particular case of A(PRS)n. In 1993, Tamassy and Binh [26] introduced the
notion of weakly Ricci symmetric manifold which is the generalization of pseudo Ricci
symmetric manifold in the sense of Chaki. It may be mentioned that an A(PRS)n
is not a particular case of a weakly Ricci symmetric manifold introduced by Tamassy
and Binh [26].

Let g(X, ρ) = A(X) and g(X,Q) = B(X) for all X. Then ρ,Q are called ba-
sic vector fields of the manifold corresponding to the associated 1−forms A and B,
respectively.
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Almost pseudo Ricci symmetric manifolds on some structures have been studied
by many authors such as De and Gazi [9], Shaikh, Hui and Bagewadi [21], De, Özgür
and De [8], Hui and Özen Zengin [14], De and Mallick [10], De and Pal [11], Kırık
and Özen Zengin [15], etc.

A non-flat Riemannian manifold (Mn, g), (n > 2) is called generalized recurrent
if the Ricci tensor S is non-zero and satisfies the condition

(1.5) (∇ZS)(X,Y ) = A(Z)S(X,Y ) +B(Z)g(X,Y ),

where A and B are non-zero 1−forms [20]. If the associated 1−form B becomes zero,
then the manifold reduces to a Ricci recurrent, i.e

(1.6) (∇ZS)(X,Y ) = A(Z)S(X,Y ).

In a Riemannian manifold, the Ricci tensor is called Codazzi type if the following
condition holds:

(1.7) (∇ZS)(X,Y ) = (∇XS)(Y, Z).

2 The W2− curvature tensor

In 1970, Pokhariyal and Mishra [19] introduced a new tensor, called W2, in a Rieman-
nian manifold and studied their properties. According to them [19], a W2− curvature
tensor on a manifold (Mn, g), (n > 3) is defined by

(2.1) W2(X,Y, Z, U) = R(X,Y, Z, U) +
1

n− 1
[g(X,Z)S(Y, U)− g(Y,Z)S(X,U)].

The W 2−curvature tensor on some special manifolds has been examined by many
authors such as Taleshian and Hosseinzadeh [24], Özen Zengin [28], Hui [13], Mallick
and De [16], etc. The object of the present paper is to study W 2−curvature tensor
field in an almost pseudo Ricci symmetric manifold. The paper is organized as follows:
Section 3 is concerned with W 2−flat A(PRS)n.

In Section 4, the A(PRS)n admitting W2−curvature tensor is studied. In this
section, a necessary and sufficient condition is found for W2−curvature tensor to be
divergence-free. After that, the conditions for which the contracted W 2 tensor of type
(0, 2) is recurrent, Codazzi type and covariantly constant are examined. In section 5,
we give an example for the existence of A(PRS)n admitting W 2−curvature tensor.

3 W2−flat A(PRS)n

In this section, we denote the contracted W2−curvature tensor which is type of (0, 2)
as W̄2 and call it W2−Ricci tensor. Now, contracting (2.1) over X and U, we obtain
the contracted W2 tensor, i.e., W2−Ricci tensor

(3.1) W̄2(X,Y ) =
n

n− 1

[
S(X,Y )− r

n
g(X,Y )

]
.

If we assume that our manifold is W2−flat, then from (2.1)

(3.2) S(X,Y ) =
r

n
g(X,Y ).
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Assuming that our manifold (Mn, g) is A(PRS)n admitting W2 curvature tensor,
from (3.2) we get

(3.3) (∇ZS)(X,Y ) =
1

n
(∇Zr)g(X,Y ).

Putting (1.4) and (3.2) in (3.3), we obtain

(3.4) (∇Zr)g(X,Y ) = r[(A(Z) +B(Z))g(X,Y ) +A(X)g(Y,Z) +A(Y )g(X,Z)].

Contracting (3.4) over X and Y, we infer

(3.5) n(∇Zr) = r[(n+ 2)A(Z) + nB(Z)].

Again, contracting (3.4) over X and Z, then we have

(3.6) (∇Zr) = r[(n+ 2)A(Z) +B(Z)].

Then, comparing (3.5) and (3.6), we get

r[(n+ 2)A(Z) + nB(Z)] = nr[(n+ 2)A(Z) +B(Z)].

Since r ̸= 0, we have from the above equation A(Z) = 0. Thus, we have the following
theorem:

Theorem 3.1. W2−flat A(PRS)n reduces to a recurrent manifold with the recurrence
vector field generated by the 1−form B.

4 A(PRS)n admitting non-zero W2−Ricci tensor

Now, we assume that our manifold A(PRS)n is of non-zero W2−curvature tensor.
By taking the covariant derivative of (3.1), we get

(4.1) (∇ZW̄2)(X,Y ) =
n

n− 1

[
(∇ZS)(X,Y )− 1

n
(∇Zr)g(X,Y )

]
.

Provided that our manifold is A(PRS)n, if we contract (1.4) over X and Y , then we
obtain

(4.2) (∇Zr) = [A(Z) +B(Z)]r + 2A(QZ).

By putting (1.4) and (4.2) in (4.1), we can found

(4.3)

(∇ZW̄2)(X,Y ) =
n

n− 1
{[A(Z) +B(Z)]S(X,Y ) +A(X)S(Y,Z) +A(Y )S(X,Z)

− r

n
[A(Z) +B(Z)]g(X,Y )− 2

n
A(QZ)g(X,Y )}.

Now, contracting (4.3) over X and Z, we get

(4.4) (divW̄2)(Y ) =
n

n− 1

[(
n− 1

n

)
(2A(QY ) + rA(Y )) +B(QY )− r

n
B(Y )

]
.



94 Füsun Özen Zengin and Ecem Bektaş

If we assume that W̄2 is divergence-free, then from (4.4)

(4.5)
n

n− 1

[(
n− 1

n

)
(2A(QY ) + rA(Y )) +B(QY )− r

n
B(Y )

]
= 0.

If r
n is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q where

g(X,Q) = B(X), then − r
2 is an eigenvalue of the Ricci tensor S corresponding to

the eigenvector ρ where g(X, ρ) = A(X). Conversely, if the equation (4.5) holds then
from (4.4), W2−Ricci tensor is divergence-free. Thus, we have the following theorem:

Theorem 4.1. For an A(PRS)n, a necessary and sufficient condition the contracted
W2 curvature tensor W̄2 be divergence free is that − r

2 and r
n be eigenvalues of the

Ricci tensor S corresponding to the eigenvectors ρ and Q where g(X, ρ) = A(X) and
g(X,Q) = B(X), respectively.

Let W̄2 be reccurent, i.e., from (1.6)

(4.6) (∇ZW̄2)(X,Y ) = α(Z)W̄2(X,Y ),

where α is a 1−form. Using (3.1) and (4.3) in (4.6), it can be found that

(4.7)

α(Z)[S(X,Y )− r

n
g(X,Y )] = [A(Z)+B(Z)]S(X,Y )+A(X)S(Y, Z)+A(Y )S(X,Z)

− r

n
[A(Z) +B(Z)]g(X,Y )− 2

n
A(QZ)g(X,Y ).

If we contract (4.7) over X and Z, then we have

(4.8) α(QZ)− r

n
α(Z) =

(n− 1)

n
[2A(QZ) + rA(Z)] +B(QZ)− r

n
B(Z).

This leads to the following result:

Theorem 4.2. In an A(PRS)n, let us assume that W2−Ricci tensor is recurrent
with the recurrence vector generated by the 1−form α. If r

n is an eigenvalue of the
Ricci tensor S corresponding to the eigenvectors both Q and µ where g(X,Q) = B(X),
g(X,µ) = α(X) then − r

2 is an eigenvalue of the Ricci tensor S corresponding to the
eigenvector ρ where g(X, ρ) = A(X).

If we take α(Z) = A(Z) in (4.8), we find(
2− n

n

)
A(QZ)−A(Z)r = B(QZ)− r

n
B(Z).

If r
n is an eigenvalue of the Ricci tensor S corresponding to the eigenvector Q then

n
2−nr is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ. Thus
we have the following theorem:

Theorem 4.3. In an A(PRS)n, let us consider that W2−Ricci tensor is recurrent
with the recurrence vector generated by the 1−form A. A necessary and sufficient
condition for r

n be an eigenvalue of the Ricci tensor S corresponding to the eigenvector
Q where g(X,Q) = B(X) is that n

2−nr (n > 2) be an eigenvalue of the Ricci tensor
S corresponding to the eigenvector ρ where g(X, ρ) = A(X).
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Now, by taking α(Z) = B(Z) in (4.8), we obtain

(4.9) A(QZ) = −r

2
A(Z).

If we differentiate the equation (4.9), then we can find

(4.10) (∇XA)(QZ) = −1

2
[(∇Xr)A(Z) + r(∇XA)(Z)].

By using (1.4), (4.2) and (4.9) in (4.10), we get

|A|A(Z)r = 0.

If r ̸= 0 then from the above equation, A(Z) must be 0. Thus, we have the following:

Theorem 4.4. An A(PRS)n admitting W2−Ricci tensor which is recurrent with the
recurrence vector generated by the 1− form B cannot be exist.

Let us assume that W̄2 is generalized recurrent. Thus, from (1.5)

(∇ZW̄2)(X,Y ) = α(Z)W 2(X,Y ) + γ(Z)g(X,Y ).

Using (3.1) and (4.3) in the above equation and contracting over X and Y, we get

nγ(Z) = 0.

Hence, γ(Z) = 0. Thus, we have the following theorem:

Theorem 4.5. An A(PRS)n admitting W2−Ricci tensor which is generalized recur-
rent cannot be exist.

If r is a non-zero constant, then (4.1) reduces to

(4.11) (∇ZW 2)(X,Y ) =
n

n− 1
(∇ZS)(X,Y ).

Using (1.4) and (4.11), we get
(4.12)

(∇ZW̄2)(X,Y ) =
n

n− 1
[(A(Z) +B(Z))S(X,Y ) +A(X)S(Y, Z) +A(Z)S(X,Y )].

If W̄2 is Codazzi type, from (1.7) and (4.12)

B(Z)S(X,Y )−B(Y )S(X,Z) = 0.

By contracting the above equation over X and Y , we have

(4.13) B(Z)r = B(QZ).

In this case, we infer:

Theorem 4.6. In an A(PRS)n admitting constant scalar curvature, if W2−Ricci
tensor is Codazzi type then r is an eigenvalue of the Ricci tensor S corresponding to
the eigenvector Q where g(X,Q) = B(X).



96 Füsun Özen Zengin and Ecem Bektaş

If we assume that r is a non-zero constant and W̄2 is covariantly constant, then

(4.14) (∇ZS)(X,Y ) = 0.

Hence from (1.4) and (4.14), we get

(4.15) [A(Z) +B(Z)]r + 2A(QZ) = 0.

Finally, we obtain from (4.15)

(4.16) A(QZ) = −r

2
[A(Z) +B(Z)],

and further obtain the following:

Theorem 4.7. If an A(PRS)n admits constant scalar curvature and covariantly
constant W2−Ricci tensor then the Ricci tensor is covariantly constant and A(Z) and
B(Z) are related by

A(QZ) = −r

2
[A(Z) +B(Z)].

Let us assume that r is a non-zero constant and W̄2 is Codazzi type. If we take
the covariant derivative of (4.13), then we get

(4.17) (∇XB)(QZ) = r(∇XB)(Z).

By using (1.4) and contracting over X and Z in (4.17), we find

(4.18) r|B|(3⟨A,B⟩+ |B|) = 0,

where ⟨ , ⟩ is the inner product. If r ̸= 0 and |B| ̸= 0 in (4.18), we obtain

(4.19) ⟨A,B⟩ = −|B|
3

.

Since we know that ⟨A,B⟩ = |A||B| cos θ, from (4.19), we get

|A| cos θ = −1

3
where

π

2
< θ ≤ π.

Therefore, we can state the following:

Theorem 4.8. If an A(PRS)n with non-zero constant scalar curvature is of Codazzi
type W2−Ricci tensor then the angle between the vector fields generated by the 1-
forms A and B is

θ = arccos

(
− 1

3|A|

)
.

Thus, θ is in (π2 , π] where |A| is the length of the vector field generated by the
1−form A.
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5 An example for the existence A(PRS)n
admitting W2− Curvature tensor

In this section we want to construct an example of an four-dimensional almost pseudo
Ricci symmetric manifold with constant scalar curvature and W̄2 tensor. In local
coordinates, let us consider a Riemannian metric g on R4 with coordinates (x1, x2,
x3, x4) by

(5.1) ds2 = gijdx
idxj = ex

1

(dx1)2 + ex
2

(dx2)2 + (dx3)2 + (sinx3)2(dx4)2.

Then the only non vanishing components of the Christoffel symbols and curvature
tensors are, respectively,

Γ1
11 = Γ2

22 =
1

2
, Γ3

44 = − sinx3 cosx3, Γ4
43 = cotx3,

and
R3

443 = −(sinx3)2, R3
443 = −1

and the components obtained by the symmetry properties. The non-vanishing com-
ponents of the Ricci tensors are

(5.2) S33 = −1, S44 = −(sinx3)2.

It can be shown that the scalar curvature r of (R4, g) is −2. By using (3.1), (5.1) and
(5.2), we get the only non-vanishing components of W̄2 are

(5.3) W̄11 =
2

3
ex

1

, W̄22 =
2

3
ex

2

, W̄33 = −2

3
, W̄44 = −2

3
(sinx3)2.

By taking the covariant derivatives of each of W ij tensors in (5.3), we find that
W ij,k = 0 for all i, j, k. This shows that W ij are covariantly constant. In this case,
by taking the covariant derivatives of S33 and S44 and by using (5.2), we obtain that
Sij,k = 0 for all i, j, k. Let us choose the 1−forms A and B as

(5.4) A = ex
1+x2

+ ex
3+x4

and

(5.5) B = −ex
1+x2

+ 2ex
3+x4

.

Now, by taking the derivatives of (5.4) and (5.5), we get

Ai =

{
ex

1+x2

, i = 1, 2

ex
3+x4

, i = 3, 4
(5.6)

and

Bi =

{
−ex

1+x2

, i = 1, 2

−2ex
3+x4

, i = 3, 4 .
(5.7)
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With the help of (5.1), (5.2), (5.6) and (5.7), the equations

A1R11 = − r
2 (A1 +B1), A2R22 = − r

2 (A2 +B2)

A3R33 = − r
2 (A3 +B3), A4R44 = − r

2 (A4 +B4)

are satisfied. From these results, it is clear that (R4, g) given by (5.1) is an A(PRS)n
satisfying Theorem 4.7. Thus, we can state the following:

Theorem 5.1. Let us consider a Riemannian metric g on R4 given by

ds2 = gijdx
idxj = ex

1

(dx1)2 + ex
2

(dx2)2 + (dx3)2 + (sinx3)2(dx4)2.

Assume that this manifold is an A(PRS)n with the constant scalar curvature and
covariantly constant W ij tensor. If we choose the 1− forms A and B as follows:

A = ex
1+x2

+ ex
3+x4

and B = −ex
1+x2

+ 2ex
3+x4

,

then Theorem 4.7 holds.
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