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Abstract. The object of the present paper is to study a-para Kenmotsu
Ricci solitons of dimension three. It is shown that an a-para Kenmotsu
Ricci soliton of dimension three is expanding and a manifold endowed
with such a soliton is manifold of constant negative curvature. It is also
established that for an a-para Kenmotsu Ricci soliton, if the potential
vector field V' is pointwise collinear with £, then V is constant multiple
of £&. It is proved that if an a-para Kenmotsu Ricci soliton of dimension
three is gradient Ricci soliton corresponding to the potential function f,
then either Df = 0 or D f is collinear with the Reeb vector field &.
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1 Introduction

The theory of almost contact and almost para contact manifolds is an important
branch of research. Almost contact manifolds are of prime importance due to its
significant applications in geometric optics, thermodynamics and string theory. Ricci
and other geometric flows ([4], [5]) were introduced in Mathematics by Hamilton [9]
and in Physics by Friedan [7] around almost in the same time, though with differ-
ent motivations. More recently, such geometric flows have become popular, largely,
because of Perelman’s [13] work which lead to the proof of the well-known Poincare
Conjecture. The notion of Ricci soliton was introduced by Hamilton [9]. This is con-
sidered as a natural generalization of Einstein metric and is defined on a Riemannian
manifold (M, g) by

(1.1) (£vg)(X,Y)+25(X,Y) +209(X,Y) =0,

where £y denotes the Lie derivative operator along the vector field V. V' is known as
potential vector field. It is assumed that V is complete. Here A is a constant, called
soliton constant. S is the Ricci tensor and g is the metric. X,Y are the arbitrary
vector fields on M. A Ricci soliton can be considered as a fixed point of Hamilton’s
Ricci flow:

0

a7
Batkan Journal of Geometry and Its Applications, Vol.23, No.1, 2018, pp. 100-112.
© Balkan Society of Geometers, Geometry Balkan Press 2018.

= 25,




On «a-para Kenmotsu 3-manifolds with Ricci solitons 101

viewed as a dynamical system on the space of Riemannian metrics modulo diffeomor-
phisms and scaling. The Ricci soliton is said to be shrinking, steady or expanding
according as A is negative, zero or positive respectively. If the vector field V is the
gradient of a potential function —f, then g is called a gradient Ricci soliton. Ricci
solitons have been studied in the papers [3], [8], [15], [14].

Para contact geometry is now an active branch of research. For some important
works on para contact geometry we refer [12], [11], [16], [18], [19], [21]. Ricci solitons
on para contact manifolds have been studied in [1].

In this paper we study a-para Kenmotsu manifolds of dimension three with Ricci
solitons. The present paper is organized as follows:

After the introduction, we give the required preliminaries in Section 2. In Section
3, we show that an a-para Kenmotsu Ricci soliton of dimension three is expanding,
and a manifold endowed with such a soliton is manifold of constant negative curvature.
It is also established that for an a-para Kenmotsu Ricci soliton, if the potential vector
field V' is point wise collinear with &, then V is constant multiple of £&. In Section
4, we prove that if an a-para Kenmotsu Ricci soliton of dimension three is gradient
Ricci soliton corresponding to the potential function — f, then either Df = 0 or D f
is collinear with the Reeb vector field £. The last section contains an example.

2 Preliminaries

Let M be a 2n + 1-dimensional differentiable manifold. Let ¢ be a 1-1 tensor field, £
a vector field and n a 1-form on M. Then (¢, &, n) is called an almost para contact
structure on M if

(2.1) 92X = X —n(X)e.

The tensor field ¢ induces an almost paracomplex structure on the distribution D =
kern, that is, the eigen distributions DT, D~ corresponding to the eigen values 1, -1
of ¢, respectively, have equal dimension n.

The manifold M is said to be almost paracontact manifold if it is endowed with
an almost paracontact structure [2], [6], [16], [18]. An almost para contact manifold
is called an almost paracontact metric manifold if it is additionally endowed with a
pseudo-Riemannian metric g of signature (n + 1,n) and such that

(2.2) 9(¢X,0Y) = —g(X,Y) + n(X)n(Y)
for all X,Y € x(M). For almost para contact metric manifolds, we readily obtain
(2.3) 9(X, ) =n(X), n)=1 ¢£=0, n(¢)=0.

The fundamental skew-symmetric 2-form @ is defined by #(X,Y) = g(X, ¢Y). Note
that n A @™ is, up to a constant factor, the Riemannian volume element of M. On an
almost paracontact manifold, one defines the (2,1)- tensor field N by

(2.4) NWD(X,Y) = [6,6)(X,Y) - 2dn(X,Y ),
where [, ¢] is the Nijenhuis torsion of ¢ given by

(2.5) [0, 0)(X,Y) = ¢?[X, Y] + [6X, 0V ] — $[¢X, Y] — ¢[X, ¢Y].
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If N vanishes identically, then the almost paracontact manifold is said to be normal.
The normality condition says that the almost paracomplex structure J defined on
M x R by

d d
T(X,A2) = (@X +2¢n(X) )

is integrable.

Our interest is on three dimension, because, sometimes the three dimensional
results are strikingly different for higher dimensions. In the following we mention
two important results from [19]. For a three-dimensional almost para contact metric
manifold M, the following three conditions are mutually equivalent

(a) M is normal,

(b) there exist functions «, 8 on M such that

(2.6) (Vx@)Y = B(g(X,Y)E = n(Y)X) + alg(¢X, Y)E = n(Y)9X),
(c) there exist functions «, 8 on M such that
(2.7) Vx§=a(X —n(X)E) + foX.

Here V is the Levi-Civita connection of g. The functions «, 8 appearing in the above
equations are given by

(2.8) 2a = Trace{X — Vx¢&}, 28 = Trace{X — ¢V xE}.

A three-dimensional normal almost para contact metric manifold is said to be

e paracosymplectic if « = 8 =0,

e quasi-para Sasakian if and only if & = 0 and 8 # 0,

e [(-para Sasakian if and only if & = 0 and (8 is constant, in particular para
Sasakian if g = —1.

e a-para Kenmotsu if « is a non-zero constant and 8 = 0.

Recently, the Riemann curvature tensor of a three-dimensional a-para Kenmotsu
manifold is deduced by K. Srivastava and S. K. Srivastava [16]. The Ricci tensor of a
three-dimensional a-para Kenmotsu manifold is given by

(2.9) S(XY) = (5 +a%)g(X,Y) = (5 +3aDm(X)n(Y),

where « is a constant and r is the scalar curvature of the manifold. The Riemann
curvature tensor of a three-dimensional a-para Kenmotsu manifold is given by

RXY)Z = (4 +2)[(Y.2)X - g(X.2)Y]

— (5 +3a%)[g(Y. 2)n(X) — g(X, Z)n(Y )¢

(2.10) + (g +30?)[n(X)Y —n(Y)X]n(2).
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3 «a-para Kenmotsu 3-manifolds with Ricci solitons

Theorem 3.1. As a Ricci soliton, an a-para Kenmotsu 3-metric is expanding.

Proof. Consider an a-para Kenmotsu 3-manifold which admits a Ricci soliton. From
the commutativity of Lie derivative and covariant derivative [20], we obtain

(£vVxg—Vx£Lyvg—Vixy9)Y,Z)
= o((EvVXY).2) — g((£vV)(X. 2).Y).
The above equation can also be written as
(31 (Vxbvg),2) = g((£v9)(XY), Z) + g((£v V)X, 2), 7).
Differentiating (1.1) and using it in (3.1) it can be shown that
(32)  g((£vVIXY),Z) = (V28)(X,Y) — (VxS)(Y Z) ~ (Vv S)(X, 2)

by permutation of X,Y,Z and necessary straight forward computations. Let {e;},
1 =1,2,3 be an orthonormal basis of the tangent space at each point of the manifold.
Putting X =Y = ¢;, and taking summation over i, we get from (3.2)

(33) (.£VV)(€Z',€Z') =0.
In view of (1.1) and (2.9), it follows that
(3.4) (Lvg)(Y, Z) = =(r +20° + 2))g(Y, Z) + (r + 60*)n(Y)n(Z).

Differentiating both sides of (3.4) along the vector field X, we get

(VxLvg)(V,2) = —dr(X)(g(Y,2) = n(¥)n(Z))
+ (r+6a?)n(Y)(Vxn(Z) = n(Vx2))
(3.5) + (r+6a%)n(2)(Vxn(Y) = n(VxY)):

Since V is Levi-Civita connection, we have

(Vxg)(Y.€) = 0.
The above equation implies
(3.6) Vxn(Y) = n(VxY) = a(g(X,Y) = n(X)n(Y)).
Using (3.5) and (3.6) in (3.1), we get
(v Y),2) +9((£vV)(X,2).Y)
= —dr(X)(9(v,2) = n(¥)n(2))

(87 + alr+6a®)(g(X,Y)(Z) + (X, 2)(¥) = 2(X)n(Y)n(2)).
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Interchanging X,Y, Z cyclically, in the above equation we obtain
g((£vV)(¥,2), X) + g ((£v V)Y, X), 2)
= —dr(v)(9(2,X) = n(X)n(2))
(38)  + alr+6)(g(ZY)(X) + g(X,V)(Z) - (XY n(Z)).

Again interchanging X,Y, Z cyclically in (3.8), we have

9((£v¥)(2,X),Y) +g((£v V(2 7). X)
= —dr(2)(9(X,Y) = n(X)n(¥))
(39) 4 al+6)(g(X, 2)n(Y) +g(Y, ZIn(X) = 20(X (¥ )n(Z) ).

Subtracting (3.9) from (3.8), we have

g((£v9)(¥.%),2) = g((£v9)(2,X),Y)
~dr(Y)(9(2,X) = n(X)n(2))
dr(2)(9(X,Y) = n(X)n(¥))

(3.10) + alr+60%)(g(X,Y)(Z) - g(X, Z)n(Y)).

+

Addition of (3.7) and (3.10) yields
20((£v V). X), 2) = —dr(X)(g(Y.2) = n(Z)n(Y))
— dr(V)(9(X, 2) = n(Z)n(X))
+ dr(2)(g(X,Y) = n(X)n(V))
+ 20 +60%)(9(X, Y )n(2)
(3.11) — (X )(Z)).

Since dr(Z) = g(gradr, Z), we have from above

29((£yV)Y.X),2) = dr(X)(g(Y.2) = n(Z)n(Y))
— dr(V)(9(X,2) = n(Z)n(X))
(

+
~

( n(Y) )g(gradr, Z)
+ 2a(r+6a%)(g(X. Y)n(2)

(3.12) - n(X)n(Y)n(Z))-
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Comparing both sides of the above equation, we obtain
ALy V)Y, X) = —dr(X)(Y —n(¥)¢)
— dr(V)(X - n(x)g)
+ (90X, V) = n(X)n(¥)) gradr
(3.13) + 2a(r +60%)(g(X, V)€~ n(X)n(Y)E).

In the above equation putting X =Y = e; and taking summation over 4

22?:1(£VV)(ei, €;) —QZledr(ei)ei + 2gradr
4a(6a® + 7)€

2dr(£)¢ + 4a (60 + 1)E.

+ +

(3.14)

In view of (3.3) and (3.14), we get
(3.15) &r +2a(6a* +1) = 0.

In (3.13) putting X = £, it follows that

(3.16) 2(£LvV)(Y,€) = —dr(£)4?Y.

It is well known that (£1/V) is a symmetric tensor of type (1,2). Its covariant deriva-
tive is given by [20]

(Vx£yV)(Y,Z) = Vx(£vV(Y,Z)) - £LvV(VxY,Z)
(3.17) ~ £yV(Y,VxZ).

Putting Z = ¢ in (3.17) and using (3.16) and (2.7) for a-para Kenmotsu case and the
fact that (LvV)(Y, fZ) = f(£LyV)(Y, Z) for a scalar valued function f, we obtain

2AVx£vV)(V.6) = (Vx(e)s?Y
+ agr(g(X, V)¢ +n(V)X
(3.18) = n(X)Y = n(X)n(¥)E).
Again, it is well known that [20]
(3.19) (£vR)(X,Y)Z = (vvav) Y, Z) - (vy£vv) (X, Z).
In (3.19) putting Z = £ and using (3.18), we obtain
ALvRX,Y)E = —(Vx(er)6?Y + (Vy(€r)o*X

(3.20) + 2a(er) (n(Y)X - n(X)Y).
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From (2.10), we get
(3.21) R(X,Y)E = a? (n(X)Y - n(Y)X).
It is well known that

(LvR)(X,Y)Z = £yR(X,Y)Z—R(£yX,Y)Z - R(X, £yY)Z
R(X,Y)£v Z.

Putting Z = ¢ in the above equation and using (3.21) we have
(3:22) (£ R)(X, V)¢ = —R(X,Y) £v€ + a2 ((£yn)(X)Y = (£ym)(¥)X).
In (3.4) putting Z = £, we obtain
(3.23) (Lyvn)(Y) = (Y, £v€) +2(20% = (),
By virtue of (3.22) and (3.23), it follows that
(LVvRNXY)E = —R(X,Y)£vE+ 20220 = 2) (n(X)Y - n(¥)X)
(3:24) + a2(g(X, £vOY — g(V. £vE)X ).
By virtue of (2.1), (3.20) and (3.24)
~(X (€M) (Y = n()¢) + (v (gm) (X = n(x)e)
+ 2a(&n) (n(YV)X = n(X)Y)

= 2R(X,Y)LyE+4a? (202 — \) (n(X)Y - n(Y)X)

Taking inner product in both sides with respect to X, we get

—X(€r)g(Y, X) + X(Er)n(Y )n(X) + Y (€r)g(X, X)
— Y (E)n(X)n(X) - 2(67) (n(V)g(X, X) = n(X)g(Y, X))

= —29(R(X,Y)£vE X)) +40%(20% = X) (n(X)g(Y, X) = n(¥Y)g(X, X))

+ 2a(g(X7 £Lv&)g(Y,X) —g(Y, £v§)g(X7X))~

Taking X =Y = e;, where {e;}, i = 1,2, 3 is an orthonormal basis with e3 = £ of the
tangent space of the manifold, we get after simplification from the above equation

Y (&r) - (£(&r) + dagr +8a%(20% = 1) ()
(3.25) — 25(Y, £v€) — 4a”g(Y, £v€) = 0.
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Using (2.9) in (3.25), we have

(r+6a)g(Y, £v€) — (r+60*)n(Y)n(£yvE)
(3.26) = Y(&r) — E(Er)m(Y) — 4(2a2(2a2 )+ agr)n(y)

The equation (3.26) is true for all Y. Putting Y = ¢ in the above equation, we obtain
(3.27) —2£(¢r) — dakr — (2042(2a2 - )\)) =0.

Using (3.15) in (3.27), we get

(3.28) A =202

Hence, the theorem follows. O

Theorem 3.2. If the metric of a three-dimensional a-para Kenmotsu manifold is a

Ricci soliton, then the manifold is of constant negative curvature —a?.

Proof. Let {e1, ¢e1,&} be an orthonormal ¢-basis of the tangent space at any point
of the manifold. Putting Y = e; in (3.26), it follows that

(3.29) r=—6a’
Thus by virtue of (2.10) we obtain the theorem. ]

Theorem 3.3. If in a three-dimensional a-para Kenmotsu manifold, the metric is
Ricci soliton and V' is point wise collinear with &, then V is constant multiple of &
and consequently & is complete.

Proof. In (1.1) putting Y = &, using (2.7) for a-para Kenmotsu manifold, and using
(2.9) and (3.28), we have

Lyn(X) = g(VvX,6) +g(VxV, &) —ag(X,V)
+ an(V)n(X) +g(X,VeV) =0.

Let V be pointwise collinear with &.
i.e., V=0, for a function b on the manifold.
Then the above equation yields

£eyn(X) —bg(Ve X, §) +bg(VxE,§)
+ Vg(£,€) — ag(X, bE)
+  an(bE)n(X) +bg(X,Ve) +0'g(X,€) = 0.

Putting X = £ in the above equation, we get b’ = 0, consequently b=constant and
¢ is a constant multiple of V. By definition V is compact. So, we the theorem is
proved.

|
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4 Gradient Ricci solitons

Theorem 4.1. If a a-para Kenmotsu Ricci soliton of dimension three is gradient
Ricci soliton corresponding to the potential function —f, then either f is constant or
Df is collinear with the Reeb vector field &.

Proof. A Ricci soliton is called gradient Ricci soliton if the vector field V' is the
gradient of a potential function — f. If the Ricci soliton is gradient Ricci soliton, then
(1.1) is of the form [10], [17]

(4.1) VVf=5+\g.
The above equation reduces to
(4.2) VyDf =QY + XY,

where D is the gradient operator of g and @ is Ricci operator. From (4.2) it follows
that

(4.3) R(X,)Y)Df = (VxQ)Y — (VyQ)X.
From (2.9), we have

OX = (g Fa?)X - (g +3a2)n(X)E.

Differentiating the above equation with respect to W, we get after simplification

(14 (TwQX = T (x (X)) ~ (& +307) (Vwn) (X ~ n(X) V).
In (4.4) putting W = &, we obtain
(Ve@)X = T (X —n(x)2).
The above equation implies
(45) H(VeQ)X ~ (TxQ)E.E) =0,
Using (4.5) in (4.3), we get
(4.6 o(R(E. X)D.€) = .

By (2.10), we have

9(R(&, X)Df,€) = —2a*(g(Y, Df) — n(Y)n(Df)).

Using (4.6) in the above equation, we obtain for e # 0

9(Y, Df) = n(Y)n(Df).

The above equation gives

(4.7) Df = (£f)€.
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From (4.2), we get

Using (4.7) in the above equation, we have
(4.8) S(X,Y) + Ag(X,Y) = Vy (§f/In(X) +£fg(VyE, X).

Using (2.7) for a-para Kenmotsu manifold, we obtain

(4.9) S(X,Y) + Ag(X,Y) = Vy (Ef)n(X) + a(§f)g(¢X, ¢Y).
In (4.9), putting X = &, we have

(4.10) S, &) + M) = Vy(£f)

By (2.9), we obtain from above

(4.11) (A =22°)n(Y) = Vy (£f).

Using (3.28) in the above equation, it follows that

(4.12) Uy (£f) = 0.

By (4.12) and (4.9)
(4.13) QY + Y = —a(f)¢°Y.

Applying (4.2) in the above equation, we have
(4.14) VyDf = al€f) (Y ) - V).
By virtue of (4.14), it follows that
R(X,Y)Df = Vx(a&Hm(V)E-Y))
Vy (aleh)m(x)g - X))
— aleh) (nIx, YDE - 1X,Y]).

Putting X = £ and using (2.7) for a-para Kenmotsu manifold, we get after simplifi-
cation

REY)Df = ((a)(&f)m(YV)E+ a(ef)Ven(Y)E
+ APEfIMYE = Ealef)Y — (€)Y
(4.15) — a&NHm(VeY) + afn(Vy €.
By (2.10)

REYIDf = (4 +20%)(9(v, D)~ n(DFY)
— (5 +30) (V. DF) —n(2)n(Y) )¢

(4.16) - (g +3a?) (Y - n(Y)é“)n(Df)~
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By (3.29), (4.15) and (4.16), it follows that
a(€f)Ven(Y)E+a®(€f)n(Y)E — a*(Ef)Y
— al&fn(VeY)E+ al&f)n(VyE)E
(4.17) = —a*(g(¥;DNE = n(DS)Y).
Replacing Y by @Y in the above equation, we get —a?(£f)pY — a(Ef)n(VepY)E =

—a? (g(¢Y7 Df)¢— n(Df)(bY). Taking inner product in both sides of the above equa-

tion with &, we get
a’g(¢Y,Df) =0.

Putting Y = ¢ D f in the above equation, we have
g(Df, Df) =n(Df)n(Df) = 0.
If Df # 0, the above equation gives
1~ ((Df)? =0,

Hence, n(Df) = 1. So, Df is collinear with £. If Df = 0, then f is constant. Thus

we complete the proof.
O

5 Example

Consider M3 = R? x R_ C R?® with the standard cartesian coordinates (z,y, z).
Define the almost para contact structure (¢, &, 1) on M3 by

pler) = ez,  Plea) =e1, Ple3) =0, E=e3, n=dz,

where

_9 _9 _9
T By 62_8y7 “= 0z

are linearly independent at each point of M?3. Let the metric g be defined by
glei,e3) = g(ea, e3) = g(e1, e2) =0, g(e1,e1) = exp(2z),
glez,e2) = exp(—-22),  g(es,e3) = 1.
By Koszul formula, we have
Ve, €3 = €1, Ve,e2 =0, Ve, e1 = —exp(2z)es,
Ve263 = €2, v8262 = eXp(2Z)e3, Vezel =0,
Veses =0, Vese2 = e, Vese1 = er.

Using the above results, we get M3 is an a-para Kenmotsu manifold [16] for a = 1.
The non vanishing components of the curvature tensor are

R(ey,e3)er = exp(2z)es, R(e1,e2)ea = exp(2z)eq,



On a-para Kenmotsu 3-manifolds with Ricci solitons 111

R(e1,e2)er = exp(2z)e2, R(e2,e3)e2 = —exp(2z)es,

R(€1,€3)63 = —e€1, R(€2763)e3 = —es.

The non vanishing component of the Ricci tensor is

S(e1,e1) = exp(2z)(exp(2z) — 1).

If we choose V = (exp(2z) + 1)es + e35, A =2, then

(£vg)(er,e1) +2S(er,e1) + Agler,er) = 0.

Hence g is Ricci soliton. Thus we obtain an example of 1-para Kenmotsu Ricci soliton.
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