The new Minkowski norm and integral formulas for a manifold endowed with a set of one-forms

Vladimir Rovenski

Abstract

Integral formulas are the power tool for obtaining global results in Analysis and Geometry. We explore the problem: Find integral formulas for a closed manifold endowed with a set of linearly independent 1 -forms (or vector fields). In our recent works in common with P. Walczak, the problem was examined for a manifold endowed with a codimensionone foliation and a 1 -form β, using approach of Randers norm. Continuing this study, we introduce new Minkowski norm, determined by Euclidean norm α, linearly independent 1 -forms $\beta_{i},(1 \leq i \leq p)$ and a function ϕ of p variables; this produces a new class of "computable" Finsler metrics generalizing Matsumoto's (α, β)-metric. The geometrical meaning of our Minkowski norm is that its indicatrix is a rotation hypersurface with the axis $\bigcap_{i=1}^{p}$ ker β_{i} passing through the origin. We explore a Riemannian structure, naturally arising from this norm and a codimensionone distribution $\operatorname{ker} \omega$ of 1 -form $\omega \neq 0$, and find the second fundamental form of $\operatorname{ker} \omega$ through invariants of $\alpha, \omega, \beta_{i}$ and ϕ. Then we apply the above to prove new integral formulas for a closed Riemannian manifold endowed with a codimension-one distribution and linearly independent 1forms β_{i}, $(1 \leq i \leq p)$, which generalize the Reeb's integral formula and its counterpart for the second mean curvature of the distribution.

M.S.C. 2010: 53C12, 53 C 21.

Key words: Riemannian metric; Minkowski norm, 1-form; shape operator; mean curvature; Ricci curvature; integral formula.

Integral formulas are the power tool for obtaining global results in Analysis and Geometry (e.g. generalized Gauss-Bonnet theorem and Minkowski-type formulas for submanifolds). Such formulas are usually proved applying the Divergence theorem to appropriate vector field. The first known integral formula by G. Reeb [10], for a closed Riemannian manifold (M, a) endowed with a 1-form $\omega \neq 0$ tells us that the total mean curvature H of the distribution $\operatorname{ker} \omega$ vanishes:

$$
\begin{equation*}
\int_{M} H \mathrm{~d} \mathrm{vol}_{a}=0 \tag{0.1}
\end{equation*}
$$

thus, either $H \equiv 0$ or $H(x) H\left(x^{\prime}\right)<0$ for some points $x \neq x^{\prime}$. Its counterpart (6.1) for the second mean curvature of a codimension one foliation (see [9]) has been used to estimate the energy of a vector field [3] and to prove that codimension-one foliations with negative Ricci curvature are far from being totally umbilical [6]. Recently, these were extended into infinite series of integral formulas including the higher order mean curvatures of the leaves and curvature tensor, see [1, 7, 11]. The integral formulas for foliations can be used for prescribing the mean curvatures of the leaves, e.g. characterizing totally geodesic, totally umbilical and Riemannian foliations.

We explore the problem: Find integral formulas for a closed Riemannian manifold endowed with a set of linearly independent 1-forms (or vector fields). The "maximal number of pointwise linearly independent vector fields on a closed manifold" is an important topological invariant; such vector fields on a sphere S^{l} are built using orthogonal multiplications on \mathbb{R}^{l+1}.

In $[12,13]$, the problem was examined for (M, a) endowed with 1 -forms $\omega \neq 0$ and β, using approach of Randers norm, that is a Euclidean norm α shifted by a small vector. In the paper we extend this approach for (M, a) with the codimension-one distribution ker ω and p linearly independent 1 -forms $\beta_{1}, \ldots, \beta_{p}$, by introducing new Minkowski norm, generalizing (α, β)-norm of M. Matsumoto, see [8]. Remark that navigation (α, β)-norms appear when $p=2$. The (α, β)-metrics form a rich class of computable Finsler metrics and play an important role in geometry, see [2, 8, 14, 17], thus we expect that our so called $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-metrics will also find many applications.

The paper contains an introduction and six sections. In Section 1 we introduce and explore the $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm, determined by Euclidean norm α, linearly independent 1-forms $\beta_{1}, \ldots, \beta_{p}$ and a function ϕ of p variables; the indicatrix is a rotational hypersurface with p-dimensional rotation axis. The norm produces a class of "computable" Finsler metrics generalizing Matsumoto's (α, β)-metric. In Sections $2-4$ we study a new Riemannian structure, naturally arising on M endowed with $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-metric with $\overrightarrow{\boldsymbol{\beta}}=\left(\beta_{1}, \ldots, \beta_{p}\right)$ and 1-form $\omega \neq 0$, and calculate the second fundamental form of the distribution ker ω through invariants of $\alpha, \omega, \beta_{i}$ and ϕ. Sections 5-6 contain applications to proving new integral formulas for a closed M endowed with a codimensionone distribution $\operatorname{ker} \omega$ and a set of linearly independent 1-forms, which generalize the Reeb's formula (0.1) and its counterpart for the second mean curvature of the distribution. Using our norm and assuming for simplicity $p=1$, we get new estimates of the "non-umbilicity" of a codimension-one distribution and the energy of a vector field.

1 The $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm

In this section, we define a new Minkowski norm, generalizing the (α, β)-norm of M. Matsumoto.

A Minkowski norm on a vector space $V^{m+1}(m \geq 1)$ is a function $F: V \rightarrow[0, \infty)$ with the properties of regularity, positive 1-homogeneity and strong convexity [14]:
$\mathrm{M}_{1}: F \in C^{\infty}(V \backslash\{0\}), \quad \mathrm{M}_{2}: F(\lambda y)=\lambda F(y)$ for $\lambda>0$ and $y \in V$,
M_{3} : For any $y \in V \backslash\{0\}$, the following symmetric bilinear form is positive definite:

$$
\begin{equation*}
g_{y}(u, v)=\frac{1}{2} \frac{\partial^{2}}{\partial s \partial t}\left[F^{2}(y+s u+t v)\right]_{\mid s=t=0} \tag{1.1}
\end{equation*}
$$

By $\mathrm{M}_{2}-\mathrm{M}_{3}, g_{\lambda y}=g_{y}(\lambda>0)$ and $g_{y}(y, y)=F^{2}(y)$. As a result of M_{3}, the indicatrix $S:=\{y \in V: F(y)=1\}$ is a closed, convex smooth hypersurface that surrounds the origin.

The following symmetric trilinear form is called the Cartan torsion for F :

$$
\begin{equation*}
C_{y}(u, v, w)=\frac{1}{4} \frac{\partial^{3}}{\partial r \partial s \partial t}\left[F^{2}(y+r u+s v+t w)\right]_{\mid r=s=t=0} \tag{1.2}
\end{equation*}
$$

where $y, u, v, w \in V$ and $y \neq 0$. Note that $C_{y}(u, v, y)=0$ and $C_{\lambda y}=\lambda^{-1} C_{y}$ for $\lambda>0$. Vanishing of a 1-form $I_{y}(u)=\operatorname{Tr}_{g_{y}} C_{y}(u, \cdot, \cdot)$, called the mean Cartan torsion, characterizes Euclidean norms among all Minkowski norms, see e.g. [14].
Definition 1.1. Given $p \in \mathbb{N}$ and $\delta_{i}>0(1 \leq i \leq p)$, let $\phi: \Pi \rightarrow(0, \infty)$ be a smooth function on $\Pi=\prod_{i=1}^{p}\left[-\delta_{i}, \delta_{i}\right]$, and $a(\cdot, \cdot)=\langle\cdot, \cdot\rangle$ a scalar product with the Euclidean norm $\alpha(y)=\langle y, y\rangle^{1 / 2}$ on a $(m+1)$-dimensional vector space V. Given linearly independent 1 -forms $\beta_{i}(1 \leq i \leq p)$ on V of the norm $\alpha\left(\beta_{i}\right)<\delta_{i}$, the $(\alpha, \overrightarrow{\boldsymbol{\beta}})$ norm (see below Lemma 1.3 on regularity) with $\overrightarrow{\boldsymbol{\beta}}=\left(\beta_{1}, \ldots, \beta_{p}\right)$ is defined on $V \backslash\{0\}$ by

$$
\begin{equation*}
F(y)=\alpha(y) \phi(s), \quad s=\left(s_{1}, \ldots, s_{p}\right), \quad s_{i}=\beta_{i}(y) / \alpha(y) \tag{1.3}
\end{equation*}
$$

Usually, we assume $\phi(0, \ldots, 0)=1$. We call α the associated norm (or metric).
The geometrical meaning of (1.3) is that the indicatrix of F is a rotation hypersurface in V with the axis $\bigcap_{i=1}^{p} \operatorname{ker} \beta_{i}$ passing through the origin, see below Proposition 1.1. For $p=1$, (1.3) defines the (α, β)-norm. By shifting the indicatrix of an (α, β)-norm, we obtain new Minkowski norms, called navigation (α, β)-norms, [17]. The indicatrix of this norm is still a rotation hypersurface, but the rotation axis does not pass the origin in general. Meanwhile, this is a case of $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm with $p=2$, whose indicatrix has a two-dimensional rotation axis passing through the origin.

The "musical isomorphisms" \sharp and b will be used for rank one and symmetric rank 2 tensors. For example, $\left\langle\beta_{i}^{\sharp}, u\right\rangle=\beta_{i}(u)=u^{b}\left(\beta_{i}^{\sharp}\right)$. We will use Einstein summation convention. Set

$$
b_{i j}=\left\langle\beta_{i}, \beta_{j}\right\rangle=\left\langle\beta_{i}^{\sharp}, \beta_{j}^{\sharp}\right\rangle .
$$

A Minkowski norm on V^{m+1} is Euclidean if and only if it is preserved under the action of $O(m+1)$. Next, we will clarify the geometric property about the indicatrices of $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-metrics.
Definition 1.2 (The symmetry of a Minkowski norm, see [17]). Let F be a Minkowski norm on V^{m+1} and G a subgroup of $G L(m+1, \mathbb{R})$. Then F is called G-invariant if the following holds for some affine coordinates $\left(y^{1}, \ldots, y^{m+1}\right)$ of V :

$$
\begin{equation*}
F\left(y^{1}, \ldots, y^{m+1}\right)=F\left(\left(y^{1}, \ldots, y^{m+1}\right) f\right), \quad y \in V, f \in G \tag{1.4}
\end{equation*}
$$

The next proposition for $p=1$ belongs to [17].
Proposition 1.1. Let F be a Minkowski norm and $\beta_{i}(1 \leq i \leq p)$ linearly independent 1 -forms on a vector space V^{m+1}. Then F is an $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm with $\overrightarrow{\boldsymbol{\beta}}=\left(\beta_{1}, \ldots, \beta_{p}\right)$ if and only if F is G-invariant, where $G=\left\{x \in G L(m+1, \mathbb{R}): x=\left(\begin{array}{cc}C & \mathbf{0} \\ \mathbf{0} & \operatorname{id}_{p}\end{array}\right), C \in\right.$ $G L(m-p+1, \mathbb{R})\}$.

Proof. Let $F=\alpha \phi\left(\frac{\beta_{1}}{\alpha}, \ldots, \frac{\beta_{p}}{\alpha}\right)$ be the $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm. Let $\left\{e_{1}, \ldots, e_{m+1}\right\}$ be an $\langle\cdot, \cdot\rangle$ orthonormal basis such that $\bigcap_{i=1}^{p} \operatorname{ker} \beta_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{m-p+1}\right\}$. Then $\beta_{i}(y)=$ $\sum_{j=m-p+2}^{m+1} \beta_{i}\left(e_{j}\right) y^{j}$ where

$$
F(y)=\sqrt{\left(y^{1}\right)^{2}+\ldots+\left(y^{m+1}\right)^{2}} \phi\left(\frac{\sum_{j=m-p+2}^{m+1} \beta_{1}\left(e_{j}\right) y^{j}}{\sqrt{\left(y^{1}\right)^{2}+\ldots+\left(y^{m+1}\right)^{2}}}, \ldots, \frac{\sum_{j=m-p+2}^{m+1} \beta_{p}\left(e_{j}\right) y^{j}}{\sqrt{\left(y^{1}\right)^{2}+\ldots+\left(y^{m+1}\right)^{2}}}\right)
$$

and $y=y^{i} e_{i}$. Hence, F is G-invariant.
Conversely, let F obey (1.4) for G and affine coordinates $y=\left(y^{1}, \ldots, y^{m+1}\right)$. If $p=m+1$ then for $G=\left\{\operatorname{id}_{m+1}\right\}$ one may take $\beta_{i}=e_{i}^{b}$ and use axiom M_{2}. Let $p \leq m$. By restricting F on the $(m-p+1)$-dimensional linear subspace U given by p equations $y^{m-p+2}=\ldots=y^{m+1}=0$, one obtains an $O(m-p+1)$-invariant Minkowski norm, which must be Euclidean. Thus, there exists $B>0$, such that the norm $\alpha(y)=B \sqrt{\left(y^{1}\right)^{2}+\ldots+\left(y^{m+1}\right)^{2}}$ on V obeys $\left.\alpha\right|_{U}=\left.F\right|_{U}$. Set

$$
\tilde{\phi}(y)=F(y) / \alpha(y) \quad(y \neq 0)
$$

Then $\tilde{\phi}$ is G-invariant, hence $\tilde{\phi}$ depends on p variables $y^{m-p+2}, \ldots, y^{m+1}$ only. Since $\tilde{\phi}$ is 0 -homogeneous, we have $\tilde{\phi}(y)=\tilde{\phi}\left(B y^{m-p+2} / \alpha(y), \ldots, B y^{m+1} / \alpha(y)\right)$, that is $\beta_{i}=B e_{m-p+1+i}^{b}$.

Define real functions $\rho, \rho_{0}^{i j}, \rho_{1}^{i}(1 \leq i, j \leq p)$ of variables $s=\left(s_{1}, \ldots, s_{p}\right)$, see also (1.3):

$$
\rho=\phi\left(\phi-\sum_{i} s_{i} \dot{\phi}_{i}\right), \quad \rho_{0}^{i j}=\phi \ddot{\phi}_{i j}+\dot{\phi}_{i} \dot{\phi}_{j}, \quad \rho_{1}^{i}=\phi \dot{\phi}_{i}-\sum_{j} s_{j}\left(\phi \ddot{\phi}_{i j}+\dot{\phi}_{i} \dot{\phi}_{j}\right)
$$

where $\dot{\phi}_{i}=\frac{\partial \phi}{\partial s_{i}}, \ddot{\phi}_{i j}=\frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}}$, etc. Assume in the paper that $\rho>0$, thus

$$
\phi-\sum_{i} s_{i} \dot{\phi}_{i}>0
$$

The following relations hold:

$$
\dot{\rho}_{i}=\rho_{1}^{i}, \quad \ddot{\rho}_{i j}=\left(\rho_{1}^{i}\right)_{j}^{\prime}=-s_{k}\left(\rho_{0}^{i k}\right)_{j}^{\prime} .
$$

Proposition 1.2. For $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm, the bilinear form $g_{y}(y \neq 0)$ in (1.1) is given by

$$
\begin{align*}
g_{y}(u, v) & =\rho\langle u, v\rangle+\rho_{0}^{i j} \beta_{i}(u) \beta_{j}(v) \\
& +\rho_{1}^{i}\left(\beta_{i}(u)\langle y, v\rangle+\beta_{i}(v)\langle y, u\rangle\right) / \alpha(y)-\beta_{i}(y) \rho_{1}^{i}\langle y, u\rangle\langle y, v\rangle / \alpha^{3}(y) \tag{1.5}
\end{align*}
$$

The Cartan tensor of $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm is expressed by

$$
\begin{align*}
2 C_{y}(u, v, w) & =\alpha^{-1}(y) \sum_{i} \rho_{1}^{i}\left(K_{y}(u, v) p_{y i}(w)+K_{y}(v, w) p_{y i}(u)+K_{y}(w, u) p_{y i}(v)\right) \\
& +\alpha^{-1}(y) \sum_{i, j, k}\left(\dot{\phi}_{i} \ddot{\phi}_{j k}+\dot{\phi}_{j} \ddot{\phi}_{i k}+\dot{\phi}_{k} \ddot{\phi}_{i j}+\phi \dddot{\phi}_{i j k}\right) p_{y i}(u) p_{y j}(v) p_{y k}(w) \tag{1.6}
\end{align*}
$$

where $p_{y i}=\beta_{i}-s_{i} y^{b} / \alpha(y)(1 \leq i \leq p)$ are 1 -forms and $K_{y}(u, v)=\langle u, v\rangle-$ $\langle y, u\rangle\langle y, v\rangle / \alpha^{2}(y)$ is the angular metric of the associated metric $a=\langle\cdot, \cdot\rangle$.

Proof. From (1.1) and (1.3) we find

$$
\begin{align*}
g_{y}(u, v) & =\left[F^{2} / 2\right]_{\alpha} K_{y}(u, v) / \alpha(y)+\left[F^{2} / 2\right]_{\alpha \alpha}\langle y, u\rangle\langle y, v\rangle / \alpha^{2}(y) \\
(1.7) & +\sum_{i}\left(\left[F^{2} / 2\right]_{\alpha \beta_{i}} / \alpha(y)\right)\left(\langle y, u\rangle \beta_{i}(v)+\langle y, v\rangle \beta_{i}(u)\right)+\sum_{i, j}\left[F^{2} / 2\right]_{\beta_{i} \beta_{j}} \beta_{i}(u) \beta_{j}(v) . \tag{1.7}
\end{align*}
$$

Calculating derivatives of $\frac{1}{2} F^{2}=\frac{1}{2} \alpha^{2} \phi^{2}\left(\beta_{1} / \alpha, \ldots, \beta_{p} / \alpha\right)$,

$$
\begin{align*}
& {\left[F^{2} / 2\right]_{\alpha}=\alpha \rho, \quad\left[F^{2} / 2\right]_{\beta_{i}}=\alpha \phi \dot{\phi}_{i}, \quad\left[F^{2} / 2\right]_{\alpha \beta_{i}}=\rho_{1}^{i}, \quad\left[F^{2} / 2\right]_{\beta_{i} \beta_{j}}=\rho_{0}^{i j}} \\
& {\left[F^{2} / 2\right]_{\alpha \alpha}=\rho+\left(\sum_{i} s_{i} \dot{\phi}_{i}\right)^{2}+\phi \sum_{i, j} s_{i} s_{j} \ddot{\phi}_{i j}} \tag{1.8}
\end{align*}
$$

and comparing (1.5) and (1.7), completes the proof of (1.5).
We calculate the Cartan tensor of ($\alpha, \overrightarrow{\boldsymbol{\beta}}$)-norm using (1.2) as

$$
\begin{align*}
2 C_{y}(u, v, w) & =\alpha^{-1}(y) \sum_{i}\left[F^{2} / 2\right]_{\alpha \beta_{i}}\left(K_{y}(u, v) p_{y i}(w)+K_{y}(v, w) p_{y i}(u)+K_{y}(w, u) p_{y i}(v)\right) \\
& +\sum_{i, j, k}\left[F^{2} / 2\right]_{\beta_{i} \beta_{j} \beta_{k}} p_{y i}(u) p_{y j}(v) p_{y k}(w) . \tag{1.9}
\end{align*}
$$

Then using equalities (1.8) and

$$
\left[F^{2} / 2\right]_{\beta_{i} \beta_{j} \beta_{k}}=\alpha^{-1}(y)\left(\dot{\phi}_{i} \ddot{\phi}_{j k}+\dot{\phi}_{j} \ddot{\phi}_{i k}+\dot{\phi}_{k} \ddot{\phi}_{i j}+\phi \dddot{\phi}_{i j k}\right)
$$

and comparing (1.9) and (1.6) completes the proof of (1.6).
Note that if $s_{i}=0(1 \leq i \leq p)$ then $\rho=1$. By Proposition 1.2, g_{y} (for small s_{i} and $\rho>0)$ of $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm can be viewed as a perturbed scalar product $\langle\cdot, \cdot\rangle$.

Define nonnegative quantities: $R_{1}=\max _{s \in \Pi}\left\|\boldsymbol{\rho}_{1}(s)\right\|$ - the maximal norm of the vector $\boldsymbol{\rho}_{1}=\left(\rho_{i}^{1}\right), R_{0}=\max _{s \in \Pi}\left\|\boldsymbol{\rho}_{0}(s)\right\|$ - the maximal norm of the symmetric matrix $\boldsymbol{\rho}_{0}=\left(\rho_{0}^{i j}\right)$, and $R=\min _{s \in \Pi} \rho(s)$, where $\Pi=\prod_{i=1}^{p}\left[-\delta_{i}, \delta_{i}\right]$ and $\delta_{i}>0$.

Lemma 1.3 (Regularity). Let $\delta_{0}:=\left(\delta_{1}^{2}+\ldots+\delta_{p}^{2}\right)^{\frac{1}{2}}$ obeys the following inequality:

$$
\begin{equation*}
\delta_{0}<\frac{2 R}{3 R_{1}+\sqrt{9 R_{1}^{2}+4 R R_{0}}} . \tag{1.10}
\end{equation*}
$$

Then F in (1.3) is a Minkowski norm on V.
Proof. Since $\alpha\left(\beta_{i}\right) \leq \delta_{i}(1 \leq i \leq p)$, the terms in (1.5) obey the inequalities when $y \neq 0$:

$$
\begin{aligned}
& \left|\rho_{0}^{i j} \beta_{i} \otimes \beta_{j}\right| \leq\left|\rho_{0}^{i j} \delta_{i} \delta_{j}\right| \leq R_{0} \delta_{0}^{2} \\
& \alpha^{-1}(y)\left|\rho_{1}^{i}\left(\beta_{i} \otimes y^{b}+y^{b} \otimes \beta_{i}\right)\right| \leq 2\left|\rho_{1}^{i} \delta_{i}\right| \leq 2 R_{1} \delta_{0} \\
& \alpha^{-3}(y)\left|\left(\beta_{i}(y) \rho_{1}^{i}\right) y^{b} \otimes y^{b}\right| \leq\left|\rho_{1}^{i} \delta_{i}\right| \leq R_{1} \delta_{0}
\end{aligned}
$$

Thus, $g_{y} \geq R-3 R_{1} \delta_{0}-R_{0} \delta_{0}^{2}$. The RHS of the last inequality (quadratic polynomial in $\left.\delta_{0} \geq 0\right)$ is positive if and only if $\delta_{0}<\frac{\sqrt{9 R_{1}^{2}+4 R R_{0}}-3 R_{1}}{2 R_{0}}$, that is (1.10) holds.

We restrict ourselves to regular $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norms alone, that is $\operatorname{det} g_{y} \neq 0(y \neq 0)$.

Let $\left\{e_{1}, \ldots, e_{m+1}\right\}$ be a basis of V. A scalar product (metric) a on V and similarly, the metric g_{y} for any $y \neq 0$, define volume forms by

Then

$$
\mathrm{d} \operatorname{vol}_{g_{y}}=\mu_{g_{y}}(y) \mathrm{d}_{\operatorname{vol}_{a}}
$$

for some function $\mu_{g_{y}}(y)>0$. Let $q_{k}=\left(q_{k}^{1}, \ldots, q_{k}^{p}\right) \in \mathbb{R}^{p}$ be unit eigenvectors with eigenvalues λ^{k} of the matrix $\left\{\rho_{0}^{i j}+\varepsilon^{-1} \rho_{1}^{i} \rho_{1}^{j}\right\}$. Define vectors $\tilde{\beta}_{k}=q_{k}^{i} \beta_{i}(1 \leq k \leq p)$. Then (1.5) takes the form

$$
\begin{equation*}
g_{y}(u, v)=\rho\langle u, v\rangle+\sum_{i} \lambda^{i} \tilde{\beta}_{i}(u) \tilde{\beta}_{i}(v)-\varepsilon \tilde{Y}(u) \tilde{Y}(v) \tag{1.11}
\end{equation*}
$$

which can be used to find $\mu_{g_{y}}(y)$.
Let $M^{m+1}(m \geq 2)$ be a connected smooth manifold with Riemannian metric $a=\langle\cdot, \cdot\rangle$ and the Levi-Civita connection $\bar{\nabla}$. We will generalize definition in [17] for $p=1$.
Definition 1.3. A general $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-metric F on M is a family of $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norms F_{x} in tangent spaces $T_{x} M$ depending smoothly on a point $x \in M$.

The study of a sphere S^{m+1} endowed with a general $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-metric (e.g., the bounds of curvature, and totally geodesic submanifolds) seem to be interesting and is delegated to further work.

2 The $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-modification of a scalar product

Let $\omega \neq 0$ be a 1 -form and $\beta_{1}, \ldots, \beta_{p}$ linear independent 1 -forms on a vector space V^{m+1} endowed with Euclidean scalar product $\langle\cdot, \cdot\rangle$. Let N be a unit normal to a hyperplane $W=\operatorname{ker} \omega$ in V,

$$
\langle N, v\rangle=0 \quad(v \in W), \quad\langle N, N\rangle=1
$$

If $W \neq \operatorname{ker} \beta_{i}(1 \leq i \leq p)$ then $\beta_{i}^{\sharp \top} \neq 0$ (the projection of β_{i}^{\sharp} onto W) and $\left|\beta_{i}(N)\right|<b_{i}$. For any Minkowski norm on V, there are two normal directions to W, opposite when this norm is reversible, see [15]. Hence, there is a unique α-unit vector $n \in V$, which is g_{n}-orthogonal to W and lies in the same half-space as N :

$$
g_{n}(n, v)=0 \quad(v \in W), \quad \alpha(n)=1, \quad\langle n, N\rangle>0
$$

Remark that $\nu=F(n)^{-1} n$ is a g_{n}-unit normal to W, where $F(n)=\alpha \phi(s)$, and we get $g_{n}(n, n)=\phi^{2}(s)$, where $s=\left(s_{1}, \ldots, s_{p}\right)$ and

$$
\begin{equation*}
s_{i}=\beta_{i}(n), \quad 1 \leq i \leq p \tag{2.1}
\end{equation*}
$$

In what follows, in all expressions with s_{i}, ϕ and ρ 's we assume (2.1). Put $g:=g_{n}$, thus

$$
\begin{equation*}
g(u, v)=\rho\langle u, v\rangle+\rho_{0}^{i j} \beta_{i}(u) \beta_{j}(v)+\rho_{1}^{i}\left(\beta_{i}(u)\langle n, v\rangle+\beta_{i}(v)\langle n, u\rangle\right)-\left(\rho_{1}^{i} s_{i}\right)\langle n, u\rangle\langle n, v\rangle \tag{2.2}
\end{equation*}
$$

see (1.5) with $y=n$. Define the quantities (needed for two lemmas in what follows),

$$
\begin{align*}
\gamma_{1}^{i} & =\left(\rho_{1}^{i}+\rho_{0}^{i j} s_{j}\right) / \rho=\dot{\phi}_{i} /\left(\phi-\sum_{j} \dot{\phi}_{j} s_{j}\right) \quad(1 \leq i \leq p), \\
\gamma_{2}^{i j} & =\rho_{0}^{i j}-\gamma_{1}^{i} \rho_{1}^{j}-\gamma_{1}^{j} \rho_{1}^{i}-\gamma_{1}^{i} \gamma_{1}^{j} \rho_{1}^{k} s_{k} \quad(1 \leq i, j \leq p), \\
c_{1} & =\gamma_{1}^{i} \beta_{i}(N)+\left(1-\gamma_{1}^{i} \gamma_{1}^{j} b_{i j}^{\top}\right)^{1 / 2}, \tag{2.3}
\end{align*}
$$

where $b_{i j}^{\top}:=b_{i j}-\beta_{i}(N) \beta_{j}(N)$. Assume that

$$
\begin{equation*}
b_{i j}^{\top} \gamma_{1}^{i} \gamma_{1}^{j} \leq 1 \tag{2.4}
\end{equation*}
$$

By (2.4), discriminant in the formula (2.3) for c_{1} is nonnegative, hence c_{1} is real. In the following lemma we express g-normal n to W through the a-normal N and the auxiliary functions (2.3).
Lemma 2.1. Let (2.4) holds, then the value of c_{1} is real and

$$
\begin{align*}
& n=c_{1} N-\gamma_{1}^{i} \beta_{i}^{\sharp} \tag{2.5}\\
& g(u, v)=\rho\langle u, v\rangle+\gamma_{2}^{i j} \beta_{i}(u) \beta_{j}(v) \quad(u, v \in W) \tag{2.6}
\end{align*}
$$

Moreover, the values $s_{i}=\beta_{i}(n)$ can be found from the system

$$
\begin{equation*}
s_{i}=c_{1} \beta_{i}(N)-\gamma_{1}^{j} b_{i j} \quad(1 \leq j \leq p) \tag{2.7}
\end{equation*}
$$

Proof. From (2.2) with $u=n$ and $v \in W$ and $g(n, v)=0$ we find

$$
\begin{equation*}
\left\langle\rho n+\gamma_{1}^{i} \beta_{i}^{\sharp}, v\right\rangle=0 \quad(v \in W) \tag{2.8}
\end{equation*}
$$

From (2.8) and $\rho>0$ we conclude that $\rho n+\gamma_{1}^{i} \beta_{i}^{\sharp \top}=c_{1} N$ for some real c_{1}. Using

$$
1=\langle n, n\rangle=c_{1}^{2}-2 c_{1} \gamma_{1}^{i} \beta_{i}^{\sharp}+\gamma_{1}^{i} \gamma_{1}^{j}\left\langle\beta_{i}^{\top}, \beta_{j}^{\top}\right\rangle
$$

and $\left\langle\beta_{i}^{\top}, \beta_{j}^{\top}\right\rangle=b_{i j}-\beta_{i}(N) \beta_{j}(N)$, we get two real solutions

$$
\left(c_{1}\right)_{1,2}=\gamma_{1}^{i} \beta_{i}(N) \pm\left(1-\gamma_{1}^{i} \gamma_{1}^{j} b_{i j}^{\top}\right)^{1 / 2}
$$

The greater value (with +) provides inequality $\langle n, N\rangle>0$, that proves (2.5). Thus, we get (2.7):

$$
s_{i}=\beta_{i}(n)=\beta_{i}\left(c_{1} N-\gamma_{1}^{j} \beta_{j}^{\sharp}\right)=c_{1} \beta_{i}(N)-\gamma_{1}^{j} b_{i j} \quad(1 \leq i \leq p) .
$$

Finally, (2.6) follows from (2.2), (2.5) and $\langle n, u\rangle=-\gamma_{1}^{i} \beta_{i}(u)(u \in W)$.
Remark 2.1 (Case $\beta_{i}^{\sharp} \in W$). An interesting particular case appears when all vectors β_{i}^{\sharp} belong to W, that is $\beta_{i}(N)=0$. Then, rather complicated system (2.7) reads

$$
\begin{equation*}
\sum_{i} \dot{\phi}_{i} / \phi\left(b_{i j}-s_{i} s_{j}\right)=-s_{j} \quad(1 \leq j \leq p) \tag{2.9}
\end{equation*}
$$

from which all $\dot{\phi}_{i}$ at $s_{i}=\beta_{i}(n)$ can be expressed through ϕ and $\left\{s_{i}\right\}$.

Define a matrix P with elements

$$
P_{k}^{j}=\gamma_{2}^{i j} b_{i k}^{\top}
$$

$Q=\rho \mathrm{id}+P$ is non-singular, if $\gamma_{2}^{i j}$ are "small" relative to $\rho>0$, i.e.,

$$
\begin{equation*}
\operatorname{det}\left[\rho \delta_{k}^{j}+\gamma_{2}^{i j} b_{i k}^{\top}\right] \neq 0 \tag{2.10}
\end{equation*}
$$

Using the inverse matrix Q^{-1}, define the quantities (needed for the following lemma),

$$
\gamma_{3}^{i j}=-\gamma_{2}^{k j}\left(Q^{-1}\right)_{k}^{i} \quad(1 \leq i, j \leq p)
$$

In the following lemma, we find relation between $u \in W$ and $U \in W$ such that

$$
\begin{equation*}
g(u, v)=\langle U, v\rangle, \quad \forall v \in W \tag{2.11}
\end{equation*}
$$

Lemma 2.2. Let (2.4) and (2.10) hold. If the vectors u, U belong to W and obey (2.11) then

$$
\begin{equation*}
\rho u=U+\gamma_{3}^{i j} \beta_{i}(U) \beta_{j}^{\sharp T} . \tag{2.12}
\end{equation*}
$$

Proof. By (2.6), $g(u, v)=\left\langle\rho u+\gamma_{2}^{i j} \beta_{i}(u) \beta_{j}^{\sharp}, v\right\rangle$ for $u, v \in W$. By conditions, and since $U, \beta_{j}^{\sharp \top} \in W$, we find $\rho u+\gamma_{2}^{i j} \beta_{i}(u) \beta_{j}^{\sharp \top}=U$. Applying β_{k} and using $\beta_{k}\left(\beta_{j}^{\sharp \top}\right)=b_{j k}^{\top}$ yields

$$
\left(\rho \delta_{k}^{j}+P_{k}^{j}\right) \beta_{j}(u)=\beta_{k}(U) \quad(1 \leq k \leq p)
$$

and then (2.12).

3 Examples

The following lemma is used to compute the volume forms of $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm for $p=1,2$. This extends the Silvester's determinant identity, see [14],

$$
\operatorname{det}\left(\operatorname{id}_{m}+C_{1} P_{1}^{t}\right)=1+C_{1}^{t} P_{1}
$$

where C_{1}, P_{1} are m-vectors (columns), and id_{m} is the identity m-matrix.
Lemma 3.1. Let $C_{i}, P_{i}(1 \leq i \leq j \leq m)$ be m-vectors. Then $\operatorname{Tr}\left(C_{i} P_{j}^{t}\right)=C_{i}^{t} P_{j}=$ $P_{j}^{t} C_{i}$ and
$\operatorname{det}\left(\mathrm{id}_{m}+C_{1} P_{1}^{t}+C_{2} P_{2}^{t}\right)=1+C_{1}^{t} P_{1}+C_{2}^{t} P_{2}+C_{1}^{t} P_{1} \cdot C_{2}^{t} P_{2}-C_{1}^{t} P_{2} \cdot C_{2}^{t} P_{1}$, $\operatorname{det}\left(\mathrm{id}_{m}+C_{1} P_{1}^{t}+C_{2} P_{2}^{t}+C_{3} P_{3}^{t}\right)=1+C_{1}^{t} P_{1}+C_{2}^{t} P_{2}+C_{3}^{t} P_{3}+C_{1}^{t} P_{1} \cdot C_{2}^{t} P_{2}$
$+C_{2}^{t} P_{2} \cdot C_{3}^{t} P_{3}+C_{1}^{t} P_{1} \cdot C_{3}^{t} P_{3}-C_{1}^{t} P_{2} \cdot C_{2}^{t} P_{1}-C_{1}^{t} P_{3} \cdot C_{3}^{t} P_{1}-C_{2}^{t} P_{3} \cdot C_{3}^{t} P_{2}$
$+C_{1}^{t} P_{1} \cdot C_{2}^{t} P_{2} \cdot C_{3}^{t} P_{3}+C_{1}^{t} P_{2} \cdot C_{2}^{t} P_{3} \cdot C_{3}^{t} P_{1}+C_{1}^{t} P_{3} \cdot C_{2}^{t} P_{1} \cdot C_{3}^{t} P_{2}$
$-C_{1}^{t} P_{1} \cdot C_{2}^{t} P_{3} \cdot C_{3}^{t} P_{2}-C_{1}^{t} P_{2} \cdot C_{2}^{t} P_{1} \cdot C_{3}^{t} P_{3}-C_{1}^{t} P_{3} \cdot C_{2}^{t} P_{2} \cdot C_{3}^{t} P_{1}$, and so on.

For $p=1$, (1.3) defines (α, β)-norm $F=\alpha \phi(s)$ for $s=\beta / \alpha$. This function F is a Minkowski norm on V for any α and β with $\alpha(\beta)<\delta_{0}$ if and only if $\phi(s)$ satisfies

$$
\begin{equation*}
\phi-s \dot{\phi}+\left(b^{2}-s^{2}\right) \ddot{\phi}>0 \tag{3.3}
\end{equation*}
$$

where real s, b obey $|s|<b$, see [14]. Taking $s \rightarrow b$ in (3.3), we get $\phi-s \dot{\phi}>0$. By (1.5),

$$
\begin{align*}
g_{y}(u, v) & =\rho\langle u, v\rangle+\rho_{0} \beta(u) \beta(v)+\rho_{1}(\beta(u)\langle y, v\rangle+\beta(v)\langle y, u\rangle) / \alpha(y) \\
& -\rho_{1} \beta(y)\langle y, u\rangle\langle y, v\rangle / \alpha^{3}(y) \tag{3.4}
\end{align*}
$$

Here $\rho>0$ and ρ_{0}, ρ_{1} are the following functions of s :

$$
\rho=\phi(\phi-s \dot{\phi}), \quad \rho_{0}=\phi \ddot{\phi}+\dot{\phi}^{2}, \quad \rho_{1}=\phi \dot{\phi}-s\left(\phi \ddot{\phi}+\dot{\phi}^{2}\right)
$$

The following relations hold: $\dot{\rho}=\rho_{1}, \ddot{\rho}=\dot{\rho}_{1}=-s \dot{\rho}_{0}$. Set $\tilde{Y}=s^{-1} \beta-y^{b} / \alpha(y)$ and $\varepsilon=s \rho_{1}$. Then (3.4) takes the form

$$
\begin{equation*}
g_{y}(u, v)=\rho\langle u, v\rangle+\left(\rho_{0}+\rho_{1}^{2} / \varepsilon\right) \beta(u) \beta(v)-\varepsilon \tilde{Y}(u) \tilde{Y}(v) \tag{3.5}
\end{equation*}
$$

From (3.5) and (3.1) with $C_{1}=\left(\rho_{0}+\rho_{1}^{2} / \varepsilon\right) \rho^{-1} \beta^{\sharp}, P_{1}=\beta^{\sharp}, C_{2}=-\varepsilon \rho^{-1} \tilde{Y}^{\sharp}, P_{2}=\tilde{Y}^{\sharp}$,

$$
\begin{align*}
\mu_{g_{y}}(y) & =\rho^{m-1}\left(\rho^{2}+\rho_{0} \rho_{1} s^{3}+\rho_{1}^{2} s^{2}+\left(\rho-\rho_{0} b^{2}\right) \rho_{1} s+\left(\rho \rho_{0}-\rho_{1}^{2}\right) b^{2}\right) \\
& =\phi^{m+2}(\phi-s \dot{\phi})^{m-1}\left[\phi-s \dot{\phi}+\left(b^{2}-s^{2}\right) \ddot{\phi}\right] \tag{3.6}
\end{align*}
$$

Set $p_{y}=\beta^{\sharp}-s y / \alpha(y)$. The Cartan tensor of (α, β)-norm has an interesting special form [8]:

$$
\begin{aligned}
2 C_{y}(u, v, w) & =\rho_{1} \alpha^{-1}(y)\left(K_{y}(u, v)\left\langle p_{y}, w\right\rangle+K_{y}(v, w)\left\langle p_{y}, u\right\rangle+K_{y}(w, u)\left\langle p_{y}, v\right\rangle\right) \\
& +(3 \dot{\phi} \ddot{\phi}+\phi \dddot{\phi}) \alpha^{-1}(y)\left\langle p_{y}, u\right\rangle\left\langle p_{y}, v\right\rangle\left\langle p_{y}, w\right\rangle
\end{aligned}
$$

see (1.6) for $p=1$. For a hyperplane $W \subset V$ we have $s=\beta(n)$ and

$$
\begin{aligned}
& c_{1}=\gamma_{1} \beta(N)+\left(1-\gamma_{1}^{2}\left(b^{2}-\beta(N)^{2}\right)\right)^{1 / 2} \\
& \gamma_{1}=\left(\rho_{1}+\rho_{0} \beta(n)\right) / \rho=\dot{\phi} /(\phi-s \dot{\phi}), \\
& \gamma_{2}=\rho_{0}-\gamma_{1} \rho_{1}\left(\beta(n) \gamma_{1}+2\right)=\phi\left(\phi^{2} \ddot{\phi}-\phi \dot{\phi}^{2}+s \dot{\phi}^{3}\right) /(\phi-s \dot{\phi})^{2} \\
& \gamma_{3}=-\frac{\gamma_{2}}{\rho+\left(b^{2}-\beta(N)^{2}\right) \gamma_{2}}
\end{aligned}
$$

Then (2.7) reads

$$
\frac{\dot{\phi}}{\phi}=-\frac{s \sqrt{b^{2}-s^{2}}+\beta(N) \sqrt{b^{2}-\beta(N)^{2}}}{\left(b^{2}-s^{2}-\beta(N)^{2}\right) \sqrt{b^{2}-s^{2}}}
$$

which for $\beta^{\sharp} \in W$ reads $\frac{\dot{\phi}}{\phi}=-\frac{s}{b^{2}-s^{2}}$, see also (2.9) for $p=1$.
Example $3.1(p=1)$. Some progress was achieved for particular cases of (α, β) norms. Below we consult some of (α, β)-norms to illustrate the above metric g on V.
(i) For $\phi(s)=1+s,|s|<b<\delta_{0}=1$, we have the norm $F=\alpha+\beta$, introduced by a physicist G. Randers to consider the unified field theory. We have $\rho=1+s, \rho_{0}=1$ and $\rho_{1}=1$. For a hyperplane $W \subset V$ and $g=g_{n}$, we get $n=c_{1} N-\beta^{\sharp}, s=\beta(n)=$ $c c_{1}-1, \phi(s)=c c_{1}$, where $c_{1}=c+\beta(N)$ and $c=\sqrt{1-b^{2}+\beta(N)^{2}} \in(0,1]$, see also [13]. Then

$$
\gamma_{1}=1, \quad \gamma_{2}=-c c_{1}, \quad \gamma_{3}=c^{-2}
$$

Conditions (2.4) and (2.10) become trivial: $c>0$. Next, $\mu_{g}(n)=\left(c c_{1}\right)^{m+2}$ and

$$
g(u, v)=(1+s)\langle u, v\rangle-s\langle n, u\rangle\langle n, v\rangle+\beta(u)\langle n, v\rangle+\beta(v)\langle n, u\rangle+\beta(u) \beta(v) .
$$

(ii) The (α, β)-norms $F=\alpha^{l+1} / \beta^{l}(l>0)$, i.e., $\phi(s)=1 / s^{l}(0<s<b)$, are called generalized Kropina metrics, see [8], and have applications in general dynamical systems. The Kropina metric, i.e., $l=1$, first introduced by L. Berwald in connection with a Finsler plane with rectilinear extremal, and investigated by V.K. Kropina in 1961. We have $\rho=2 / s^{2}, \rho_{0}=3 / s^{4}$ and $\rho_{1}=-4 / s^{3}$. For a hyperplane $W \neq \operatorname{ker} \beta$ in V and $g=g_{n}$ we get

$$
\begin{array}{lc}
c_{1}=(b-2 \beta(N)) / \sqrt{2 b(b-\beta(N))}, & \beta(n)=s=\sqrt{b(b-\beta(N)) / 2} \\
\gamma_{1}=-1 /(2 s)=-1 / \sqrt{2 b(b-\beta(N))}, & \gamma_{2}=\gamma_{3}=0
\end{array}
$$

and $\mu_{g}(n)=\frac{4^{m+1}}{b^{m}(b-\beta(N))^{m+2}}$. Note that conditions (2.4) and (2.10) become trivial.
(iii) The (α, β)-norm $F=\frac{\alpha^{2}}{\alpha-\beta}$, i.e., $\phi(s)=\frac{1}{1-s}$ with $|s|<b<\delta_{0}=\frac{1}{2}$, (called slope-metric) was introduced by M. Matsumoto to study the time it takes to negotiate any given path on a hillside. We have $\rho=\frac{1-2 s}{(1-s)^{3}}, \rho_{0}=\frac{3}{(1-s)^{4}}$ and $\rho_{1}=\frac{1-4 s}{(1-s)^{4}}$. For a hyperplane $W \neq \operatorname{ker} \beta$ and $g=g_{n}$, from (2.7) we find that $s=\beta(n)$ obeys 4th-order equation

$$
4 s^{4}-4 s^{3}+\left(1-4 b^{2}\right) s^{2}+2\left(b^{2}+\beta(N)^{2}\right) s+b^{4}-\left(b^{2}+1\right) \beta(N)^{2}=0
$$

and $s=\frac{1}{4}\left(1-\sqrt{1+8 b^{2}}\right)$ if $\beta^{\sharp} \in W$, see (2.9). We find $\mu_{g}(n)=\frac{(1-2 s)^{m-1}}{(1-s)^{3 m+3}}\left(2 b^{2}-3 s+\right.$ 1) and

$$
\begin{aligned}
c_{1} & =\frac{\beta(N)+\sqrt{(1-2 s)^{2}-b^{2}+\beta(N)^{2}}}{1-2 s} \\
\gamma_{1} & =\frac{1}{1-2 s}, \quad \gamma_{2}=\frac{1}{(1-2 s)^{2}(1-s)^{3}}, \quad \gamma_{3}=\frac{1}{(1-2 s)^{3}+b^{2}-\beta(N)^{2}}
\end{aligned}
$$

Thus, (2.10) becomes trivial and (2.4) reads as $(1-2 s)^{2} \geq b^{2}-\beta(N)^{2}$.
(iv) A Finsler metric is a polynomial (α, β)-norm if $\phi(s)=\sum_{i=0}^{k} C_{i} s^{i}, C_{0}=$ $1, C_{k} \neq 0$. The quadratic metric $F=(\alpha+\beta)^{2} / \alpha$, i.e., $\phi(s)=(1+s)^{2}$ with $|s|<b<$ $\delta_{0}=1$, appears in many geometrical problems, [14]. We have $\rho=(1-s)(1+s)^{3}, \rho_{0}=$ $6(1+s)^{2}$ and $\rho_{1}=2(1-2 s)(1+s)^{2}$. For a hyperplane $W \neq \operatorname{ker} \beta$ in V and $g=g_{n}$, from (2.7) we find that s obeys 4 th-order equation

$$
s^{4}-2 s^{3}+\left(1-4 b^{2}+3 \beta(N)^{2}\right) s^{2}+2\left(2 b^{2}-\beta(N)^{2}\right) s+4 b^{4}-\left(4 b^{2}+1\right) \beta(N)^{2}=0
$$

and $s=\left(1-\sqrt{1+8 b^{2}}\right) / 2$ if $\beta^{\sharp} \in W$, see (2.9). Then we obtain

$$
\begin{aligned}
c_{1} & =\frac{2 \beta(N)+\sqrt{(1-s)^{2}-4\left(b^{2}-\beta(N)^{2}\right)}}{1-s} \\
\gamma_{1} & =\frac{2}{1-s}, \quad \gamma_{2}=\frac{2(3 s-1)(1+s)^{3}}{(1-s)^{2}}, \quad \gamma_{3}=\frac{2(3 s-1)}{(1-s)^{3}-2(1-3 s)^{2}\left(b^{2}-\beta(N)^{2}\right)}
\end{aligned}
$$

and $\mu_{g}(n)=(1+s)^{3 m+3}(1-s)^{m-1}\left(2 b^{2}-3 s^{2}+1\right)$. Conditions (2.4) and (2.10) read

$$
(1-s)^{2} \geq 4\left(b^{2}-\beta(N)^{2}\right), \quad(1-s)^{3} \neq 2(1-3 s)\left(b^{2}-\beta(N)^{2}\right)
$$

(v) Define by $\phi(s)=e^{s / k},|s|<b<\delta_{0}:=|k|$, the exponential metric $F=$ $\alpha e^{\beta /(k \alpha)}$. Condition (3.3) reads as a quadratic inequality $s^{2}+k s-\left(b^{2}+k^{2}\right)<0$. Taking $s=b$ in (3.3) yields $k(s-k)<0$ when $|s|<|k|$. Thus, (3.3) is satisfied for arbitrary numbers s and b with $|s| \leq b<|k|$. We have $\rho=e^{2 s / k}(k-s) / k>0, \rho_{0}=$ $2 e^{2 s / k} / k^{2}$ and $\rho_{1}=e^{2 s / k}(k-2 s) / k^{2}$. For a hyperplane $W \neq \operatorname{ker} \beta$ in V and $g=g_{n}$, by (2.7), $s=\beta(n)$ obeys 4 th-order equation

$$
s^{4}-2 k s^{3}+\left(k^{2}-2 b^{2}+\beta(N)^{2}\right) s^{2}+2 b^{2} k s+b^{4}-\left(b^{2}+k^{2}\right) \beta(N)^{2}=0
$$

and $s=\left(k-\sqrt{k^{2}+4 b^{2}}\right) / 2$ if β^{\sharp} is tangent to the foliation, see (2.9). Then we get

$$
\begin{aligned}
& c_{1}=\frac{\beta(N)+\left((k-s)^{2}-b^{2}+\beta(N)^{2}\right)^{1 / 2}}{k-s} \\
& \gamma_{1}=\frac{1}{k-s}, \quad \gamma_{2}=\frac{s e^{2 s / k}}{k(k-s)^{2}}, \quad \gamma_{3}=\frac{s}{(k-s)^{3}+s\left(b^{2}-\beta(N)^{2}\right)}
\end{aligned}
$$

and $\mu_{g}(n)=\frac{(k-s)^{m-1}}{k^{m+1}}\left(b^{2}+k^{2}-k s-s^{2}\right) e^{(2 m+2) s / k}$. Conditions (2.4) and (2.10) read, respectively,

$$
(k-s)^{2} \geq b^{2}-\beta(N)^{2}, \quad(k-s)^{3} \neq-s\left(b^{2}-\beta(N)^{2}\right)
$$

Fig. 3.1 shows the dependence of s on $\beta(N) \in[-b, b]$, see (2.7), for four of above metrics. For $\beta(N)=0$ we obtain the values of s : a) 0.64, b) -0.13, c) -0.26, d) -0.53 .

Figure 1: Dependence of s on $\beta(N)$ for metrics: a) Kropina, b) Matsumoto, c) quadratic, d) exponential.

For $p=2$, we can use (1.11) to find $\mu_{g}(y)$. By (1.5) we get

$$
\begin{aligned}
g_{y}(u, v) & =\rho\langle u, v\rangle+\left(\rho_{0}^{i j}+\varepsilon^{-1} \rho_{1}^{i} \rho_{1}^{j}\right) \beta_{i}(u) \beta_{j}(v)-\varepsilon \tilde{Y}(u) \tilde{Y}(v) \\
\tilde{Y} & =\varepsilon^{-1} \rho_{1}^{i} \beta_{i}-y^{b} / \alpha(y), \quad \varepsilon=s_{i} \rho_{1}^{i}
\end{aligned}
$$

From (3.2) with

$$
C_{1}=\lambda^{1} \rho^{-1} \tilde{\beta}_{1}^{\sharp}, \quad P_{1}=\tilde{\beta}_{1}^{\sharp}, \quad C_{2}=\lambda^{2} \rho^{-1} \tilde{\beta}_{2}^{\sharp}, \quad P_{2}=\tilde{\beta}_{2}^{\sharp}, \quad C_{3}=-\varepsilon \rho^{-1} \tilde{Y}^{\sharp}, \quad P_{3}=\tilde{Y}^{\sharp},
$$

using \tilde{Y} from (3.7), $\tilde{b}_{i j}=\left\langle\tilde{\beta}_{i}, \tilde{\beta}_{j}\right\rangle, \tilde{\beta}_{i}=q_{i}^{1} \beta_{1}+q_{i}^{2} \beta_{2}$ and $\varepsilon=\rho_{1}^{1} s_{1}+\rho_{1}^{2} s_{2}$, we obtain

$$
\begin{aligned}
\mu_{g_{y}}(y) & =\rho^{m-1}\left(\rho^{2}+\rho\left(\lambda^{1} \tilde{b}_{11}+\lambda^{2} \tilde{b}_{22}\right)-\rho \varepsilon\langle\tilde{Y}, \tilde{Y}\rangle+\lambda^{1} \lambda^{2}\left(\tilde{b}_{11} \tilde{b}_{22}-\tilde{b}_{12}^{2}\right)\right. \\
& -\varepsilon\langle\tilde{Y}, \tilde{Y}\rangle\left(\lambda^{1} \tilde{b}_{11}+\lambda^{2} \tilde{b}_{22}\right)+\lambda^{1} \varepsilon\left\langle\tilde{\beta}_{1}, \tilde{Y}\right\rangle+\lambda^{2} \varepsilon\left\langle\tilde{\beta}_{2}, \tilde{Y}\right\rangle+\lambda^{1} \lambda^{2} \varepsilon / \rho\left[\tilde{b}_{11}\left\langle\tilde{\beta}_{2}, \tilde{Y}\right\rangle^{2}\right. \\
& \left.\left.+\tilde{b}_{22}\left\langle\tilde{\beta}_{1}, \tilde{Y}\right\rangle^{2}+\tilde{b}_{12}\langle\tilde{Y}, \tilde{Y}\rangle^{2}-\tilde{b}_{11} \tilde{b}_{22}\langle\tilde{Y}, \tilde{Y}\rangle-2 \tilde{b}_{12}\left\langle\tilde{\beta}_{1}, \tilde{Y}\right\rangle\left\langle\tilde{\beta}_{2}, \tilde{Y}\right\rangle\right]\right)
\end{aligned}
$$

Example $3.2(p=2)$. A navigation (α, β)-norm is the $(\alpha, \overrightarrow{\boldsymbol{\beta}})$-norm with $p=2$.
(a) For shifted Kropina norm $\phi=1+\frac{1}{s_{1}}+s_{2}$ for $s_{1}>0$, hence $F=\alpha\left(1+\frac{\alpha}{\beta_{1}}+\frac{\beta_{2}}{\alpha}\right)$, we have

$$
\begin{aligned}
& \rho=\left(2+s_{1}\right)\left(1+s_{1}+s_{1} s_{2}\right) / s_{1}^{2}, \quad \rho_{1}^{1}=-\left(4+3 s_{1}+2 s_{1} s_{2}\right) / s_{1}^{3}, \quad \rho_{1}^{2}=\left(2+s_{1}\right) / s_{1} \\
& \rho_{0}^{11}=\left(3+2 s_{1}+2 s_{1} s_{2}\right) / s_{1}^{4}, \quad \rho_{0}^{12}=\rho_{0}^{21}=-1 / s_{1}^{2}, \quad \rho_{0}^{22}=1
\end{aligned}
$$

For a hyperplane $W \neq \operatorname{ker} \beta_{i}(i=1,2)$ in V and the metric $g=g_{n}$ we get

$$
\begin{aligned}
& c_{1}=\frac{s_{1}^{2} \beta_{2}(N)-\beta_{1}(N)}{s_{1}\left(2+s_{1}\right)}+\left(1-\frac{b_{11}-\beta_{1}(N)^{2}}{s_{1}^{2}\left(2+s_{1}\right)^{2}}+\frac{2\left(b_{12}-\beta_{1}(N) \beta_{2}(N)\right)}{\left(2+s_{1}\right)^{2}}-\frac{s_{1}^{2}\left(b_{22}-\beta_{2}(N)^{2}\right)}{\left(2+s_{1}\right)^{2}}\right)^{1 / 2}, \\
& \gamma_{1}^{1}=-\frac{1}{s_{1}\left(2+s_{1}\right)}, \quad \gamma_{1}^{2}=\frac{s_{1}}{2+s_{1}}, \quad \gamma_{2}^{11}=-\frac{2-s_{1}-10 s_{1}^{2}-10 s_{1}^{3}-3 s_{1}^{4}-s_{1}^{2} s_{2}\left(2-2 s_{1}^{2}-s_{1}^{3}\right)}{s_{1}^{4}\left(2+s_{1}\right)}, \\
& \gamma_{2}^{12}=\frac{12+13 s_{1}+3 s_{1}^{2}+s_{1} s_{2}\left(2-2 s_{1}-s_{1}^{2}\right)}{s_{1}^{2}\left(2+s_{1}\right)}, \quad \gamma_{2}^{22}=\frac{4+3 s_{1}-s_{1}^{2}\left(1+s_{2}\right)}{s_{1}^{2}} .
\end{aligned}
$$

If $\beta_{i}^{\sharp} \in W$ then s_{1}, s_{2} obey the system

$$
\left(1+2 s_{2}\right) s_{1}^{3}-b_{12} s_{1}^{2}+b_{11}=0, \quad\left(1+2 s_{1}\right) s_{1} s_{2}^{2}-b_{22} s_{1}^{2}+b_{12}=0
$$

Thus $s_{2}=\frac{1}{2}\left[\left(b_{11}-s_{1}^{2} b_{12}\right) / s_{1}^{3}-1\right]$, where s_{1} is a positive root of the 6 th-order polynomial:

$$
2 b_{22} s_{1}^{6}+b_{12} s_{1}^{5}-\left(b_{12}^{2}+2 b_{12}\right) s_{1}^{4}-b_{11} s_{1}^{3}+2 b_{11} b_{12} s_{1}^{2}-b_{11}^{2}=0
$$

for example, if $b_{12}=0$ then $s_{1}=\left(\frac{b_{11}}{4 b_{22}}\left(1+\sqrt{1+8 b_{22}}\right)\right)^{1 / 3}$ and $s_{2}=\frac{1}{2}\left(b_{11} / s_{1}^{3}-1\right)$.
(b) For shifted Matsumoto norm $\phi=\frac{1}{1-s_{1}}+s_{2}$ with $\delta_{i}<1$, hence $F=\alpha\left(\frac{\alpha}{\alpha-\beta_{1}}+\right.$ $\frac{\beta_{2}}{\alpha}$), we have

$$
\begin{aligned}
& \rho=\frac{\left(1-2 s_{1}\right)\left(1+s_{2}-s_{1} s_{2}\right)}{\left(1-s_{1}\right)^{3}}, \quad \rho_{1}^{1}=\frac{1+2 s_{1}\left(s_{1} s_{2}-s_{2}-2\right)}{\left(1-s_{1}\right)^{4}}, \quad \rho_{1}^{2}=\frac{1-2 s_{1}}{\left(1-s_{1}\right)^{2}}, \\
& \rho_{0}^{11}=\left(3-2 s_{1} s_{2}+2 s_{2}\right) /\left(1-s_{1}\right)^{4}, \quad \rho_{0}^{12}=\rho_{0}^{21}=1 /\left(1-s_{1}\right)^{2},
\end{aligned} \quad \rho_{0}^{22}=1 .
$$

For a hyperplane $W \neq \operatorname{ker} \beta_{i}(1 \leq i \leq p)$ in V and the metric $g=g_{n}$ we get

$$
\begin{aligned}
c_{1} & =\frac{\left(1-s_{1}\right)^{2} \beta_{2}(N)+\beta_{1}(N)}{1-2 s_{1}}+\left(1-\frac{\left(1-s_{1}\right)^{4}\left(b_{22}-\beta_{2}(N)^{2}\right)}{\left(1-2 s_{1}\right)^{2}}\right. \\
& \left.-\frac{2\left(1-s_{1}\right)^{2}\left(b_{12}-\beta_{1}(N) \beta_{2}(N)\right)}{\left(1-2 s_{1}\right)^{2}}-\frac{b_{11}-\beta_{1}(N)^{2}}{\left(1-2 s_{1}\right)^{2}}\right)^{1 / 2} \\
\gamma_{1}^{1} & =\frac{1}{1-2 s_{1}}, \quad \gamma_{1}^{2}=\frac{\left(1-s_{1}\right)^{2}}{1-2 s_{1}}, \quad \gamma_{2}^{11}=\frac{1+2 s_{1}+8 s_{1}^{2}+s_{2}\left(1+5 s_{1}-6 s_{1}^{2}\right)}{\left(1-s_{1}\right)^{3}\left(1-2 s_{1}\right)}, \\
\gamma_{2}^{22} & =-\frac{1-3 s_{1}+2 s_{1}^{2}-4 s_{1}^{3}+s_{1}^{4}+s_{2}\left(1-4 s_{1}+3 s_{1}^{2}\right)}{\left(1-s_{1}\right)^{4}} \\
\gamma_{2}^{12} & =-\frac{1-5 s_{1}+3 s_{1}^{2}+4 s_{1}^{3}+s_{2}\left(1-8 s_{1}+17 s_{1}^{2}-12 s_{1}^{3}+2 s_{1}^{4}\right)}{\left(1-2 s_{1}\right)\left(1-s_{1}\right)^{4}}
\end{aligned}
$$

If $\beta_{i}^{\sharp} \in W$ then s_{1} and s_{2} obey the system

$$
b_{11}+\left(1-s_{1}\right)^{2}\left(b_{12}-2 s_{1} s_{2}\right)=s_{1}, \quad b_{12}+\left(1-s_{1}\right)^{2}\left(b_{22}-2 s_{2}^{2}\right)=s_{2}
$$

Then $s_{1}=\left(2 b_{11} s_{2}^{2}-b_{12} s_{2}-b_{11} b_{22}+b_{12}^{2}\right) /\left(2 b_{12} s_{2}-b_{22}\right)$, where s_{2} is a root of a 6 th-order polynomial.

Similarly to graphs on Fig. 3.1, one may calculate and graph pairs of surfaces in \mathbb{R}^{3}, showing dependence of s_{1} and s_{2} on variables $\left(\beta_{1}(N), \beta_{2}(N)\right)$ for the above navigation (α, β)-metrics. For $\beta_{i}(N)=0$ we obtain the values: a) $s_{1} \approx-0.79$ and $s_{2}=-1.5$ for Kropina norm; b) $s_{1} \approx-0.42$ and $s_{2}=s_{1}^{3}-2 s_{1}^{2}+s_{1} \approx-0.84$ for Matsumoto norm.

4 The shape operator and the curvature of normal curves

Let $\left(M^{m+1}, a=\langle\cdot, \cdot\rangle\right)(m \geq 2)$ be a connected Riemannian manifold with the LeviCivita connection $\bar{\nabla}$. Let N be a unit normal field to a codimension-one distribution $\mathcal{D}:=\operatorname{ker} \omega$ on (M, α). Due to Section 2, there exists a g_{n}-normal (to \mathcal{D}) vector field n such that $\langle n, N\rangle>0$ and $\langle n, n\rangle=1$. Define a new Riemannian metric $g:=g_{n}$ on M, see (2.2), with the Levi-Civita connection ∇. Let ker $\beta_{i} \neq \mathcal{D}$ everywhere for all i, hence $\left|\beta_{i}(N)\right|<\sqrt{b_{i i}}$. By $(2.7), s_{i}=\beta_{i}(n)$ are smooth functions on M, and $\nu=n / \phi(s)$ is a g-unit normal to the leaves.

The shape operators \bar{A} and A^{g} of \mathcal{D} and the curvature vectors of ν - and N - curves for both metrics $\langle\cdot, \cdot\rangle$ and g belong to Extrinsic Geometry and are defined by

$$
\begin{align*}
& \bar{A}(u)=-\bar{\nabla}_{u} N, \quad A^{g}(u)=-\nabla_{u} \nu \quad(u \in \mathcal{D}), \tag{4.1}\\
& Z=\nabla_{\nu} \nu, \quad \bar{Z}=\bar{\nabla}_{N} N \tag{4.2}
\end{align*}
$$

Let $\bar{T}^{\sharp}: \mathcal{D} \rightarrow \mathcal{D}$ be a linear operator adjoint to the integrability tensor \bar{T} of \mathcal{D} with respect to a,

$$
2 \bar{T}(u, v)=\langle[u, v], N\rangle \quad(u, v \in \mathcal{D})
$$

Note that $\bar{T}^{\sharp}=\frac{1}{2}\left(\bar{A}-\bar{A}^{*}\right)$, where \bar{A}^{*} is a linear operator adjoint to \bar{A}. The deformation tensor,

$$
\overline{\operatorname{Def}}_{u}=\left(\bar{\nabla} u+(\bar{\nabla} u)^{t}\right) / 2
$$

measures the degree to which the flow of a vector field u distorts $\langle\cdot, \cdot\rangle$. Here, $\bar{\nabla} u$ and $(\bar{\nabla} u)^{t}$ are

$$
(\bar{\nabla} u)(v)=\bar{\nabla}_{v} u, \quad\left\langle(\bar{\nabla} u)^{t}(v), w\right\rangle=\langle v,(\bar{\nabla} u)(w)\rangle \quad(v, w \in T M)
$$

In the next proposition, we express A^{g} through \bar{A} and invariants of \mathcal{D} with respect to a.
Proposition 4.1 (The shape operator). Let $\left(M^{m+1}, a\right)$ be a Riemannian manifold with a form $\omega \neq 0$ and linear independent 1-forms $\beta_{1}, \ldots \beta_{p}$ obeying conditions (2.4) and (2.10). Let g be a Riemannian metric (2.2) determined by a distribution $\mathcal{D}=$ $\operatorname{ker} \omega, \overrightarrow{\boldsymbol{\beta}}=\left(\beta_{1}, \ldots, \beta_{p}\right)$ and a smooth function $\phi(x, s)$ on $M \times \mathbb{R}^{p}$. Then

$$
\begin{equation*}
\rho \phi A^{g}=-\mathcal{A}-\gamma_{3}^{i j}\left(\beta_{i} \circ \mathcal{A}\right) \otimes \beta_{j}^{\sharp \top}, \tag{4.3}
\end{equation*}
$$

where the linear operator $\mathcal{A}: \mathcal{D} \rightarrow \mathcal{D}$ is given by

$$
\begin{equation*}
\mathcal{A}=-\rho c_{1} \bar{A}-\rho \gamma_{1}^{i}\left(\overline{\operatorname{Def}}_{\beta_{i}^{\sharp}}\right)^{\top}+\frac{1}{2} n(\rho) \mathrm{id}^{\top}+\operatorname{Sym}\left(U^{j} \otimes \beta_{j}^{\top}\right), \tag{4.4}
\end{equation*}
$$

and the vector fields U^{j} are given by

$$
\begin{align*}
U^{j} & =\frac{1}{2}\left(n\left(\gamma_{2}^{i j}\right) \beta_{i}^{\sharp \top}+\gamma_{2}^{i j} \bar{\nabla}_{n}^{\top} \beta_{i}^{\sharp \top}\right)-\rho \bar{\nabla}^{\top} \gamma_{1}^{j} \\
& +\left(\rho_{0}^{i j}-\gamma_{1}^{j} \rho_{1}^{i}\right)\left(\beta_{i}(N) \bar{\nabla}^{\top} c_{1}-\left(\gamma_{1}^{k} / 2\right) \bar{\nabla}^{\top} b_{i k}-b_{i k} \bar{\nabla}^{\top} \gamma_{1}^{k}\right) \\
& +\left(c_{1}-\beta_{k}(N) \gamma_{1}^{k}\right)\left(\left(\rho_{0}^{i j}-\gamma_{1}^{j} \rho_{1}^{i}\right) \beta_{i}(N)+c_{1} \rho_{1}^{j}\left(1+s_{k} \gamma_{1}^{k}\right)\right) \bar{Z} \\
& +\left(c_{1} \rho_{1}^{i}\left(1+s_{k} \gamma_{1}^{k}\right) \gamma_{1}^{j}-\left(\rho_{0}^{i j}-\gamma_{1}^{j} \rho_{1}^{i}\right)\left(c_{1}-\beta_{k}(N) \gamma_{1}^{k}\right)\right) \bar{A}^{*}\left(\beta_{i}^{\sharp \top}\right) . \tag{4.5}
\end{align*}
$$

Proof. By known formula for the Levi-Civita connection ∇ of g,
$2 g\left(\nabla_{u} v, w\right)=u(g(v, w))+v(g(u, w))-w(g(u, v))+g([u, v], w)-g([u, w], v)-g([v, w], u)$, where $u, v, w \in C^{\infty}(T M)$, we have

$$
\begin{equation*}
2 g\left(\nabla_{u} n, v\right)=n(g(u, v))+g([u, n], v)+g([v, n], u)-g([u, v], n) \quad(u, v \in \mathcal{D}) \tag{4.7}
\end{equation*}
$$

Assume $\bar{\nabla}_{X}^{\top} u=\bar{\nabla}_{X}^{\top} v=0$ for $X \in T_{x} M$ at a given point $x \in M$. Using (2.2) and (2.6), we get

$$
\begin{aligned}
& n(g(u, v))=n(\rho\langle u, v\rangle)+n\left(\gamma_{2}^{i j} \beta_{i}(u) \beta_{j}(v)\right) \\
& \quad=n(\rho)\langle u, v\rangle+\left[n\left(\gamma_{2}^{i j}\right) \beta_{i}(u) \beta_{j}(v)+\gamma_{2}^{i j}\left(\beta_{i}(u)\left(\bar{\nabla}_{n}\left(\beta_{j}^{\top}\right)\right)(v)+\beta_{i}(v)\left(\bar{\nabla}_{n}\left(\beta_{j}^{\top}\right)\right)(u)\right)\right] \\
& g([u, v], n)=2 \rho c_{1} \bar{T}(u, v) \\
& g([u, n], v)=\rho\left\langle\bar{\nabla}_{u} n, v\right\rangle+\rho_{0}^{i j} \beta_{i}([u, n]) \beta_{j}(v)+\rho_{1}^{i}\left(\beta_{i}([u, n])\langle n, v\rangle+\beta_{i}(v)\langle n,[u, n]\rangle\right) \\
& \quad-\rho_{1}^{i} s_{i}\langle n,[u, n]\rangle\langle n, v\rangle
\end{aligned}
$$

where $u, v \in \mathcal{D}$. Using equalities

$$
\begin{aligned}
& \left\langle\bar{\nabla}_{u} n, v\right\rangle=-\left\langle c_{1} \bar{A}(u), v\right\rangle-\gamma_{1}^{i}\left\langle\bar{\nabla}_{u} \beta_{i}^{\sharp}, v\right\rangle-\beta_{i}(v)\left\langle\bar{\nabla} \gamma_{1}^{i}, u\right\rangle=\left\langle U_{3}, v\right\rangle, \\
& \beta_{i}([u, n])=-\gamma_{1}^{j}\left\langle\bar{\nabla}_{u} \beta_{j}^{\sharp}, \beta_{i}^{\sharp}\right\rangle+\left\langle\beta_{i}(N) \bar{\nabla} c_{1}-b_{i j} \bar{\nabla} \gamma_{1}^{j}\right. \\
& \left.\quad+\beta_{i}(N)\left[\left(c_{1}-\gamma_{1}^{j} \beta_{j}(N)\right) \bar{Z}+\gamma_{1}^{j} \bar{A}^{*}\left(\beta_{j}^{\sharp \top}\right)\right], u\right\rangle=\left\langle U_{2 i}, u\right\rangle-\gamma_{1}^{j}\left\langle\bar{\nabla}_{u} \beta_{j}^{\sharp}, \beta_{i}^{\sharp}\right\rangle, \\
& \langle n,[u, n]\rangle=\left\langle\left(c_{1}-\gamma_{1}^{j} \beta_{j}(N)\right) \bar{\nabla} c_{1}+\left(\gamma_{1}^{i} j_{j i}-c_{1} \beta_{j}(N)\right) \bar{\nabla} \gamma_{1}^{j}\right. \\
& \left.\quad-c_{1} \gamma_{1}^{j} \bar{\nabla}\left(\beta_{j}(N)\right)-c_{1} \gamma_{1}^{j} \beta_{j}(N) \bar{Z}, u\right\rangle=\left\langle U_{1}, u\right\rangle, \\
& \langle n, v\rangle=-\gamma_{1}^{i} \beta_{i}(v),
\end{aligned}
$$

we then obtain

$$
\begin{aligned}
& g([u, n], v)=-\rho c_{1}\langle\bar{A}(u), v\rangle-\rho\left(\gamma_{1}^{i}\left\langle\bar{\nabla}_{u} \beta_{i}^{\sharp}, v\right\rangle+\beta_{i}(v)\left\langle\bar{\nabla} \gamma_{1}^{i}, u\right\rangle\right) \\
&+ \rho_{0}^{i j} \beta_{j}(v)\left[\left\langle\beta_{i}(N) \bar{\nabla} c_{1}-b_{i k} \bar{\nabla} \gamma_{1}^{k}+\beta_{i}(N)\left[\left(c_{1}-\gamma_{1}^{k} \beta_{k}(N)\right) \bar{Z}+\gamma_{1}^{k} \bar{A}^{*}\left(\beta_{k}^{\sharp \top}\right)\right], u\right\rangle\right. \\
&-\left.\gamma_{1}^{k}\left\langle\bar{\nabla} \bar{\nabla}_{u} \beta_{k}^{\sharp}, \beta_{i}^{\sharp}\right\rangle\right]-\gamma_{1}^{j} \beta_{j}(v) \rho_{1}^{i}\left[\left\langle\beta_{i}(N) \bar{\nabla} c_{1}-b_{i k} \bar{\nabla} \gamma_{1}^{k}\right.\right. \\
&+\left.\left.\beta_{i}(N)\left[\left(c_{1}-\gamma_{1}^{k} \beta_{k}(N)\right) \bar{Z}+\gamma_{1}^{k} \bar{A}^{*}\left(\beta_{k}^{\sharp}\right)\right], u\right\rangle-\gamma_{1}^{k}\left\langle\bar{\nabla}_{u} \beta_{k}^{\sharp}, \beta_{i}^{\sharp}\right\rangle\right] \\
&+ \rho_{1}^{i} \beta_{i}(v)\left\langle\left(c_{1}-\gamma_{1}^{j} \beta_{j}(N)\right) \bar{\nabla} c_{1}+\left(\gamma_{1}^{k} b_{j k}-c_{1} \beta_{j}(N)\right) \bar{\nabla} \gamma_{1}^{j}\right. \\
&\left.-c_{1} \gamma_{1}^{k} \bar{\nabla}\left(\beta_{k}(N)\right)-c_{1}\left(\gamma_{1}^{k} \beta_{k}(N)\right) \bar{Z}, u\right\rangle+\rho_{1}^{i} s_{i} \gamma_{1}^{j} \beta_{j}(v)\left\langle\left(c_{1}-\gamma_{1}^{k} \beta_{k}(N)\right) \bar{\nabla} c_{1}\right. \\
&\left.+\left(\gamma_{1}^{k} b_{j k}-c_{1} \beta_{j}(N)\right) \bar{\gamma} \gamma_{1}^{j}-c_{1} \gamma_{1}^{k} \bar{\nabla}\left(\beta_{k}(N)\right)-c_{1} \gamma_{1}^{k} \beta_{k}(N) \bar{Z}, u\right\rangle \\
&=-\rho c_{1}\langle\bar{A}(u), v\rangle-\rho\left(\gamma_{1}^{i}\left\langle\bar{\nabla}_{u} \beta_{1}^{\sharp}, v\right\rangle+\beta_{i}(v)\left\langle\bar{\nabla} \gamma_{1}^{i}, u\right\rangle\right) \\
&+\left(\rho_{0}^{i j}-\rho_{1}^{i} \gamma_{1}^{j}\right)\left\langle\beta_{i}(N) \bar{\nabla} c_{1}-\left(\frac{1}{2} \gamma_{1}^{k} \bar{\nabla} b_{k i}-b_{i k} \bar{\nabla} \gamma_{1}^{k}\right)\right. \\
&+\left.\left(c_{1}-\beta_{k}(N) \gamma_{1}^{k}\right)\left(\beta_{i}(N) \bar{Z}-\bar{A}^{*}\left(\beta_{1}^{\sharp T}\right)\right), u\right\rangle \beta_{j}(v) \\
&+ c_{1} \rho_{1}^{j}\left(1+s_{k} \gamma_{1}^{k}\right)\left\langle\left(c_{1}-\beta_{k}(N) \gamma_{1}^{k}\right) \bar{Z}+\gamma_{1}^{k} \overline{A^{*}}\left(\beta_{k}^{\sharp \top}\right), u\right\rangle \beta_{j}(v),
\end{aligned}
$$

where $u, v \in \mathcal{D}$. Formula for $g([v, n], u)$ is obtained from $g([u, n], v)$ after change $u \leftrightarrow v$. Substituting the above into (4.7), we find $g\left(\nabla_{u} n, v\right)=\langle\mathcal{A}(u), v\rangle$, where \mathcal{A} is given in (4.4)-(4.5). In particular,

$$
\begin{aligned}
\left\langle 2 \mathcal{A}(u), \beta_{i}^{\sharp \top}\right\rangle & =-2 \rho c_{1}\left\langle\bar{A}^{*}\left(\beta_{i}^{\sharp \top}\right), u\right\rangle-2 \rho \gamma_{1}^{j}\left\langle\overline{\operatorname{Def}}_{\beta_{i}^{(}}\left(\beta_{j}^{\sharp \top}\right), u\right\rangle \\
& +n(\rho) \beta_{i}(u)+\beta_{j}(u) \beta_{i}\left(U^{j}\right)+U^{j}(u) b_{i j}^{\top} .
\end{aligned}
$$

By Lemma 2.2 and $g\left(\nabla_{u} n, v\right)=-\phi g\left(A^{g}(u), v\right)$, see (4.1), we get (4.3).
The elementary symmetric functions $\sigma_{k}(A)$ of a $m \times m$-matrix A (or a linear transformation) are defined by equality $\operatorname{det}(\mathrm{id}+t A)=\sum_{i \leq m} \sigma_{k}(A) t^{k}$ and are called mean curvatures in the case of shape operator. Thus, $\sigma_{0}(A)=1, \sigma_{1}(A)=\operatorname{Tr} A, \ldots, \sigma_{m}(A)=$ $\operatorname{det} A$.

Corollary 4.2 (The mean curvature of \mathcal{D}). Let conditions of Proposition 4.1 are satisfied. Then

$$
\begin{align*}
\rho \phi \sigma_{1}\left(A^{g}\right) & =\rho c_{1} \sigma_{1}(\bar{A})-\frac{m}{2} n(\rho)+\rho \gamma_{1}^{i}\left(\overline{\operatorname{div}} \beta_{i}^{\sharp}-\beta_{i}(\bar{Z})+N\left(\beta_{i}(N)\right)\right) \\
& -\beta_{j}\left(U^{j}\right)-\gamma_{3}^{i j}\left\langle\mathcal{A}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp}\right\rangle, \tag{4.8}
\end{align*}
$$

where U^{j} are given in (4.5) and

$$
\begin{align*}
\left\langle\mathcal{A}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp}\right\rangle= & \rho c_{1}\left\langle\bar{A}^{*}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp \top}\right\rangle+\rho \gamma_{1}^{k}\left(\beta_{k}^{\sharp \top}\left(b_{i j}^{\top}\right) / 2-\beta_{k}(N)\left\langle\bar{A}^{*}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp}\right\rangle\right) \\
& -b_{i j}^{\top}\left(\frac{1}{2} n(\rho)+\beta_{k}\left(U^{k}\right)\right) . \tag{4.9}
\end{align*}
$$

Proof. Let $\left\{e_{i}\right\}$ be a local g-orthonormal frame of \mathcal{D}. We calculate

$$
\left\langle\overline{\operatorname{Def}}_{\beta_{k}^{\sharp}}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp \top}\right\rangle=\frac{1}{2}\left\langle\bar{\nabla} b_{i j}^{\top}, \beta_{k}^{\sharp \top}\right\rangle-\beta_{k}(N)\left\langle\bar{A}^{*}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp}\right\rangle,
$$

see (4.4)-(4.5). Tracing of (4.3), we obtain

$$
\rho \phi \sigma_{1}\left(A^{g}\right)=-\sigma_{1}(\mathcal{A})-\gamma_{3}^{i j}\left\langle\mathcal{A}\left(\beta_{j}^{\sharp \top}\right), \beta_{i}^{\sharp}\right\rangle .
$$

Then, using

$$
\operatorname{Tr}\left(\overline{\operatorname{Def}}_{\beta_{i}^{\sharp}}\right)_{\mid T \mathcal{F}}^{\top}=\overline{\operatorname{div}} \beta_{i}^{\sharp}-\beta_{i}(\bar{Z})+N\left(\beta_{i}(N)\right),
$$

(4.9) and Lemma 2.2, we get (4.8)-(4.9).

Example 4.1. (i) One may ask the question: "When \mathcal{D} is totally geodesic with respect to g, i.e., $A^{g}=0$?" In this case, when $\bar{\nabla} \beta_{i}=0$ and $\beta_{i}(N)=0$, by Proposition 4.1, \bar{A} has a special form

$$
\bar{A}=W^{i} \otimes \beta_{i}+\omega^{i} \otimes \beta_{i}^{\sharp}
$$

for some vector fields W^{i} and 1-forms ω^{i}. If $p=1$ then, necessarily, $\operatorname{rank} \bar{A} \leq 2$.
In next corollary and proposition, for simplicity, we assume that \mathcal{D} is integrable and $p=1$.
Corollary 4.3 (The second mean curvature). If $p=1$ and $\bar{\nabla} \beta^{\sharp}=0$ then

$$
\begin{align*}
& (\rho \phi)^{2} \sigma_{2}\left(A^{g}\right)=\left(\rho c_{1}\right)^{2} \sigma_{2}(\bar{A})+\frac{1}{8} m(m-1) n(\rho)^{2}-\frac{1}{2}(m-1) c_{1} \rho n(\rho) \sigma_{1}(\bar{A}) \\
& +\frac{1}{4} \beta(U)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \beta^{\sharp}\right\rangle-\frac{1}{4}\left(b^{2}-\beta(N)^{2}\right)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, U\right\rangle \\
& +\left(\frac{m-1}{2} n(\rho)-\rho c_{1} \sigma_{1}(\bar{A})\right)\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \beta^{\sharp}\right\rangle+\rho c_{1}\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \bar{A}\left(\beta^{\sharp \top}\right)\right\rangle, \tag{4.10}
\end{align*}
$$

where $\mathcal{A}=-\rho c_{1} \bar{A}+\operatorname{Sym}\left(U \otimes \beta^{\top}\right)$ and U is given in (4.5).
Proof. By conditions, $\overline{\operatorname{Def}}_{\beta^{\sharp}}=0$. Thus, by Proposition 4.1,

$$
\rho \phi A^{g}=\rho c_{1} \bar{A}-\frac{1}{2} n(\rho) \mathrm{id}^{\top}-A_{1}-A_{2}
$$

where $A_{1}=\frac{1}{2} U \otimes \beta^{\top}$ and $A_{2}=\left(\frac{1}{2} U^{b}+\gamma_{3}(\beta \circ \mathcal{A})\right) \otimes \beta^{\sharp \top}$ are rank 1 matrices (thus $\left.\sigma_{2}\left(A_{i}\right)=0\right)$ and

$$
\mathcal{A}=-\rho c_{1} \bar{A}+\frac{1}{2} n(\rho) \mathrm{id}^{\top}+\operatorname{Sym}\left(U \otimes \beta^{\top}\right)
$$

is symmetric. Applying the identity

$$
\sigma_{2}\left(\sum_{i} P_{i}\right)=\sum_{i} \sigma_{2}\left(P_{i}\right)+\sum_{i<j}\left(\sigma_{1}\left(P_{i}\right) \sigma_{1}\left(P_{j}\right)-\sigma_{1}\left(P_{i} P_{j}\right)\right)
$$

to matrices $P_{1}=\rho c_{1} \bar{A}, P_{2}=-\frac{1}{2} n(\rho) \mathrm{id}^{\top}, P_{3}=-A_{1}$ and $P_{4}=-A_{2}$, and using equalities $\left\langle(\beta \circ \mathcal{A})^{\sharp}, u\right\rangle=\left\langle\mathcal{A}\left(u^{\top}\right), \beta^{\sharp}\right\rangle$ and $\sigma_{2}\left(\mathrm{id}^{\top}\right)=m(m-1) / 2$, we get

$$
\begin{aligned}
& (\rho \phi)^{2} \sigma_{2}\left(A^{g}\right)=\left(\rho c_{1}\right)^{2} \sigma_{2}(\bar{A})+m(m-1) n(\rho)^{2} / 8 \\
& -\frac{1}{2}(m-1) c_{1} \rho n(\rho) \sigma_{1}(\bar{A})+\sigma_{1}\left(A_{1}\right) \sigma_{1}\left(A_{2}\right)-\sigma_{1}\left(A_{1} A_{2}\right) \\
& +\left((m-1) n(\rho) / 2-\rho c_{1} \sigma_{1}(\bar{A})\right) \sigma_{1}\left(A_{1}+A_{2}\right)+\rho c_{1} \sigma_{1}\left(\bar{A}\left(A_{1}+A_{2}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{1}\left(A_{1}\right) & =\beta(U) / 2, \quad \sigma_{1}\left(A_{2}\right)=\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \beta^{\sharp}\right\rangle / 2, \\
\sigma_{1}\left(A_{1} A_{2}\right) & =\left(b^{2}-\beta(N)^{2}\right)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp}\right)+U, U\right\rangle / 4, \\
\sigma_{1}\left(\bar{A}\left(A_{1}+A_{2}\right)\right) & =\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \bar{A}\left(\beta^{\sharp \top}\right)\right\rangle .
\end{aligned}
$$

From the above (4.10) follows.
In next proposition, we express Z through \bar{Z}, see (4.2), and invariants of \mathcal{D} with respect to a.
Proposition 4.4. Let g be a new Riemannian metric determined by an integrable distribution \mathcal{D}, a 1-form β and a function $\phi(s)$ on ($M, a)$ with conditions (2.4), (2.10). Then

$$
\rho Z=\mathcal{Z}+\gamma_{3} \beta(\mathcal{Z}) \beta^{\sharp \top},
$$

where the vector field \mathcal{Z} is given by

$$
\begin{aligned}
\mathcal{Z} & =\left[p_{1} \bar{\nabla}^{\top}\left(\gamma_{1} / \phi\right)+p_{2} \bar{\nabla}^{\top}\left(c_{1} / \phi(s)\right)\right] \phi(s)^{-1}+\left[p_{3} \bar{Z}+p_{4} \bar{A}\left(\beta^{\sharp \top}\right)+p_{5} \bar{\nabla}^{\top}(\beta(N))\right] \phi^{-2}, \\
p_{1} & =c_{1}\left(\left(4 \rho_{1} \gamma_{1}-\rho_{0}+3 \rho_{1} s \gamma_{1}^{2}\right) b^{2}-\rho+c_{1}^{2} \rho_{1} s\right) \beta(N)-\rho_{1}\left(2 s \gamma_{1}+1\right) c_{1}^{2} \beta(N)^{2} \\
& -\rho_{1}\left(s \gamma_{1}+1\right) b^{2} c_{1}^{2}+\gamma_{1}\left(\rho_{0}-2 \gamma_{1} \rho_{1}-\gamma_{1}^{2} \rho_{1} s\right) b^{4}+\gamma_{1} \rho b^{2}, \\
p_{2} & =\left(\rho_{0}-2 \rho_{1} s \gamma_{1}^{2}-3 \rho_{1} \gamma_{1}\right) c_{1} \beta(N)^{2}+\left(\gamma_{1}\left(2 \gamma_{1} \rho_{1}+\gamma_{1}^{2} \rho_{1} s-\rho_{0}\right) b^{2}\right. \\
& \left.+\rho_{1}\left(2+3 s \gamma_{1}\right) c_{1}^{2}-\gamma_{1} \rho\right) \beta(N)-c_{1}^{3} \rho_{1} s+\left(\rho-\gamma_{1} \rho_{1}\left(s \gamma_{1}+1\right) b^{2}\right) c_{1}, \\
p_{3} & =\gamma_{1}\left(3 \gamma_{1} \rho_{1}+2 \gamma_{1}^{2} \rho_{1} s-\rho_{0}\right) c_{1} \beta(N)^{3}+\left(\left(\rho_{0}-5 \rho_{1} s \gamma_{1}^{2}-5 \rho_{1} \gamma_{1}\right) c_{1}^{2}+\gamma_{1}^{2} \rho\right. \\
& \left.+\gamma_{1}^{2}\left(\rho_{0}-2 \gamma_{1} \rho_{1}-\gamma_{1}^{2} \rho_{1} s\right) b^{2}\right) \beta(N)^{2}+\left(2 \rho_{1}\left(1+2 s \gamma_{1}\right) c_{1}^{3}\right. \\
& \left.+\gamma_{1} c_{1}\left(\left(3 \gamma_{1} \rho_{1}+2 \gamma_{1}^{2} \rho_{1} s-\rho_{0}\right) b^{2}-2 \rho\right)\right) \beta(N)-c_{1}^{4} \rho_{1} s+\left(\rho-\gamma_{1} \rho_{1}\left(s \gamma_{1}+1\right) b^{2}\right) c_{1}^{2}, \\
p_{4} & =\gamma_{1}\left(\rho_{0}-2 \gamma_{1}^{2} \rho_{1} s-3 \gamma_{1} \rho_{1}\right) c_{1} \beta(N)^{2}+\gamma_{1} c_{1}\left(\left(\rho_{0}-2 \gamma_{1} \rho_{1}-\gamma_{1}^{2} \rho_{1} s\right) b^{2}+\rho\right) \\
& +\left[\left(4 \rho_{1} \gamma_{1}-\rho_{0}+3 \rho_{1} s \gamma_{1}^{2}\right) c_{1}^{2}+\gamma_{1}^{2}\left(2 \gamma_{1} \rho_{1}+\gamma_{1}^{2} \rho_{1} s-\rho_{0}\right) b^{2}-\gamma_{1}^{2} \rho\right] \beta(N)-\rho_{1}\left(s \gamma_{1}+1\right) c_{1}^{3}, \\
p_{5} & =\gamma_{1}\left[c_{1}^{3} \rho_{1} s-\rho_{1}\left(2 s \gamma_{1}+1\right) c_{1}^{2} \beta(N)+c_{1}\left(\gamma_{1} \rho_{1}\left(1+\gamma_{1} s\right) b^{2}-\rho\right)\right] .
\end{aligned}
$$

Moreover, if β^{\sharp} is tangent to \mathcal{D} and $b=\mathrm{const}$ then

$$
\begin{aligned}
& \mathcal{Z}=\phi^{-2}\left\{c_{1}^{2}\left[\rho-c_{1}^{2} \rho_{1} s-\gamma_{1} \rho_{1}\left(s \gamma_{1}+1\right) b^{2}\right] \bar{Z}\right. \\
& \left.+c_{1}\left[\gamma_{1} \rho-\rho_{1}\left(s \gamma_{1}+1\right) c_{1}^{2}+\gamma_{1}\left(\rho_{0}-2 \gamma_{1} \rho_{1}-\gamma_{1}^{2} \rho_{1} s\right) b^{2}\right] \bar{A}\left(\beta^{\sharp}\right)\right\} .
\end{aligned}
$$

Proof. Extend $X \in T_{x} \mathcal{F}$ onto a neighborhood of a point $x \in M$ with the property $\left(\bar{\nabla}_{Y} X\right)^{\top}=0$ for any $Y \in T_{x} M$. By formula (4.6), we obtain at x :

$$
\begin{equation*}
g(Z, X)=g([X, \nu], \nu) \tag{4.11}
\end{equation*}
$$

Using equalities $\nu=\phi^{-1}\left(c_{1} N-\gamma_{1} \beta^{\sharp}\right)$ and $[X, f Y]=X(f) Y+f[X, Y]$ we get

$$
\begin{align*}
g([X, \nu], \nu) & =\left(c_{1} / \phi\right) X\left(c_{1} / \phi\right) g(N, N)-X\left(c_{1} \gamma_{1} / \phi^{2}\right) g\left(N, \beta^{\sharp}\right) \\
& +\left(\gamma_{1} / \phi\right) X\left(\gamma_{1} / \phi\right) g\left(\beta^{\sharp}, \beta^{\sharp}\right)+\left(c_{1} / \phi\right)^{2} g([X, N], N) \\
& -\left(\gamma_{1} c_{1} / \phi^{2}\right)\left[g\left(\left[X, \beta^{\sharp}\right], N\right)+g\left([X, N], \beta^{\sharp}\right)\right]+\left(\gamma_{1} / \phi\right)^{2} g\left(\left[X, \beta^{\sharp}\right], \beta^{\sharp}\right) . \tag{4.12}
\end{align*}
$$

To compute first three terms in (4.12), by (2.2) for $p=1$,

$$
\begin{equation*}
g(u, v)=\rho\langle u, v\rangle+\rho_{0} \beta(u) \beta(v)+\rho_{1}(\beta(u)\langle n, v\rangle+\beta(v)\langle n, u\rangle-\beta(n)\langle n, u\rangle\langle n, v\rangle) \tag{4.13}
\end{equation*}
$$

and Lemma 2.1, we find

$$
\begin{aligned}
g\left(\beta^{\sharp}, \beta^{\sharp}\right) & =\rho b^{2}+\rho_{0} b^{4}+2 \rho_{1} b^{2} s-\rho_{1} s^{3}, \\
g\left(N, \beta^{\sharp}\right) & =\left(\rho+\rho_{0} b^{2}+\rho_{1} s\right) \beta(N)+\rho_{1}\left(b^{2}-s^{2}\right)\langle n, N\rangle, \\
g(N, N) & =\rho+\rho_{0} \beta(N)^{2}+2 \rho_{1} \beta(N)\langle n, N\rangle-\rho_{1} s\langle n, N\rangle^{2} .
\end{aligned}
$$

To compute last four terms in (4.12), we will use

$$
\begin{aligned}
& {\left[X, \beta^{\sharp}\right]=\left[X, \beta^{\sharp \top}\right]+X(\beta(N)) N+\beta(N)(\langle Z, X\rangle N-\bar{A}(X)),} \\
& {[X, N]=\bar{\nabla}_{X} N-\bar{\nabla}_{N} X=-\bar{A}(X)-\left\langle\bar{\nabla}_{N} X, N\right\rangle N=\langle\bar{Z}, X\rangle N-\bar{A}(X),}
\end{aligned}
$$

and by (4.13) and Lemma 2.1, obtain the equalities

$$
\begin{aligned}
g\left([X, N], \beta^{\sharp}\right) & =\left(\rho+\rho_{0} b^{2}+\rho_{1} s\right)\left\langle[X, N], \beta^{\sharp}\right\rangle+\rho_{1}\left(b^{2}-s^{2}\right)\langle[X, N], n\rangle, \\
g\left(\left[X, \beta^{\sharp}\right], \beta^{\sharp}\right) & =\left(\rho+\rho_{0} b^{2}+\rho_{1} s\right)\left\langle\left[X, \beta^{\sharp}\right], \beta^{\sharp}\right\rangle+\rho_{1}\left(b^{2}-s^{2}\right)\left\langle\left[X, \beta^{\sharp}\right], n\right\rangle, \\
g([X, N], N) & =\rho\langle[X, N], N\rangle+\left(\rho_{0} \beta(N)+\rho_{1}\langle n, N\rangle\right)\left\langle[X, N], \beta^{\sharp}\right\rangle \\
& +\rho_{1}(\beta(N)-s\langle n, N\rangle)\langle[X, N], n\rangle, \\
g\left(\left[X, \beta^{\sharp}\right], N\right) & =\rho\left\langle\left[X, \beta^{\sharp}\right], N\right\rangle+\left(\rho_{0} \beta(N)+\rho_{1}\langle n, N\rangle\right)\left\langle\left[X, \beta^{\sharp}\right], \beta^{\sharp}\right\rangle \\
& +\rho_{1}(\beta(N)-s\langle n, N\rangle)\left\langle\left[X, \beta^{\sharp}\right], n\right\rangle .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& g([X, \nu], \nu)=\left(c_{1} / \phi\right) X\left(c_{1} / \phi\right)\left[\rho+\rho_{0} \beta(N)^{2}+2 \rho_{1} \beta(N)\langle n, N\rangle\right. \\
& \left.\quad-\rho_{1} s\langle n, N\rangle^{2}\right]-X\left(\gamma_{1} c_{1} / \phi^{2}\right)\left[\left(\rho+\rho_{0} b^{2}+\rho_{1} s\right) \beta(N)+\rho_{1}\left(b^{2}\right.\right. \\
& \left.\left.\quad-s^{2}\right)\langle n, N\rangle\right]+\left(\gamma_{1} / \phi\right) X\left(\gamma_{1} / \phi\right)\left[\rho b^{2}+\rho_{0} b^{4}+2 \rho_{1} b^{2} s-\rho_{1} s^{3}\right] \\
& \quad+\left(c_{1} \phi\right)^{2}\left[\rho\langle[X, N], N\rangle+\left(\rho_{0} \beta(N)+\rho_{1}\langle n, N\rangle\right) \beta([X, N])\right. \\
& \left.\quad+\rho_{1}(\beta(N)-s\langle n, N\rangle)\langle n,[X, N]\rangle\right]-\left(\gamma_{1} c_{1} / \phi^{2}\right)\left[\rho\left\langle\left[X, \beta^{\sharp}\right], N\right\rangle+\left(\rho_{0} \beta(N)\right.\right. \\
& \left.\left.\quad+\rho_{1}\langle n, N\rangle\right) \beta\left(\left[X, \beta^{\sharp}\right]\right)+\rho_{1}(\beta(N)-s\langle n, N\rangle)\left\langle n,\left[X, \beta^{\sharp}\right]\right\rangle\right] \\
& \quad+\left(\gamma_{1} c_{1} / \phi^{2}\right)\left[\left(\rho+\rho_{0} b^{2}+\rho_{1} s\right) \beta([X, N])+\rho_{1}\left(b^{2}-s^{2}\right)\langle n,[X, N]\rangle\right] \\
& \quad+\left(\gamma_{1}^{2} / \phi^{2}\right)\left[\left(\rho+\rho_{0} b^{2}+\rho_{1} s\right) \beta\left(\left[X, \beta^{\sharp}\right]\right)+\rho_{1}\left(b^{2}-s^{2}\right)\left\langle n,\left[X, \beta^{\sharp}\right]\right\rangle\right] .
\end{aligned}
$$

Note that $\langle n, N\rangle=c_{1}-\gamma_{1} \beta(N)$ and $\beta(n)=c_{1} \beta(N)-\gamma_{1} b^{2}$, see (2.5), and

$$
\begin{aligned}
\langle[X, N], N\rangle & =\langle\bar{Z}, X\rangle, \\
\left\langle[X, N], \beta^{\sharp}\right\rangle & =\left\langle\beta(N) \bar{Z}-\bar{A}\left(\beta^{\sharp T}\right), X\right\rangle, \\
\langle[X, N], n\rangle & =c_{1}\langle[X, N], N\rangle-\gamma_{1}\left\langle[X, N], \beta^{\sharp}\right\rangle \\
& =\left\langle\left(c_{1}-\gamma_{1} \beta(N)\right) \bar{Z}+\gamma_{1} \bar{A}\left(\beta^{\sharp T}\right), X\right\rangle, \\
\left\langle\left[X, \beta^{\sharp}\right], N\right\rangle & =\langle\bar{\nabla}(\beta(N))+\beta(N) \bar{Z}, X\rangle, \\
\left\langle\left[X, \beta^{\sharp}\right], \beta^{\sharp}\right\rangle & =b X(b)-\left\langle\overline{\nabla_{\beta}} \beta^{\sharp} X, \beta^{\sharp}\right\rangle=\left\langle b \bar{\nabla} b+\beta(N)^{2} \bar{Z}-\beta(N) \bar{A}\left(\beta^{\sharp T}\right), X\right\rangle, \\
\left\langle\left[X, \beta^{\sharp}\right], n\right\rangle & =c_{1}\left\langle\left[X, \beta^{\sharp}\right], N\right\rangle-\gamma_{1}\left\langle\left[X, \beta^{\sharp}\right], \beta^{\sharp}\right\rangle \\
& =\left\langle\left(c_{1} \beta(N)-\gamma_{1} \beta(N)^{2}\right) \bar{Z}-\gamma_{1} b \bar{\nabla} b+\gamma_{1} \beta(N) \bar{A}\left(\beta^{\sharp T}\right), X\right\rangle .
\end{aligned}
$$

By (4.11), $g(Z, X)=\langle\mathcal{Z}, X\rangle$. With the help of Lemma 2.2 we complete the proof.

5 The Reeb type integral formula

In this section we apply results in Sections $1-4$ to prove a new integral formula for a closed Riemannian manifold with a set of linearly independent 1 -forms and a codimension one distribution, which generalizes the Reeb's integral formula (0.1).

Theorem 5.1. Let g be a new Riemannian metric determined by $\mathcal{D}=\operatorname{ker} \omega$, 1 -forms $\beta_{i}(1 \leq i \leq p)$ on a closed Riemannian manifold (M, a) and a function $\phi(s)$, where $s=\left(s_{1}, \ldots, s_{p}\right)$, with conditions (2.4), (2.10). Then

$$
\begin{align*}
& \int_{M} \mu_{g}(n)(\rho \phi)^{-1}\left\{\rho c_{1} \sigma_{1}(\bar{A})-(m / 2) n(\rho)+\rho \gamma_{1}^{i}\left(\beta_{i}(\bar{Z})-N\left(\beta_{i}(N)\right)\right)+\beta_{i}\left(U^{i}\right)\right. \\
& \left..1) \quad-\gamma_{3}^{i j}\left\langle\mathcal{A}\left(\beta_{i}^{\sharp \top}\right), \beta_{j}^{\sharp}\right\rangle-\rho \phi\left(\beta_{i}^{\sharp}\left(\gamma_{1}^{i} \phi\right)+\gamma_{1}^{i} \phi \beta_{i}^{\sharp}\left(\log \mu_{g}(n)\right)\right)\right\} \mathrm{d}^{2} \operatorname{vol}_{a}=0 . \tag{5.1}
\end{align*}
$$

Proof. For the metric g the Reeb's integral formula (0.1) reads

$$
\begin{equation*}
\int_{M} H_{\beta} \mathrm{dvol}_{g}=0 . \tag{5.2}
\end{equation*}
$$

By (5.2), we have

$$
\int_{M} \mu_{g}(n) \sigma_{1}\left(A^{g}\right){\mathrm{d} \operatorname{vol}_{a}=0 .} .
$$

Corollary 4.2 and using $f^{i} \overline{\operatorname{div}} \beta_{i}^{\sharp}=\overline{\operatorname{div}}\left(f^{i} \beta_{i}^{\sharp}\right)-\beta_{i}^{\sharp}\left(f^{i}\right)$ with $f^{i}=\mu_{g}(n) \gamma_{1}^{i} / \phi$, yield (5.1).

The integral formula (5.1) holds when all 1 -forms are defined outside a closed submanifold of codimension ≥ 2 under convergence of some integrals, see discussion in $[7,16]$. The singular case is important since many manifolds admit no codimensionone distributions or foliations, while all of them admit non-vanishing 1 -forms outside some "set of singularities".
Corollary 5.2. In conditions of Theorem 5.1 for $p=1$, let b and $\beta(N)$ be constant. Then

$$
\begin{equation*}
\int_{M}\left\langle q_{1} \bar{A}\left(\beta^{\sharp \top}\right)+q_{2} \bar{Z}, \beta^{\sharp}\right\rangle \mathrm{dvol}_{a}=0, \tag{5.3}
\end{equation*}
$$

where the constants q_{1} and q_{2} are given by

$$
\begin{aligned}
& q_{1}=-\rho\left(\rho+\left(b^{2}-\beta(N)^{2}\right) \gamma_{2}\right)^{-1}\left(c_{1} \rho_{1} \gamma_{1}\left(1+s \gamma_{1}\right)+\gamma_{2}\left(c_{1}-\beta(N) \gamma_{1}\right)\right) \\
& q_{2}=\gamma_{1} \rho-c_{1} \rho_{1} \rho\left(\rho+\left(b^{2}-\beta(N)^{2}\right) \gamma_{2}\right)^{-1}\left(1+s \gamma_{1}\right)\left(c_{1}-\beta(N) \gamma_{1}\right)
\end{aligned}
$$

Proof. If b and $\beta(N)$ are constant, that is β^{\sharp} and its \mathcal{D}^{\perp}-component have constant lengths, then $s, \rho, \rho_{i}, \gamma_{i}, c_{1}$ and $\phi(s), \mu_{g}(n)$ are also constant. In this case, (5.1) yields (5.3).

There are topological obstructions to the existence of codimension one totally geodesic and Riemannian foliations on a closed Riemannian manifold, see [4, 6]. For such foliations we get
Corollary 5.3. In conditions of Theorem 5.1 for $p=1$, let b and $\beta(N)$ be constant. (i) If $\bar{A}=0$ and $q_{2} \neq 0$ then either $\beta(\bar{Z}) \equiv 0$ or $\beta(\bar{Z})_{x} \cdot \beta(\bar{Z})_{x^{\prime}}<0$ for some points $x \neq x^{\prime}$. (ii) If $\bar{Z}=0$ and $q_{1} \neq 0$ then either $\left\langle\bar{A}\left(\beta^{\sharp \top}\right), \beta^{\sharp}\right\rangle \equiv 0$ or $\left\langle\bar{A}\left(\beta^{\sharp \top}\right) \text {, } \beta^{\sharp}\right\rangle_{x}$. $\left\langle\bar{A}\left(\beta^{\sharp \top}\right), \beta^{\sharp}\right\rangle_{x^{\prime}}<0$ for some points $x \neq x^{\prime}$.

Example 5.1. (i) For Randers metric $(p=1)$, by (5.1) we get, see [13],

$$
\begin{align*}
& \int_{M}\left(c c_{1}\right)^{m+1} c^{-1}\left(\left(c c_{1}\right) \sigma_{1}(\bar{A})-\frac{m+2}{2}\left(N+c_{1}^{-1} \beta^{\sharp}\right)\left(c c_{1}\right)+c_{1} N(c)\right. \\
& \left.\quad-\left(c_{1}-c\right)\left[N(c)+\left\langle c^{-1} \bar{A}\left(\beta^{\sharp \top}\right)+\bar{Z}, \beta^{\sharp}\right\rangle\right]\right) \mathrm{d} \operatorname{vol}_{a}=0, \tag{5.4}
\end{align*}
$$

which is the Reeb formula when $\beta=0$. If $\beta(N)=0$ then (5.4) reads

$$
\int_{M} c^{2 m+1}\left(c^{2} \sigma_{1}(\bar{A})-(m+1) c N(c)-(m+2) \beta^{\sharp}(c)\right) \mathrm{d} \operatorname{vol}_{a}=0 .
$$

If b and $\beta(N) \neq 0$ are constant then (5.4) reads $\int_{M}\left\langle\bar{A}\left(\beta^{\sharp \top}\right)+c \bar{Z}, \beta^{\sharp}\right\rangle{\mathrm{d} v \operatorname{vol}_{a}}=0$, see also (5.3) with $q_{1}=c^{-1} c_{1}\left(c-c_{1}\right)$ and $q_{2}=c_{1}\left(c-c_{1}\right)$.
(ii) For Kropina metric, if $\beta(N)=0$ then $\mu_{g}(n)=(2 / b)^{2 m+2}$, and

$$
\begin{aligned}
& \gamma_{1}=-\sqrt{2} /(2 b), \quad \gamma_{2}=0, \quad c_{1}=1 / \sqrt{2} \\
& s=b / \sqrt{2}, \quad \rho=4 / b^{2}, \quad \rho_{0}=12 / b^{4}, \quad \rho_{1}=-8 \sqrt{2} / b^{3}
\end{aligned}
$$

Hence, by Proposition 4.1 for $p=1, \sigma_{1}\left(A^{g}\right)=\frac{b}{2} \sigma_{1}(\bar{A})-\frac{1}{2} \overline{\operatorname{div}} \beta^{\sharp}+\frac{m}{\sqrt{2}} n(b)+\frac{1}{2 b} \beta^{\sharp}(b)$, and, we get integral formula

$$
\int_{M}\left(\frac{2}{b}\right)^{2 m+2}\left\{b \sigma_{1}(\bar{A})+\sqrt{2} m n(b)-\frac{2 m+1}{b} \beta^{\sharp}(b)\right\} \mathrm{d} \operatorname{vol}_{a}=0
$$

which for $b=$ const reduces to (0.1) for metric a.
(iii) The following application of (5.3) (when b and $\beta(N)$ are constant) seems to be interesting. Let $\bar{Z}=0, q_{1} \neq 0$ and α-unit vector field $X \in \mathfrak{X}_{\mathcal{D}}$ be an eigenvector of \bar{A} with an eigenvalue $\lambda: M \backslash \Sigma \rightarrow \mathbb{R}$. Then $\beta^{\sharp}=\varepsilon^{\prime} X+\varepsilon N$, where $\varepsilon=$ const $\in\left(0, \delta_{0}\right)$ and $\varepsilon^{\prime}=$ const $\in\left(0, \sqrt{1-\varepsilon^{2}}\right)$, obeys (5.3). Thus, $\int_{M} \lambda \mathrm{~d}_{\mathrm{vol}}^{a}$ $=0$. Consequently, either $\lambda \equiv 0$ on M or $\lambda(x) \lambda\left(x^{\prime}\right)<0$ for some points $x \neq x^{\prime}$. Furthermore, this implies Reeb formula (0.1) for $\langle\cdot, \cdot\rangle$:

$$
\int_{M} \sigma_{1}(\bar{A}) \mathrm{dvol}_{a}=\sum_{i} \int_{M} \lambda_{i} \mathrm{dvol}_{a}=0 .
$$

6 The counterpart of Reeb integral formula

In this section we assume for simplicity that \mathcal{D} is integrable and $p=1$, and use (α, β)-metrics.

The counterpart of the Reeb integral formula for the second mean curvature reads

$$
\begin{equation*}
\int_{M}\left(2 \sigma_{2}(\bar{A})-\overline{\operatorname{Ric}}_{N, N}\right) \mathrm{d} \operatorname{vol}_{a}=0 \tag{6.1}
\end{equation*}
$$

Here $\overline{\operatorname{Ric}}_{N, N}=\operatorname{Tr}_{a}\left(u \rightarrow \bar{R}_{N, u} N\right)$ is the Ricci curvature of a in the N-direction. The proof of (6.1), see e.g. [11], is based on the Divergence theorem applied to

$$
\overline{\operatorname{div}}\left(\sigma_{1}(\bar{A}) N+\bar{Z}\right)=\overline{\operatorname{Ric}}_{N, N}-2 \sigma_{2}(\bar{A})
$$

We will generalize (6.1) for codimension one foliations with general (α, β)-metrics on M. In this case, the volume form of g with μ_{g} given in (3.6) obeys

$$
\begin{equation*}
\mathrm{d} \operatorname{vol}_{g}=\mu_{g}(n) \mathrm{d}_{\operatorname{vol}_{a}} \tag{6.2}
\end{equation*}
$$

Let $\operatorname{Ric}_{\nu, \nu}^{g}=\operatorname{Tr}_{g}\left(u \rightarrow R_{\nu, u}^{g} \nu\right)$ be the Ricci curvature of g in the ν-direction, where $R_{u, v}^{g}=\left[\nabla_{v}, \nabla_{u}\right]-\nabla_{[v, u]}$ is the curvature tensor derived using the Levi-Civita connection of g. The Chern connection D^{ν} is torsion free and almost metric, it is determined by

$$
\begin{equation*}
g\left(D_{u}^{\nu} v, w\right)-g\left(\nabla_{u} v, w\right)=C_{\nu}\left(D_{w}^{\nu} \nu, u, v\right)-C_{\nu}\left(D_{u}^{\nu} \nu, v, w\right)-C_{\nu}\left(D_{v}^{\nu} \nu, u, w\right) \tag{6.3}
\end{equation*}
$$

see [14], for any vector fields u, v, w, where $g\left(\nabla_{u} v, w\right)$ is given in (4.6).
The difference $\mathcal{T}=D^{\nu}-\nabla$ is called the contorsion tensor. It is a symmetric tensor because both connections, ∇ and D^{ν}, are torsion-free. By (6.3), $D_{\nu}^{\nu} \nu=\nabla_{\nu} \nu$ holds; hence, $\mathcal{T}_{\nu} \nu=0$ (thus, ν is geodesic for F if and only if it is geodesic for g).

Comparing the curvature $R_{u, v}^{D}=\left[D_{v}^{\nu}, D_{u}^{\nu}\right]-D_{[v, u]}^{\nu}$ of D^{ν} with $R_{u, v}^{g}$, we find

$$
\begin{equation*}
R_{\nu, u}^{D}-R_{\nu, u}^{g}=\left(\nabla_{u} \mathcal{T}\right)_{\nu}-\left(\nabla_{\nu} \mathcal{T}\right)_{u}-\left[\mathcal{T}_{\nu}, \mathcal{T}_{u}\right], \quad u \in T M \tag{6.4}
\end{equation*}
$$

In [5], the Ricci curvature $\operatorname{Ric}_{y}^{D}=\operatorname{Tr}_{g}\left(u \rightarrow R_{y, u}^{D} y\right)$ of (α, β)-metric is expressed through $\overline{\operatorname{Ric}}_{y}$ of α; in particular, $\bar{\nabla} \beta=0$ provides $\operatorname{Ric}_{y}^{D}=\overline{\operatorname{Ric}}_{y}(y \neq 0)$.

Let C_{ν}^{\sharp} be a $(1,1)$-tensor g-dual to the symmetric bilinear form $C_{\nu}(Z, \cdot, \cdot)$:

$$
g\left(C_{\nu}^{\sharp}(u), v\right)=C_{\nu}(Z, u, v), \quad u, v \in T M
$$

Note that $A^{g}+C_{\nu}^{\sharp}$ is the shape operator of the leaves with respect to D^{ν}, see [13]. By (6.3), we get

$$
\begin{equation*}
\mathcal{T}_{\nu}=-C_{\nu}^{\sharp}, \quad \operatorname{Tr} \mathcal{T}_{\nu}=-\sigma_{1}\left(C_{\nu}^{\sharp}\right)=-I_{\nu}(Z) . \tag{6.5}
\end{equation*}
$$

Unlike Theorem 5.1, the following theorem contains non-Riemannian quantities.
Theorem 6.1. Let g be a new metric determined by a codimension-one foliation $\mathcal{F}(T \mathcal{F}=\mathcal{D})$, a 1-form β on (M, a), and a function $\phi(s)$ with the conditions (2.4),
(2.10) and $\bar{\nabla} \beta^{\sharp}=0$. Then

$$
\begin{aligned}
& \int_{M}\left\{\left[(c _ { 1 } \rho) ^ { 2 } \left(\underline{\left(2 \sigma_{2}(\bar{A})-\overline{\operatorname{Ric}}_{N, N}\right)+\frac{1}{4} m(m-1) n(\rho)^{2}-(m-1) c_{1} \rho n(\rho) \sigma_{1}(\bar{A})}\right.\right.\right. \\
& +\frac{1}{2} \beta(U)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp T}\right)+U, \beta^{\sharp}\right\rangle-\frac{1}{2}\left(b^{2}-\beta(N)^{2}\right)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp T}\right)+U, U\right\rangle-\left(2 \rho c_{1} \sigma_{1}(\bar{A})\right. \\
& \left.-(m-1) n(\rho))\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp T}\right)+U, \beta^{\sharp}\right\rangle+2 \rho c_{1}\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp T}\right)+U, \bar{A}\left(\beta^{\sharp T}\right)\right\rangle\right](\rho \phi(s))^{-2}
\end{aligned}
$$

$\left(6.6-I_{\nu}\left(\left(A^{g}+C_{\nu}^{\sharp}+\sigma_{1}\left(A^{g}\right) \mathrm{id}\right) Z\right)-2 \sigma_{1}\left(A^{g} C_{\nu}^{\sharp}\right)-\sigma_{1}\left(\left(C_{\nu}^{\sharp}\right)^{2}\right)\right\} \mu_{g}(n) \mathrm{d}^{2} \operatorname{vol}_{a}=0$,
where A^{g}, \mathcal{A} and U are given in Proposition 4.1, Z is given in Proposition 4.4 and $\mu_{g}(n)$ is given in (3.6) with $y=n$ and $s=\beta(n)$.

Proof. We will use the adjoint $(1,2)$-tensor \mathcal{T}^{*} defined by

$$
g\left(\mathcal{T}_{u}^{*} v, w\right)=g\left(\mathcal{T}_{u} w, v\right)
$$

for $u, v, w \in T M$. Note that $\mathcal{T}_{\nu}^{*} \nu=0$ and define $\operatorname{Tr}_{g} \mathcal{T}^{*}=\sum_{i} \mathcal{T}_{b_{i}}^{*} b_{i}$ - the trace of \mathcal{T}^{*} with respect to g. Assuming $\left(\nabla_{\nu} b_{i}\right)^{\top}=0$ and $\left(\nabla_{b_{i}} \nu\right)^{\perp}=0$ at a point $x \in M$, calculate at x :

$$
\begin{aligned}
& \sum_{i} g\left(\left(\nabla_{i} \mathcal{T}\right)_{\nu} \nu, b_{i}\right)=2 \sum_{i} g\left(\mathcal{T}_{\nu}^{*} b_{i}, A^{g}\left(b_{i}\right)\right)=2 \sigma_{1}\left(C_{\nu}^{\sharp} A^{g}\right), \\
& \sum_{i} g\left(\left(\nabla_{\nu} \mathcal{T}\right)_{i} \nu, b_{i}\right)=\operatorname{div}_{g}\left(\operatorname{Tr}_{g} \mathcal{T}^{*}\right), \quad \sum_{i} g\left(\left[\mathcal{T}_{i}, \mathcal{T}_{\nu}\right] \nu, b_{i}\right)=-\sigma_{1}\left(\left(C_{\nu}^{\sharp}\right)^{2}\right),
\end{aligned}
$$

using the symmetry $\mathcal{T}_{i} \nu=\mathcal{T}_{\nu} b_{i}$. Then, applying (6.4) we get

$$
\begin{align*}
\operatorname{Ric}_{\nu, \nu}^{D}-\operatorname{Ric}_{\nu, \nu}^{g} & =\sum_{i}\left[g\left(\left(\nabla_{i} \mathcal{T}\right)_{\nu} \nu, b_{i}\right)-g\left(\left(\nabla_{\nu} \mathcal{T}\right)_{i} \nu, b_{i}\right)+g\left(\left[\mathcal{T}_{i}, \mathcal{T}_{\nu}\right] \nu, b_{i}\right)\right] \\
& =2 \sigma_{1}\left(C_{\nu}^{\sharp} A^{g}\right)-\sigma_{1}\left(\left(C_{\nu}^{\sharp}\right)^{2}\right)-\operatorname{div}_{g}^{\perp}\left(\operatorname{Tr}^{\top} \mathcal{T}^{*}\right) . \tag{6.7}
\end{align*}
$$

From (6.7) and

$$
\operatorname{div}_{g}^{\perp}\left(\operatorname{Tr}_{g} \mathcal{T}^{*}\right)=\operatorname{div}_{g}\left(\left(\operatorname{Tr}_{g} \mathcal{T}^{*}\right)^{\perp}\right)-g\left(\operatorname{Tr}_{g} \mathcal{T}^{*}, \sigma_{1}\left(A^{g}\right) \nu-Z\right)
$$

we obtain

$$
\begin{align*}
\operatorname{div}_{g}\left(\left(\operatorname{Tr}_{g} \mathcal{T}^{*}\right)^{\perp}\right) & =\operatorname{Ric}_{c, \nu}^{g}-\operatorname{Ric}_{\nu, \nu}^{D} \\
& +g\left(\operatorname{Tr}_{g} \mathcal{T}^{*}, \sigma_{1}\left(A^{g}\right) \nu-Z\right)-2 \sigma_{1}\left(A^{g} C_{\nu}^{\sharp}\right)-\sigma_{1}\left(\left(C_{\nu}^{\sharp}\right)^{2}\right) . \tag{6.8}
\end{align*}
$$

Then, using (6.3) and (6.5), we find

$$
\begin{aligned}
& g\left(\operatorname{Tr}_{g} \mathcal{T}^{*}, \nu\right)=-\sum_{i} C_{\nu}\left(D_{\nu}^{\nu} \nu, b_{i}, b_{i}\right)=-\sigma_{1}\left(C_{\nu}^{\sharp}\right)=-I_{\nu}(Z), \\
& g\left(\operatorname{Tr}_{g} \mathcal{T}^{*}, u\right)=-\sum_{i} C_{\nu}\left(D_{u}^{\nu} \nu, b_{i}, b_{i}\right)=I_{\nu}\left(\left(A^{g}+C_{\nu}^{\sharp}\right)(u)\right)
\end{aligned}
$$

for $u \in \mathcal{D}$. By the above we obtain

$$
g\left(\operatorname{Tr}_{g} \mathcal{T}^{*}, \sigma_{1}\left(A^{g}\right) \nu-Z\right)=-I_{\nu}\left(\left(A^{g}+C_{\nu}^{\sharp}+\sigma_{1}\left(A^{g}\right) \mathrm{id}\right) Z\right)
$$

By conditions, $b=\mathrm{const}$ and $\bar{R}(X, Y) \beta^{\sharp}=0(X, Y \in T M)$. Using

$$
\operatorname{Ric}_{n, n}^{D}=\overline{\operatorname{Ric}}_{n, n}=c_{1}^{2} \overline{\operatorname{Ric}}_{N, N}+\gamma_{1}^{2} \overline{\operatorname{Ric}}_{\beta^{\sharp}, \beta^{\sharp}}-2 c_{1} \gamma_{1} \sum_{i}\left\langle\bar{R}\left(N, b_{i}\right) \beta^{\sharp}, b_{i}\right\rangle
$$

and $\operatorname{Ric}_{\nu, \nu}^{D}=\phi^{-2} \operatorname{Ric}_{n, n}^{D}$, we find

$$
\operatorname{Ric}_{\nu, \nu}^{D}=\left(c_{1} / \phi\right)^{2} \overline{\operatorname{Ric}}_{N, N}
$$

By the above, (6.1) and (6.2) for g, using (6.8) and Corollary 4.3, we find (6.6).
Corollary 6.2. In conditions of Theorem 6.1, let $\beta(N)=$ const, $\bar{Z}=0$ and $q_{3} \neq 0$, where

$$
\begin{aligned}
q_{3} & =\frac{q \rho\left(4 \rho c_{1}-\left(b^{2}-\beta(N)^{2}\right) q\right)-4 \rho^{2} c_{1}^{2} \gamma_{2}}{4\left(\rho+\left(b^{2}-\beta(N)^{2}\right) \gamma_{2}\right)} \\
q & =\rho_{1} c_{1} \gamma_{1}\left(1+s \gamma_{1}\right)-\left(\rho_{0}-\rho_{1} \gamma_{1}\right)\left(c_{1}-\beta(N) \gamma_{1}\right)-\gamma_{1} \gamma_{2} \beta(N)
\end{aligned}
$$

Then $\bar{A}\left(\beta^{\sharp \top}\right)=0$, hence $\operatorname{rank}(\bar{A})<m$. If \mathcal{F} is totally umbilical then \mathcal{F} is totally geodesic.

Proof. By conditions, $s, \rho, \rho_{i}, \gamma_{i}, c_{1}$ are constant (since b and $\beta(N)$ are constant) and $\operatorname{Ric}_{\nu, \nu}^{D}=\operatorname{Ric}_{\nu, \nu}^{g}$. Hence, see (6.8),

$$
\int_{M}\left\{g\left(\operatorname{Tr}_{g} \mathcal{T}^{*}, \sigma_{1}\left(A^{g}\right) \nu-Z\right)-2 \sigma_{1}\left(A^{g} C_{\nu}^{\sharp}\right)-\sigma_{1}\left(\left(C_{\nu}^{\sharp}\right)^{2}\right)\right\} \mathrm{d} \operatorname{vol}_{g}=0 .
$$

Thus, (6.6) and (6.1) yield

$$
\begin{align*}
& \quad \int_{M}\left\{\frac{1}{4} \beta(U)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \beta^{\sharp}\right\rangle-\frac{1}{4}\left(b^{2}-\beta(N)^{2}\right)\left\langle 2 \gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, U\right\rangle\right. \\
& \left.-\rho c_{1} \sigma_{1}(\bar{A})\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \beta^{\sharp}\right\rangle+\rho c_{1}\left\langle\gamma_{3} \mathcal{A}\left(\beta^{\sharp \top}\right)+U, \bar{A}\left(\beta^{\sharp \top}\right)\right\rangle\right\} \mathrm{d} \operatorname{vol}_{a}=0, \tag{6.9}
\end{align*}
$$

where, in view of $\bar{\nabla}_{n}^{\top} \beta^{\sharp \top}=-\gamma_{1} \beta(N) \bar{A}\left(\beta^{\sharp \top}\right)$, we have

$$
U=q \bar{A}\left(\beta^{\sharp \top}\right), \quad \mathcal{A}=-\rho c_{1} \bar{A}+q \operatorname{Sym}\left(\bar{A}\left(\beta^{\sharp \top}\right) \otimes \beta^{\top}\right) .
$$

If $\beta(N)=\mathrm{const}$ then $\beta(\bar{Z})=0$ and $\left\langle\bar{A}\left(\beta^{\sharp \top}\right), \beta^{\sharp \top}\right\rangle=0$:

$$
\begin{aligned}
& 0=\left\langle\bar{\nabla}_{N} \beta^{\sharp}, N\right\rangle=\left\langle\bar{\nabla}_{N}\left(\beta^{\sharp T}+\beta(N) N\right), N\right\rangle=-\left\langle\beta^{\sharp}, \bar{Z}\right\rangle, \\
& 0=\left\langle\bar{\nabla}_{\beta^{\sharp} T} \beta^{\sharp}, N\right\rangle=\left\langle\bar{\nabla}_{\beta^{\sharp}}\left(\beta^{\sharp T}+\beta(N) N\right), N\right\rangle=-\left\langle\bar{A}\left(\beta^{\sharp T}\right), \beta^{\sharp}\right\rangle .
\end{aligned}
$$

By (6.9),

$$
\int_{M} q_{3}\left\|\bar{A}\left(\beta^{\sharp \top}\right)\right\|_{\alpha}^{2} \mathrm{~d} \operatorname{vol}_{a}=0,
$$

and $q_{3} \neq 0$ yields $\bar{A}\left(\beta^{\sharp \top}\right) \equiv 0$. If \mathcal{F} is totally umbilical then $0=\left\langle\bar{A}\left(\beta^{\sharp \top}\right), \beta^{\sharp \top}\right\rangle=$ $\left\|\beta^{\sharp \top}\right\|_{a}^{2} \sigma_{1}(\bar{A})$, hence $\sigma_{1}(\bar{A})=0$. By the above, $\bar{A}=0$ on M.

Example 6.1. For Randers metric, we obtain $q_{3}=\frac{1}{4} c^{2} c_{1}^{2}\left(\left(c-2 c_{1}\right)^{2}-1\right)$ with $c_{1}=c+\beta(N)$ and $c=\sqrt{1-b^{2}+\beta(N)^{2}}$. For Kropina metric, we have $q_{3}=$ $-\frac{1}{16} \beta(N)\left(16 c_{1} s^{3}+b^{2} \beta(N)-\beta(N)^{3}\right) s^{-10}$ with $s=\sqrt{b(b-\beta(N)) / 2}$.

Let $k_{1} \leq k_{2} \leq \ldots \leq k_{m}$ be the eigenvalues of A^{g}. One can consider the integral

$$
U_{\mathcal{F}}=\int_{M} \sum_{i<j}\left(k_{i}-k_{j}\right)^{2} \mathrm{~d} \operatorname{vol}_{g}
$$

which measures "how far from g-umbilicity" is a foliation \mathcal{F}, see [6] for Riemannian case. Put

$$
\mu_{\min }=\min _{y \in T M \backslash\{0\}} \mu_{g_{y}}(y) .
$$

Theorem 6.3. Let g be a new Riemannian metric determined by a codimension-one foliation \mathcal{F}, a 1-form β on (M, a), and a function ϕ with conditions (2.4), (2.10), $\bar{\nabla} \beta=0, \beta(N)=\mathrm{const}$ and $\overline{\operatorname{Ric}}_{N, N} \leq-r<0$. Then

$$
\begin{equation*}
U_{\mathcal{F}} \geq m r\left(c_{1} / \phi(s)\right)^{2} \mu_{\min } \operatorname{Vol}_{a}(M) \tag{6.10}
\end{equation*}
$$

In particular, if $c_{1} \neq 0$ then \mathcal{F} is nowhere g-totally umbilical.

Proof. One may show that

$$
\sum_{i<j}\left(k_{i}-k_{j}\right)^{2}=(m-1) \sigma_{1}^{2}\left(A^{g}\right)-2 m \sigma_{2}\left(A^{g}\right)
$$

Hence, and by (6.1) for g we obtain

$$
U_{\mathcal{F}} \geq-m \int_{M} 2 \sigma_{2}\left(A^{g}\right) \mathrm{d} \operatorname{vol}_{g}=-m \int_{M} \operatorname{Ric}_{\nu, \nu}^{g} \mathrm{~d}_{\operatorname{vol}}^{g} \text {. }
$$

By conditions, $\operatorname{Ric}_{\nu, \nu}^{g}=\left(c_{1} / \phi(s)\right)^{2} \overline{\operatorname{Ric}}_{N, N}$, and $s, \rho, \rho_{i}, \gamma_{i}, c_{1}, \phi(s), \mu_{g}(\nu)$ are constant. Thus,

$$
U_{\mathcal{F}} \geq-m\left(c_{1} / \phi(s)\right)^{2} \mu_{\min } \int_{M} \overline{\operatorname{Ric}}_{N, N} \mathrm{~d}_{\operatorname{vol}}^{a} \text { }
$$

which reduces to (6.10) since our assumption $\overline{\operatorname{Ric}}_{N, N} \leq-r<0$.

Following [3] for Riemannian case, define the energy of a vector field ν by

$$
\mathcal{E}(\nu)=\frac{m+1}{2} \operatorname{Vol}_{g}(M)+\frac{1}{2} \int_{M}\|D \nu\|_{g}^{2} \mathrm{~d} \operatorname{vol}_{g}
$$

By (6.1) for g and the inequality $\|D \nu\|_{g}^{2} \geq \frac{2}{m} \sigma_{2}\left(A^{g}\right)$, see [3], we get the following.
Theorem 6.4. Let g be a new Riemannian metric determined by a codimension-one foliation \mathcal{F}, a 1-form β on (M, a), and a function ϕ with conditions (2.4), (2.10), $\bar{\nabla} \beta^{\sharp}=0$ and $\beta(N)=$ const. Then for a unit g-normal ν,

$$
\mathcal{E}(\nu) \geq \mu_{\text {min }}\left(\frac{m+1}{2} \operatorname{Vol}_{a}(M)+\frac{c_{1}^{2}}{2 m \phi^{2}} \int_{M} \overline{\operatorname{Ric}}_{N, N}{\left.\mathrm{~d} \operatorname{vol}_{a}\right) .}\right.
$$

References

[1] Andrzejewski K., Rovenski V. and Walczak P. Integral formulas in foliations theory, 73-82. In "Geometry and its Applications". Springer Proc. in Math. \& Statistics, 72, Springer (2014).
[2] Bácsó S., Cheng X. and Shen Z. Curvature properties of (α, β)-metrics. Adv. Stud. Pure Math., 48, Math. Soc. Japan, Tokyo, (2007), 73-110.
[3] Brito F. and Walczak P. On the energy of unit vector fields with isolated singularities. Ann. Polon. Math. LXXIII. 3 (2000), 269-274.
[4] Candel A. and Conlon L. Foliations I and II, Amer. Math. Soc. (2000 \& 2003).
[5] Cheng X., Shen Z. and Tian Y. A class of Einstein (α, β)-metrics. Israel J. Math. 192(1) (2012), 221-249.
[6] Langevin R. and Walczak P. Conformal geometry of foliations. Geom. Dedic. 132 (2008), 135-178.
[7] Lużyńczyk M. and Walczak P. New integral formulas for two complementary orthogonal distributions on Riemannian manifolds. Ann. Glob. Anal. Geom. 48 (2015) 195-209.
[8] Matsumoto M. Theory of Finsler spaces with (α, β)-metric. Reports on mathematical physics, 31(1) (1992), 43-83.
[9] Nora T. Seconde forme fondamentale d'une application et d'un feuilletage. Thése, l'Univ. de Limoges (1983), 115 pp.
[10] Reeb G. Sur la courbure moyenne des variétés intégrales d'une équation de Pfaff $\omega=0$. C. R. Acad. Sci. Paris, 231 (1950), 101-102.
[11] Rovenski V. and Walczak P. Topics in extrinsic geometry of codimension-one foliations. Springer, 2011.
[12] Rovenski V. Walczak P. Integral formulas for codimension-one foliated Finsler spaces. Balkan J. Geometry and Its Appl. 21(1), (2016), 76-102.
[13] Rovenski V. and Walczak P. Integral formulas for codimension-one foliated Randers spaces. Publ. Math. Debrecen, 91/1-2, (2017), 95-110.
[14] Shen Y.-B. and Shen Z. Introduction to modern Finsler geometry. Higher Education Press, World Scientific, 2016.
[15] Shen Z. Lectures on Finsler geometry. World Scientific Publishers, 2001.
[16] Walczak P. Integral formulae for foliations with singularities. Coll. Math. 150(1) (2017), 141-148.
[17] Yu C. and Zhu H. On a new class of Finsler metrics. Diff. Geom. and its Appl. 29 (2011), 244-254.

Author's address:
Vladimir Rovenski
Department of Mathematics, University of Haifa,
Mount Carmel, 31905 Haifa, Israel.
E-mail: vrovenski@univ.haifa.ac.il

