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Abstract. Integral formulas are the power tool for obtaining global re-
sults in Analysis and Geometry. We explore the problem: Find integral
formulas for a closed manifold endowed with a set of linearly independent
1-forms (or vector fields). In our recent works in common with P. Walczak,
the problem was examined for a manifold endowed with a codimension-
one foliation and a 1-form β, using approach of Randers norm. Continuing
this study, we introduce new Minkowski norm, determined by Euclidean
norm α, linearly independent 1-forms βi, (1 ≤ i ≤ p) and a function φ
of p variables; this produces a new class of “computable” Finsler met-
rics generalizing Matsumoto’s (α, β)-metric. The geometrical meaning
of our Minkowski norm is that its indicatrix is a rotation hypersurface
with the axis

⋂ p
i=1 kerβi passing through the origin. We explore a Rie-

mannian structure, naturally arising from this norm and a codimension-
one distribution kerω of 1-form ω 6= 0, and find the second fundamental
form of kerω through invariants of α, ω, βi and φ. Then we apply the
above to prove new integral formulas for a closed Riemannian manifold
endowed with a codimension-one distribution and linearly independent 1-
forms βi, (1 ≤ i ≤ p), which generalize the Reeb’s integral formula and
its counterpart for the second mean curvature of the distribution.

M.S.C. 2010: 53C12, 53C21.
Key words: Riemannian metric; Minkowski norm, 1-form; shape operator; mean
curvature; Ricci curvature; integral formula.

Integral formulas are the power tool for obtaining global results in Analysis and
Geometry (e.g. generalized Gauss-Bonnet theorem and Minkowski-type formulas for
submanifolds). Such formulas are usually proved applying the Divergence theorem to
appropriate vector field. The first known integral formula by G. Reeb [10], for a closed
Riemannian manifold (M,a) endowed with a 1-form ω 6= 0 tells us that the total mean
curvature H of the distribution kerω vanishes:∫

M

H d vola = 0;(0.1)
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thus, either H ≡ 0 or H(x)H(x′) < 0 for some points x 6= x′. Its counterpart (6.1)
for the second mean curvature of a codimension one foliation (see [9]) has been used
to estimate the energy of a vector field [3] and to prove that codimension-one folia-
tions with negative Ricci curvature are far from being totally umbilical [6]. Recently,
these were extended into infinite series of integral formulas including the higher or-
der mean curvatures of the leaves and curvature tensor, see [1, 7, 11]. The integral
formulas for foliations can be used for prescribing the mean curvatures of the leaves,
e.g. characterizing totally geodesic, totally umbilical and Riemannian foliations.

We explore the problem: Find integral formulas for a closed Riemannian mani-
fold endowed with a set of linearly independent 1-forms (or vector fields). The “max-
imal number of pointwise linearly independent vector fields on a closed manifold” is
an important topological invariant; such vector fields on a sphere Sl are built using
orthogonal multiplications on Rl+1.

In [12, 13], the problem was examined for (M,a) endowed with 1-forms ω 6= 0 and
β, using approach of Randers norm, that is a Euclidean norm α shifted by a small
vector. In the paper we extend this approach for (M,a) with the codimension-one
distribution kerω and p linearly independent 1-forms β1, . . . , βp, by introducing new
Minkowski norm, generalizing (α, β)-norm of M. Matsumoto, see [8]. Remark that
navigation (α, β)-norms appear when p = 2. The (α, β)-metrics form a rich class of
computable Finsler metrics and play an important role in geometry, see [2, 8, 14, 17],

thus we expect that our so called (α, ~β)-metrics will also find many applications.

The paper contains an introduction and six sections. In Section 1 we introduce
and explore the (α, ~β)-norm, determined by Euclidean norm α, linearly independent
1-forms β1, . . . , βp and a function φ of p variables; the indicatrix is a rotational hyper-
surface with p-dimensional rotation axis. The norm produces a class of “computable”
Finsler metrics generalizing Matsumoto’s (α, β)-metric. In Sections 2–4 we study a

new Riemannian structure, naturally arising on M endowed with (α, ~β)-metric with
~β = (β1, . . . , βp) and 1-form ω 6= 0, and calculate the second fundamental form of the
distribution kerω through invariants of α, ω, βi and φ. Sections 5–6 contain applica-
tions to proving new integral formulas for a closed M endowed with a codimension-
one distribution kerω and a set of linearly independent 1-forms, which generalize
the Reeb’s formula (0.1) and its counterpart for the second mean curvature of the
distribution. Using our norm and assuming for simplicity p = 1, we get new esti-
mates of the “non-umbilicity” of a codimension-one distribution and the energy of a
vector field.

1 The (α, ~β)-norm

In this section, we define a new Minkowski norm, generalizing the (α, β)-norm of
M. Matsumoto.

A Minkowski norm on a vector space V m+1 (m ≥ 1) is a function F : V → [0,∞)
with the properties of regularity, positive 1-homogeneity and strong convexity [14]:

M1 : F ∈ C∞(V \ {0}), M2 : F (λ y) = λF (y) for λ > 0 and y ∈ V ,
M3 : For any y ∈ V \{0}, the following symmetric bilinear form is positive definite:

(1.1) gy(u, v) =
1

2

∂2

∂s ∂t

[
F 2(y + su+ tv)

]
| s=t=0

.
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By M2– M3, gλy = gy (λ > 0) and gy(y, y) = F 2(y). As a result of M3, the indicatrix
S := {y ∈ V : F (y) = 1} is a closed, convex smooth hypersurface that surrounds the
origin.

The following symmetric trilinear form is called the Cartan torsion for F :

(1.2) Cy(u, v, w) =
1

4

∂3

∂r ∂s ∂t

[
F 2(y + ru+ sv + tw)

]
| r=s=t=0

,

where y, u, v, w ∈ V and y 6= 0. Note that Cy(u, v, y) = 0 and Cλy = λ−1Cy for
λ > 0 . Vanishing of a 1-form Iy(u) = Trgy Cy(u, · , ·), called the mean Cartan
torsion, characterizes Euclidean norms among all Minkowski norms, see e.g. [14].

Definition 1.1. Given p ∈ N and δi > 0 (1 ≤ i ≤ p), let φ : Π → (0,∞) be a
smooth function on Π =

∏ p
i=1[−δi, δi], and a(· , ·) = 〈· , ·〉 a scalar product with the

Euclidean norm α(y) = 〈y, y〉1/2 on a (m + 1)-dimensional vector space V . Given

linearly independent 1-forms βi (1 ≤ i ≤ p) on V of the norm α(βi) < δi, the (α, ~β)-

norm (see below Lemma 1.3 on regularity) with ~β = (β1, . . . , βp) is defined on V \{0}
by

(1.3) F (y) = α(y)φ(s), s = (s1, . . . , sp), si = βi(y)/α(y).

Usually, we assume φ(0, . . . , 0) = 1. We call α the associated norm (or metric).

The geometrical meaning of (1.3) is that the indicatrix of F is a rotation hyper-
surface in V with the axis

⋂ p
i=1 kerβi passing through the origin, see below Propo-

sition 1.1. For p = 1, (1.3) defines the (α, β)-norm. By shifting the indicatrix of an
(α, β)-norm, we obtain new Minkowski norms, called navigation (α, β)-norms, [17].
The indicatrix of this norm is still a rotation hypersurface, but the rotation axis does
not pass the origin in general. Meanwhile, this is a case of (α, ~β)-norm with p = 2,
whose indicatrix has a two-dimensional rotation axis passing through the origin.

The “musical isomorphisms” ] and [ will be used for rank one and symmetric rank
2 tensors. For example, 〈β]i , u〉 = βi(u) = u[(β]i ). We will use Einstein summation
convention. Set

bij = 〈βi, βj〉 = 〈β]i , β
]
j〉.

A Minkowski norm on V m+1 is Euclidean if and only if it is preserved under the
action of O(m+1). Next, we will clarify the geometric property about the indicatrices

of (α, ~β)-metrics.

Definition 1.2 (The symmetry of a Minkowski norm, see [17]). Let F be a Minkowski
norm on V m+1 and G a subgroup of GL(m + 1,R). Then F is called G-invariant if
the following holds for some affine coordinates (y1, . . . , ym+1) of V :

(1.4) F (y1, . . . , ym+1) = F ((y1, . . . , ym+1)f), y ∈ V, f ∈ G.

The next proposition for p = 1 belongs to [17].

Proposition 1.1. Let F be a Minkowski norm and βi (1 ≤ i ≤ p) linearly independent

1-forms on a vector space V m+1. Then F is an (α, ~β)-norm with ~β = (β1, . . . , βp) if

and only if F is G-invariant, where G = {x ∈ GL(m + 1,R) : x =
(C 0

0 idp

)
, C ∈

GL(m− p+ 1,R) }.
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Proof. Let F = αφ(β1

α , . . . ,
βp
α ) be the (α, ~β)-norm. Let {e1, . . . , em+1} be an 〈· , ·〉-

orthonormal basis such that
⋂ p
i=1 kerβi = span{e1, . . . , em−p+1}. Then βi(y) =∑m+1

j=m−p+2 βi(ej)y
j where

F (y) =
√

(y1)2 + . . .+ (ym+1)2 φ
( ∑m+1

j=m−p+2 β1(ej)y
j√

(y1)2 + . . .+ (ym+1)2
, . . . ,

∑m+1
j=m−p+2 βp(ej)y

j√
(y1)2 + . . .+ (ym+1)2

)
and y = yiei. Hence, F is G-invariant.

Conversely, let F obey (1.4) for G and affine coordinates y = (y1, . . . , ym+1). If
p = m + 1 then for G = {idm+1} one may take βi = e[i and use axiom M2. Let
p ≤ m. By restricting F on the (m − p + 1)-dimensional linear subspace U given
by p equations ym−p+2 = . . . = ym+1 = 0, one obtains an O(m − p + 1)-invariant
Minkowski norm, which must be Euclidean. Thus, there exists B > 0, such that the
norm α(y) = B

√
(y1)2 + . . .+ (ym+1)2 on V obeys α|U = F |U . Set

φ̃(y) = F (y)/α(y) (y 6= 0).

Then φ̃ is G-invariant, hence φ̃ depends on p variables ym−p+2, . . . , ym+1 only. Since
φ̃ is 0-homogeneous, we have φ̃(y) = φ̃(Bym−p+2/α(y), . . . , Bym+1/α(y)), that is
βi = Be[m−p+1+i. �

Define real functions ρ, ρij0 , ρ
i
1 (1 ≤ i, j ≤ p) of variables s = (s1, . . . , sp), see also

(1.3):

ρ = φ
(
φ−

∑
i
siφ̇i

)
, ρij0 = φ φ̈ij + φ̇iφ̇j , ρi1 = φ φ̇i −

∑
j
sj
(
φ φ̈ij + φ̇i φ̇j

)
,

where φ̇i = ∂φ
∂si

, φ̈ij = ∂2φ
∂si∂sj

, etc. Assume in the paper that ρ > 0, thus

φ−
∑

i
siφ̇i > 0.

The following relations hold:

ρ̇i = ρi1, ρ̈ij = (ρi1)′j = −sk(ρik0 )′j .

Proposition 1.2. For (α, ~β)-norm, the bilinear form gy (y 6= 0) in (1.1) is given by

gy(u, v) = ρ〈u, v〉+ ρij0 βi(u)βj(v)

+ ρi1(βi(u)〈y, v〉+ βi(v)〈y, u〉)/α(y)− βi(y)ρi1〈y, u〉〈y, v〉/α3(y).(1.5)

The Cartan tensor of (α, ~β)-norm is expressed by

2Cy(u, v, w) = α−1(y)
∑

i
ρi1
(
Ky(u, v)pyi(w) +Ky(v, w)pyi(u) +Ky(w, u)pyi(v)

)
+ α−1(y)

∑
i,j,k

(φ̇iφ̈jk + φ̇j φ̈ik + φ̇kφ̈ij + φ
...
φ ijk) pyi(u)pyj(v)pyk(w),(1.6)

where pyi = βi − siy
[/α(y) (1 ≤ i ≤ p) are 1-forms and Ky(u, v) = 〈u, v〉 −

〈y, u〉〈y, v〉/α2(y) is the angular metric of the associated metric a = 〈·, ·〉.



The new Minkowski norm and integral formulas 79

Proof. From (1.1) and (1.3) we find

gy(u, v) = [F 2/2]αKy(u, v)/α(y) + [F 2/2]αα〈y, u〉〈y, v〉/α2(y)

+
∑

i
([F 2/2]αβi/α(y))

(
〈y, u〉βi(v) + 〈y, v〉βi(u)

)
+
∑

i,j
[F 2/2]βiβjβi(u)βj(v).(1.7)

Calculating derivatives of 1
2 F

2 = 1
2 α

2φ2(β1/α, . . . , βp/α),

[F 2/2]α = αρ, [F 2/2]βi = αφφ̇i, [F 2/2]αβi = ρi1, [F 2/2]βiβj = ρij0 ,

[F 2/2]αα = ρ+ (
∑

i
si φ̇i)

2 + φ
∑

i,j
sisj φ̈ij(1.8)

and comparing (1.5) and (1.7), completes the proof of (1.5).

We calculate the Cartan tensor of (α, ~β)-norm using (1.2) as

2Cy(u, v, w) = α−1(y)
∑

i
[F 2/2]αβi

(
Ky(u, v)pyi(w) +Ky(v, w)pyi(u) +Ky(w, u)pyi(v)

)
+
∑

i,j,k
[F 2/2]βiβjβk pyi(u)pyj(v)pyk(w).(1.9)

Then using equalities (1.8) and

[F 2/2]βiβjβk = α−1(y)(φ̇i φ̈jk + φ̇j φ̈ik + φ̇k φ̈ij + φ
...
φ ijk),

and comparing (1.9) and (1.6) completes the proof of (1.6). �

Note that if si = 0 (1 ≤ i ≤ p) then ρ = 1. By Proposition 1.2, gy (for small si
and ρ > 0) of (α, ~β)-norm can be viewed as a perturbed scalar product 〈· , ·〉.

Define nonnegative quantities: R1 = max s∈Π ‖ρ1(s)‖ – the maximal norm of the
vector ρ1 = (ρ1

i ), R0 = max s∈Π ‖ρ0(s)‖ – the maximal norm of the symmetric matrix

ρ0 = (ρij0 ), and R = min s∈Π ρ(s), where Π =
∏ p

i=1[−δi, δi] and δi > 0.

Lemma 1.3 (Regularity). Let δ0 := (δ2
1 + . . .+ δ2

p)
1
2 obeys the following inequality:

(1.10) δ0 <
2R

3R1 +
√

9R2
1 + 4RR0

.

Then F in (1.3) is a Minkowski norm on V .

Proof. Since α(βi) ≤ δi (1 ≤ i ≤ p), the terms in (1.5) obey the inequalities when
y 6= 0:

|ρij0 βi ⊗ βj | ≤ |ρ
ij
0 δiδj | ≤ R0δ

2
0 ,

α−1(y)|ρi1(βi ⊗ y[ + y[ ⊗ βi)| ≤ 2|ρi1δi| ≤ 2R1δ0,

α−3(y)|(βi(y)ρi1)y[ ⊗ y[| ≤ |ρi1δi| ≤ R1δ0.

Thus, gy ≥ R− 3R1δ0 −R0δ
2
0 . The RHS of the last inequality (quadratic polynomial

in δ0 ≥ 0) is positive if and only if δ0 <

√
9R2

1+4RR0−3R1

2R0
, that is (1.10) holds. �

We restrict ourselves to regular (α, ~β)-norms alone, that is det gy 6= 0 (y 6= 0).
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Let {e1, . . . , em+1} be a basis of V . A scalar product (metric) a on V and similarly,
the metric gy for any y 6= 0, define volume forms by

d vola(e1, . . . , em+1) =
√

det bij , d volgy (e1, . . . , em+1) =
√

det gy(ei, ej).

Then
d volgy = µgy (y) d vola

for some function µgy (y) > 0. Let qk = (q1
k, . . . , q

p
k) ∈ Rp be unit eigenvectors with

eigenvalues λk of the matrix {ρij0 + ε−1ρi1ρ
j
1}. Define vectors β̃k = qikβi (1 ≤ k ≤ p).

Then (1.5) takes the form

(1.11) gy(u, v) = ρ〈u, v〉+
∑

i
λi β̃i(u) β̃i(v)− ε Ỹ (u)Ỹ (v),

which can be used to find µgy (y).
Let Mm+1 (m ≥ 2) be a connected smooth manifold with Riemannian metric

a = 〈· , ·〉 and the Levi-Civita connection ∇̄. We will generalize definition in [17] for
p = 1.

Definition 1.3. A general (α, ~β)-metric F on M is a family of (α, ~β)-norms Fx in
tangent spaces TxM depending smoothly on a point x ∈M .

The study of a sphere Sm+1 endowed with a general (α, ~β)-metric (e.g., the bounds
of curvature, and totally geodesic submanifolds) seem to be interesting and is dele-
gated to further work.

2 The (α, ~β)-modification of a scalar product

Let ω 6= 0 be a 1-form and β1, . . . , βp linear independent 1-forms on a vector space
V m+1 endowed with Euclidean scalar product 〈· , ·〉. Let N be a unit normal to a
hyperplane W = kerω in V ,

〈N, v〉 = 0 (v ∈W ), 〈N,N〉 = 1.

If W 6= kerβi (1 ≤ i ≤ p) then β]>i 6= 0 (the projection of β]i onto W ) and |βi(N)| < bi.
For any Minkowski norm on V , there are two normal directions to W , opposite when
this norm is reversible, see [15]. Hence, there is a unique α-unit vector n ∈ V , which
is gn-orthogonal to W and lies in the same half-space as N :

gn(n, v) = 0 (v ∈W ), α(n) = 1, 〈n,N〉 > 0.

Remark that ν = F (n)−1n is a gn-unit normal to W , where F (n) = αφ(s), and we
get gn(n, n) = φ2(s), where s = (s1, . . . , sp) and

(2.1) si = βi(n), 1 ≤ i ≤ p.

In what follows, in all expressions with si, φ and ρ’s we assume (2.1). Put g := gn,
thus
(2.2)
g(u, v) = ρ〈u, v〉+ ρij0 βi(u)βj(v) + ρi1(βi(u)〈n, v〉+βi(v)〈n, u〉)− (ρi1si)〈n, u〉〈n, v〉,
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see (1.5) with y = n. Define the quantities (needed for two lemmas in what follows),

γi1 = (ρi1 + ρij0 sj)/ρ = φ̇i /(φ−
∑

j
φ̇jsj) (1 ≤ i ≤ p),

γij2 = ρij0 − γi1ρ
j
1 − γ

j
1ρ
i
1 − γi1γ

j
1ρ
k
1sk (1 ≤ i, j ≤ p),

c1 = γi1βi(N) + (1− γi1γ
j
1b
>
ij)

1/2,(2.3)

where b>ij := bij − βi(N)βj(N). Assume that

(2.4) b>ij γ
i
1γ
j
1 ≤ 1.

By (2.4), discriminant in the formula (2.3) for c1 is nonnegative, hence c1 is real. In
the following lemma we express g-normal n to W through the a-normal N and the
auxiliary functions (2.3).

Lemma 2.1. Let (2.4) holds, then the value of c1 is real and

n = c1N − γi1β
]
i ,(2.5)

g(u, v) = ρ 〈u, v〉+ γij2 βi(u)βj(v) (u, v ∈W ) .(2.6)

Moreover, the values si = βi(n) can be found from the system

(2.7) si = c1βi(N)− γj1bij (1 ≤ j ≤ p).

Proof. From (2.2) with u = n and v ∈W and g(n, v) = 0 we find

(2.8) 〈ρn+ γi1β
]
i , v〉 = 0 (v ∈W ).

From (2.8) and ρ > 0 we conclude that ρn+ γi1β
]>
i = c1N for some real c1. Using

1 = 〈n, n〉 = c 2
1 − 2 c1γ

i
1β

]
i + γi1γ

j
1〈β>i , β>j 〉

and 〈β>i , β>j 〉 = bij − βi(N)βj(N), we get two real solutions

(c1)1,2 = γi1βi(N)± (1− γi1γ
j
1b
>
ij)

1/2.

The greater value (with +) provides inequality 〈n,N〉 > 0, that proves (2.5). Thus,
we get (2.7):

si = βi(n) = βi(c1N − γj1β
]
j) = c1βi(N)− γj1bij (1 ≤ i ≤ p).

Finally, (2.6) follows from (2.2), (2.5) and 〈n, u〉 = −γi1βi(u) (u ∈W ). �

Remark 2.1 (Case β]i ∈W ). An interesting particular case appears when all vectors

β]i belong to W , that is βi(N) = 0. Then, rather complicated system (2.7) reads

(2.9)
∑

i
φ̇i/φ (bij − sisj) = −sj (1 ≤ j ≤ p),

from which all φ̇i at si = βi(n) can be expressed through φ and {si}.
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Define a matrix P with elements

P jk = γij2 b
>
ik.

Q = ρ id +P is non-singular, if γij2 are “small” relative to ρ > 0, i.e.,

(2.10) det[ ρ δjk + γij2 b
>
ik ] 6= 0.

Using the inverse matrix Q−1, define the quantities (needed for the following lemma),

γij3 = −γkj2 (Q−1)ik (1 ≤ i, j ≤ p).

In the following lemma, we find relation between u ∈W and U ∈W such that

(2.11) g(u, v) = 〈U, v〉, ∀ v ∈W.

Lemma 2.2. Let (2.4) and (2.10) hold. If the vectors u, U belong to W and obey
(2.11) then

(2.12) ρ u = U + γij3 βi(U)β]>j .

Proof. By (2.6), g(u, v) = 〈ρ u+γij2 βi(u)β]j , v〉 for u, v ∈W . By conditions, and since

U, β]>j ∈ W , we find ρ u + γij2 βi(u)β]>j = U . Applying βk and using βk(β]>j ) = b>jk
yields

(ρ δjk + P jk )βj(u) = βk(U) (1 ≤ k ≤ p),

and then (2.12). �

3 Examples

The following lemma is used to compute the volume forms of (α, ~β)-norm for p = 1, 2.
This extends the Silvester’s determinant identity, see [14],

det(idm +C1P
t
1) = 1 + Ct1P1,

where C1, P1 are m-vectors (columns), and idm is the identity m-matrix.

Lemma 3.1. Let Ci, Pi (1 ≤ i ≤ j ≤ m) be m-vectors. Then Tr(CiP
t
j ) = CtiPj =

P tjCi and

det(idm +C1P
t
1 + C2P

t
2) = 1 + Ct1P1 + Ct2P2 + Ct1P1 · Ct2P2 − Ct1P2 · Ct2P1 ,(3.1)

det(idm +C1P
t
1 + C2P

t
2 + C3P

t
3) = 1 + Ct1P1 + Ct2P2 + Ct3P3 + Ct1P1 · Ct2P2

+Ct2P2 · Ct3P3 + Ct1P1 · Ct3P3 − Ct1P2 · Ct2P1 − Ct1P3 · Ct3P1 − Ct2P3 · Ct3P2

+Ct1P1 · Ct2P2 · Ct3P3 + Ct1P2 · Ct2P3 · Ct3P1 + Ct1P3 · Ct2P1 · Ct3P2

−Ct1P1 · Ct2P3 · Ct3P2 − Ct1P2 · Ct2P1 · Ct3P3 − Ct1P3 · Ct2P2 · Ct3P1 , and so on.(3.2)
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For p = 1, (1.3) defines (α, β)-norm F = αφ(s) for s = β/α. This function F is a
Minkowski norm on V for any α and β with α(β) < δ0 if and only if φ(s) satisfies

(3.3) φ− s φ̇+ (b2 − s2) φ̈ > 0,

where real s, b obey |s| < b, see [14]. Taking s → b in (3.3), we get φ − s φ̇ > 0. By
(1.5),

gy(u, v) = ρ〈u, v〉+ ρ0β(u)β(v) + ρ1(β(u)〈y, v〉+ β(v)〈y, u〉)/α(y)

− ρ1β(y)〈y, u〉〈y, v〉/α3(y).(3.4)

Here ρ > 0 and ρ0, ρ1 are the following functions of s:

ρ = φ(φ− s φ̇), ρ0 = φ φ̈+ φ̇2, ρ1 = φ φ̇− s(φ φ̈+ φ̇2).

The following relations hold: ρ̇ = ρ1, ρ̈ = ρ̇1 = −s ρ̇0. Set Ỹ = s−1β − y[/α(y) and
ε = sρ1. Then (3.4) takes the form

(3.5) gy(u, v) = ρ〈u, v〉+ (ρ0 + ρ2
1/ε)β(u)β(v)− ε Ỹ (u)Ỹ (v),

From (3.5) and (3.1) with C1 = (ρ0 +ρ2
1/ε)ρ

−1β], P1 = β], C2 = −ερ−1Ỹ ], P2 = Ỹ ],
for the volume form d volgy = µgy (y) d vola we obtain, see also [14],

µgy (y) = ρm−1(ρ2 + ρ0ρ1s
3 + ρ2

1s
2 + (ρ− ρ0b

2)ρ1s+ (ρρ0 − ρ2
1)b2)

= φm+2(φ− s φ̇)m−1[φ− s φ̇+ (b2 − s2) φ̈ ].(3.6)

Set py = β] − sy/α(y). The Cartan tensor of (α, β)-norm has an interesting special
form [8]:

2Cy(u, v, w) = ρ1α
−1(y)(Ky(u, v)〈py, w〉+Ky(v, w)〈py, u〉+Ky(w, u)〈py, v〉)

+ (3φ̇ φ̈+ φ
...
φ )α−1(y) 〈py, u〉〈py, v〉〈py, w〉,

see (1.6) for p = 1. For a hyperplane W ⊂ V we have s = β(n) and

c1 = γ1β(N) + (1− γ2
1(b2 − β(N)2))1/2,

γ1 = (ρ1 + ρ0β(n))/ρ = φ̇/(φ− s φ̇),

γ2 = ρ0 − γ1ρ1(β(n)γ1 + 2) = φ (φ2φ̈− φ φ̇2 + s φ̇3)/(φ− s φ̇)2,

γ3 = − γ2

ρ+ (b2 − β(N)2) γ2
.

Then (2.7) reads

φ̇

φ
= −

s
√
b2 − s2 + β(N)

√
b2 − β(N)2

(b2 − s2 − β(N)2)
√
b2 − s2

,

which for β] ∈W reads φ̇
φ = − s

b2−s2 , see also (2.9) for p = 1.

Example 3.1 (p = 1). Some progress was achieved for particular cases of (α, β)-
norms. Below we consult some of (α, β)-norms to illustrate the above metric g on
V .
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(i) For φ(s) = 1 + s, |s| < b < δ0 = 1, we have the norm F = α+β, introduced by
a physicist G. Randers to consider the unified field theory. We have ρ = 1 + s, ρ0 = 1
and ρ1 = 1. For a hyperplane W ⊂ V and g = gn, we get n = c1N − β], s = β(n) =
c c1 − 1, φ(s) = c c1, where c1 = c+ β(N) and c =

√
1− b2 + β(N)2 ∈ (0, 1], see also

[13]. Then

γ1 = 1, γ2 = −c c1, γ3 = c−2.

Conditions (2.4) and (2.10) become trivial: c > 0. Next, µg(n) = (c c1)m+2 and

g(u, v) = (1 + s)〈u, v〉 − s〈n, u〉〈n, v〉+ β(u)〈n, v〉+ β(v)〈n, u〉+ β(u)β(v).

(ii) The (α, β)-norms F = αl+1/βl (l > 0), i.e., φ(s) = 1/sl (0 < s < b), are
called generalized Kropina metrics, see [8], and have applications in general dynamical
systems. The Kropina metric, i.e., l = 1, first introduced by L. Berwald in connection
with a Finsler plane with rectilinear extremal, and investigated by V.K. Kropina in
1961. We have ρ = 2/s2, ρ0 = 3/s4 and ρ1 = −4/s3. For a hyperplane W 6= kerβ in
V and g = gn we get

c1 = (b− 2β(N))/
√

2 b(b− β(N)), β(n) = s =
√
b(b− β(N))/2,

γ1 = −1/(2s) = −1/
√

2 b(b− β(N)), γ2 = γ3 = 0,

and µg(n) = 4m+1

bm(b−β(N))m+2 . Note that conditions (2.4) and (2.10) become trivial.

(iii) The (α, β)-norm F = α2

α−β , i.e., φ(s) = 1
1−s with |s| < b < δ0 = 1

2 , (called

slope-metric) was introduced by M. Matsumoto to study the time it takes to negotiate
any given path on a hillside. We have ρ = 1−2s

(1−s)3 , ρ0 = 3
(1−s)4 and ρ1 = 1−4s

(1−s)4 . For a

hyperplane W 6= kerβ and g = gn, from (2.7) we find that s = β(n) obeys 4th-order
equation

4s4 − 4s3 + (1− 4b2)s2 + 2(b2 + β(N)2)s+ b4 − (b2 + 1)β(N)2 = 0,

and s = 1
4 (1−

√
1 + 8b2) if β] ∈W , see (2.9). We find µg(n) = (1−2s)m−1

(1−s)3m+3 (2b2− 3s+

1) and

c1 =
β(N) +

√
(1− 2s)2 − b2 + β(N)2

1− 2s
,

γ1 =
1

1− 2s
, γ2 =

1

(1− 2s)2(1− s)3
, γ3 =

1

(1− 2s)3 + b2 − β(N)2
.

Thus, (2.10) becomes trivial and (2.4) reads as (1− 2s)2 ≥ b2 − β(N)2.

(iv) A Finsler metric is a polynomial (α, β)-norm if φ(s) =
∑k
i=0 Cis

i, C0 =
1, Ck 6= 0. The quadratic metric F = (α+ β)2/α, i.e., φ(s) = (1 + s)2 with |s| < b <
δ0 = 1, appears in many geometrical problems, [14]. We have ρ = (1−s)(1+s)3, ρ0 =
6(1 + s)2 and ρ1 = 2(1− 2s)(1 + s)2. For a hyperplane W 6= kerβ in V and g = gn,
from (2.7) we find that s obeys 4th-order equation

s4 − 2s3 + (1− 4b2 + 3β(N)2)s2 + 2(2b2 − β(N)2)s+ 4b4 − (4b2 + 1)β(N)2 = 0,
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and s = (1−
√

1 + 8b2)/2 if β] ∈W , see (2.9). Then we obtain

c1 =
2β(N) +

√
(1− s)2 − 4(b2 − β(N)2)

1− s
,

γ1 =
2

1− s
, γ2 =

2(3s− 1)(1 + s)3

(1− s)2
, γ3 =

2(3s− 1)

(1− s)3 − 2(1− 3s)2(b2 − β(N)2)

and µg(n) = (1 + s)3m+3(1− s)m−1(2b2 − 3s2 + 1). Conditions (2.4) and (2.10) read

(1− s)2 ≥ 4(b2 − β(N)2), (1− s)3 6= 2(1− 3s)(b2 − β(N)2).

(v) Define by φ(s) = es/k, |s| < b < δ0 := |k|, the exponential metric F =
α eβ/(kα). Condition (3.3) reads as a quadratic inequality s2 + ks − (b2 + k2) < 0.
Taking s = b in (3.3) yields k(s − k) < 0 when |s| < |k|. Thus, (3.3) is satisfied for
arbitrary numbers s and b with |s| ≤ b < |k|. We have ρ = e2s/k(k − s)/k > 0, ρ0 =
2 e2s/k/k2 and ρ1 = e2s/k(k − 2s)/k2. For a hyperplane W 6= kerβ in V and g = gn,
by (2.7), s = β(n) obeys 4th-order equation

s4 − 2ks3 + (k2 − 2b2 + β(N)2)s2 + 2b2ks+ b4 − (b2 + k2)β(N)2 = 0,

and s = (k −
√
k2 + 4b2)/2 if β] is tangent to the foliation, see (2.9). Then we get

c1 =
β(N) + ((k − s)2 − b2 + β(N)2)1/2

k − s
,

γ1 =
1

k − s
, γ2 =

s e2s/k

k(k − s)2
, γ3 =

s

(k − s)3 + s(b2 − β(N)2)
.

and µg(n) = (k−s)m−1

km+1 (b2 +k2−ks−s2) e(2m+2)s/k. Conditions (2.4) and (2.10) read,
respectively,

( k − s)2 ≥ b2 − β(N)2, (k − s)3 6= −s(b2 − β(N)2).

Fig. 3.1 shows the dependence of s on β(N) ∈ [−b, b], see (2.7), for four of above met-
rics. For β(N) = 0 we obtain the values of s: a) 0.64, b) -0.13, c) -0.26, d) -0.53.

Figure 1: Dependence of s on β(N) for metrics: a) Kropina, b) Matsumoto, c) quadratic, d) exponential.

For p = 2, we can use (1.11) to find µg(y). By (1.5) we get

gy(u, v) = ρ〈u, v〉+ (ρij0 + ε−1ρi1ρ
j
1)βi(u)βj(v)− ε Ỹ (u)Ỹ (v),

Ỹ = ε−1ρi1βi − y[/α(y), ε = siρ
i
1.
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From (3.2) with

C1 = λ1ρ−1β̃]1, P1 = β̃]1, C2 = λ2ρ−1β̃]2, P2 = β̃]2, C3 = −ερ−1Ỹ ], P3 = Ỹ ],

using Ỹ from (3.7), b̃ij = 〈β̃i, β̃j〉, β̃i = q1
i β1 + q2

i β2 and ε = ρ1
1s1 + ρ2

1s2, we obtain

µgy (y) = ρm−1
(
ρ2 + ρ(λ1b̃11 + λ2b̃22)− ρ ε〈Ỹ , Ỹ 〉+ λ1λ2(b̃11b̃22 − b̃212)

− ε〈Ỹ , Ỹ 〉(λ1b̃11 + λ2b̃22) + λ1ε〈β̃1, Ỹ 〉+ λ2ε〈β̃2, Ỹ 〉+ λ1λ2 ε/ρ
[
b̃11〈β̃2, Ỹ 〉2

+ b̃22〈β̃1, Ỹ 〉2 + b̃12〈Ỹ , Ỹ 〉2 − b̃11b̃22〈Ỹ , Ỹ 〉 − 2b̃12〈β̃1, Ỹ 〉〈β̃2, Ỹ 〉
])
.

Example 3.2 (p = 2). A navigation (α, β)-norm is the (α, ~β)-norm with p = 2.

(a) For shifted Kropina norm φ = 1+ 1
s1

+s2 for s1 > 0, hence F = α(1+ α
β1

+ β2

α ),
we have

ρ = (2 + s1)(1 + s1 + s1s2)/s2
1, ρ1

1 = −(4 + 3s1 + 2s1s2)/s3
1, ρ2

1 = (2 + s1)/s1,

ρ11
0 = (3 + 2s1 + 2s1s2)/s4

1, ρ12
0 = ρ21

0 = −1/s2
1, ρ22

0 = 1.

For a hyperplane W 6= kerβi (i = 1, 2) in V and the metric g = gn we get

c1 =
s21β2(N)−β1(N)

s1(2+s1)
+
(

1− b11−β1(N)2

s21(2+s1)
2 + 2(b12−β1(N)β2(N))

(2+s1)2
− s21(b22−β2(N)2)

(2+s1)2

)1/2
,

γ1
1 = − 1

s1(2+s1)
, γ2

1 = s1
2+s1

, γ11
2 = − 2−s1−10s21−10s31−3s41−s

2
1s2(2−2s21−s

3
1)

s41(2+s1)
,

γ12
2 =

12+13s1+3s21+s1s2(2−2s1−s21)
s21(2+s1)

, γ22
2 =

4+3s1−s21(1+s2)
s21

.

If β]i ∈W then s1, s2 obey the system

(1 + 2s2)s3
1 − b12s

2
1 + b11 = 0, (1 + 2s1)s1s

2
2 − b22s

2
1 + b12 = 0.

Thus s2 = 1
2 [(b11 − s2

1b12)/s3
1 − 1], where s1 is a positive root of the 6th-order poly-

nomial:

2 b22s
6
1 + b12s

5
1 − (b212 + 2b12)s4

1 − b11s
3
1 + 2b11b12s

2
1 − b211 = 0;

for example, if b12 = 0 then s1 = ( b11
4 b22

(1 +
√

1 + 8 b22))1/3 and s2 = 1
2 (b11/s

3
1 − 1) .

(b) For shifted Matsumoto norm φ = 1
1−s1 + s2 with δi < 1, hence F = α( α

α−β1
+

β2

α ), we have

ρ =
(1− 2s1)(1 + s2 − s1s2)

(1− s1)3
, ρ1

1 =
1 + 2s1(s1s2 − s2 − 2)

(1− s1)4
, ρ2

1 =
1− 2s1

(1− s1)2
,

ρ11
0 = (3− 2s1s2 + 2s2)/(1− s1)4, ρ12

0 = ρ21
0 = 1/(1− s1)2, ρ22

0 = 1.
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For a hyperplane W 6= kerβi (1 ≤ i ≤ p) in V and the metric g = gn we get

c1 =
(1− s1)2β2(N) + β1(N)

1− 2 s1
+
(

1− (1− s1)4(b22 − β2(N)
2
)

(1− 2 s1)2

− 2(1− s1)2(b12 − β1(N)β2(N))

(1− 2 s1)2
− b11 − β1(N)

2

(1− 2 s1)2

)1/2

,

γ1
1 =

1

1− 2s1
, γ2

1 =
(1− s1)2

1− 2s1
, γ11

2 =
1 + 2s1 + 8s2

1 + s2(1 + 5s1 − 6s2
1)

(1− s1)3(1− 2s1)
,

γ22
2 = −1− 3s1 + 2s2

1 − 4s3
1 + s4

1 + s2(1− 4s1 + 3s2
1)

(1− s1)4
,

γ12
2 = −1− 5s1 + 3s2

1 + 4s3
1 + s2(1− 8s1 + 17s2

1 − 12s3
1 + 2s4

1)

(1− 2s1)(1− s1)4
.

If β]i ∈W then s1 and s2 obey the system

b11 + (1− s1)2(b12 − 2s1s2) = s1, b12 + (1− s1)2(b22 − 2s2
2) = s2.

Then s1= (2b11s
2
2−b12s2−b11b22+b212)/(2b12s2−b22), where s2 is a root of a 6th-order

polynomial.

Similarly to graphs on Fig. 3.1, one may calculate and graph pairs of surfaces
in R3, showing dependence of s1 and s2 on variables (β1(N), β2(N)) for the above
navigation (α, β)-metrics. For βi(N) = 0 we obtain the values: a) s1 ≈ −0.79 and
s2 = −1.5 for Kropina norm; b) s1 ≈ −0.42 and s2 = s3

1 − 2s2
1 + s1 ≈ −0.84 for

Matsumoto norm.

4 The shape operator and the curvature of normal
curves

Let (Mm+1, a = 〈· , ·〉) (m ≥ 2) be a connected Riemannian manifold with the Levi-
Civita connection ∇̄. Let N be a unit normal field to a codimension-one distribution
D := kerω on (M,α). Due to Section 2, there exists a gn-normal (to D) vector field
n such that 〈n,N〉 > 0 and 〈n, n〉 = 1. Define a new Riemannian metric g := gn
on M , see (2.2), with the Levi-Civita connection ∇. Let kerβi 6= D everywhere for
all i, hence |βi(N)| <

√
bii. By (2.7), si = βi(n) are smooth functions on M , and

ν = n/φ(s) is a g-unit normal to the leaves.

The shape operators Ā and Ag of D and the curvature vectors of ν- and N - curves
for both metrics 〈·, ·〉 and g belong to Extrinsic Geometry and are defined by

Ā(u) = −∇̄uN, Ag(u) = −∇u ν (u ∈ D),(4.1)

Z = ∇ν ν, Z̄ = ∇̄N N.(4.2)

Let T̄ ] : D → D be a linear operator adjoint to the integrability tensor T̄ of D with
respect to a,

2 T̄ (u, v) = 〈[u, v], N〉 (u, v ∈ D).
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Note that T̄ ] = 1
2 (Ā− Ā∗), where Ā∗ is a linear operator adjoint to Ā. The deforma-

tion tensor,

Defu = (∇̄u+ (∇̄u)t)/2,

measures the degree to which the flow of a vector field u distorts 〈·, ·〉. Here, ∇̄u and
(∇̄u)t are

(∇̄u) (v) = ∇̄v u, 〈(∇̄u)t(v), w〉 = 〈v, (∇̄u)(w)〉 (v, w ∈ TM).

In the next proposition, we express Ag through Ā and invariants of D with respect
to a.

Proposition 4.1 (The shape operator). Let (Mm+1, a) be a Riemannian manifold
with a form ω 6= 0 and linear independent 1-forms β1, . . . βp obeying conditions (2.4)
and (2.10). Let g be a Riemannian metric (2.2) determined by a distribution D =

kerω, ~β = (β1, . . . , βp) and a smooth function φ(x, s) on M × Rp. Then

(4.3) ρ φAg = −A− γij3 (βi ◦ A)⊗ β]>j ,

where the linear operator A : D → D is given by

(4.4) A = −ρ c1Ā− ργi1(Defβ]i
)> +

1

2
n(ρ) id>+ Sym(U j ⊗ β>j ),

and the vector fields U j are given by

U j =
1

2

(
n(γij2 )β]>i + γij2 ∇̄>n β

]>
i )− ρ ∇̄>γj1

+ (ρij0 − γ
j
1ρ
i
1)
(
βi(N)∇̄>c1 − (γk1/2)∇̄>bik − bik∇̄>γk1

)
+ (c1 − βk(N)γk1 )

(
(ρij0 − γ

j
1ρ
i
1)βi(N) + c1ρ

j
1(1 + skγ

k
1 )
)
Z̄

+
(
c1ρ

i
1(1 + skγ

k
1 )γj1 − (ρij0 − γ

j
1ρ
i
1)(c1 − βk(N)γk1 )

)
Ā∗(β]>i ).(4.5)

Proof. By known formula for the Levi-Civita connection ∇ of g,
(4.6)
2 g(∇uv, w) = u(g(v, w))+v(g(u,w))−w(g(u, v))+g([u, v], w)−g([u,w], v)−g([v, w], u),

where u, v, w ∈ C∞(TM), we have

(4.7) 2 g(∇u n, v) = n(g(u, v)) + g([u, n], v) + g([v, n], u)− g([u, v], n) (u, v ∈ D).

Assume ∇̄>X u = ∇̄>X v = 0 for X ∈ TxM at a given point x ∈ M . Using (2.2) and
(2.6), we get

n(g(u, v)) = n(ρ〈u, v〉) + n(γij2 βi(u)βj(v))

= n(ρ)〈u, v〉+
[
n(γij2 )βi(u)βj(v) + γij2

(
βi(u)(∇̄n(β>j ))(v) + βi(v)(∇̄n(β>j ))(u)

)]
,

g([u, v], n) = 2 ρ c1T̄ (u, v),

g([u, n], v) = ρ〈∇̄un, v〉+ ρij0 βi([u, n])βj(v) + ρi1(βi([u, n])〈n, v〉+ βi(v)〈n, [u, n]〉)
−ρi1si〈n, [u, n]〉〈n, v〉,
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where u, v ∈ D. Using equalities

〈∇̄un, v〉 = −〈c1Ā(u), v〉 − γi1〈∇̄u β
]
i , v〉 − βi(v)〈∇̄γi1, u〉 = 〈U3, v〉,

βi([u, n]) = −γj1〈∇̄u β
]
j , β

]
i 〉+

〈
βi(N)∇̄c1 − bij∇̄γj1

+βi(N)
[
(c1 − γj1βj(N))Z̄ + γj1Ā

∗(β]>j )
]
, u
〉

= 〈U2i, u〉 − γj1〈∇̄u β
]
j , β

]
i 〉,

〈n, [u, n]〉 = 〈(c1 − γj1βj(N))∇̄c1 + (γi1bji − c1βj(N))∇̄γj1
−c1γj1∇̄(βj(N))− c1γj1βj(N)Z̄, u〉 = 〈U1, u〉,

〈n, v〉 = −γi1βi(v),

we then obtain

g([u, n], v) = −ρ c1〈Ā(u), v〉 − ρ(γi1〈∇̄u β
]
i , v〉+ βi(v)〈∇̄γi1, u〉)

+ρij0 βj(v)
[〈
βi(N)∇̄c1 − bik∇̄γk1 + βi(N)

[
(c1 − γk1βk(N))Z̄ + γk1 Ā

∗(β]>k )
]
, u
〉

− γk1 〈∇̄u β
]
k, β

]
i 〉
]
− γj1βj(v)ρi1

[〈
βi(N)∇̄c1 − bik∇̄γk1

+βi(N)
[
(c1 − γk1βk(N))Z̄ + γk1 Ā

∗(β]>k )
]
, u
〉
− γk1 〈∇̄u β

]
k, β

]
i 〉
]

+ ρi1βi(v)
〈
(c1 − γj1βj(N))∇̄c1 + (γk1 bjk − c1βj(N))∇̄γj1

−c1γk1 ∇̄(βk(N))− c1(γk1βk(N))Z̄, u
〉

+ ρi1siγ
j
1βj(v)

〈
(c1 − γk1βk(N))∇̄c1

+(γk1 bjk − c1βj(N))∇̄γj1 − c1γk1 ∇̄(βk(N))− c1γk1βk(N)Z̄, u
〉

= −ρ c1〈Ā(u), v〉 − ρ(γi1〈∇̄u β
]
i , v〉+ βi(v)〈∇̄γi1, u〉)

+(ρij0 − ρi1γ
j
1)
〈
βi(N)∇̄c1 − (

1

2
γk1 ∇̄bki − bik∇̄γk1 )

+ (c1 − βk(N)γk1 )(βi(N)Z̄ − Ā∗(β]>i )), u
〉
βj(v)

+ c1ρ
j
1(1 + skγ

k
1 )〈(c1 − βk(N)γk1 )Z̄ + γk1 Ā

∗(β]>k ), u〉βj(v),

where u, v ∈ D. Formula for g([v, n], u) is obtained from g([u, n], v) after change
u↔ v. Substituting the above into (4.7), we find g(∇u n, v) = 〈A(u), v〉, where A is
given in (4.4)–(4.5). In particular,

〈2A(u), β]>i 〉 = −2 ρ c1〈Ā∗(β]>i ), u〉 − 2 ργj1〈Defβ]i
(β]>j ), u〉

+ n(ρ)βi(u) + βj(u)βi(U
j) + U j(u)b>ij .

By Lemma 2.2 and g(∇u n, v) = −φ g(Ag(u), v), see (4.1), we get (4.3). �
The elementary symmetric functions σk(A) of a m×m-matrix A (or a linear trans-

formation) are defined by equality det(id + tA) =
∑

i≤m σk(A) tk and are called mean
curvatures in the case of shape operator. Thus, σ0(A) = 1, σ1(A) = TrA, . . . , σm(A) =
detA.

Corollary 4.2 (The mean curvature of D). Let conditions of Proposition 4.1 are
satisfied. Then

ρ φσ1(Ag) = ρ c1σ1(Ā)− m

2
n(ρ) + ργi1(div β]i − βi(Z̄) +N(βi(N)))

− βj(U
j)− γij3 〈A(β]>i ), β]j〉,(4.8)
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where U j are given in (4.5) and

〈A(β]>i ), β]j〉 = ρ c1〈Ā∗(β]>i ), β]>j 〉+ ργk1
(
β]>k (b>ij)/2− βk(N)〈Ā∗(β]>i ), β]j〉

)
− b>ij(

1

2
n(ρ) + βk(Uk)) .(4.9)

Proof. Let {ei} be a local g-orthonormal frame of D. We calculate

〈Defβ]k
(β]>i ), β]>j 〉 =

1

2
〈∇̄b>ij , β

]>
k 〉 − βk(N)〈Ā∗(β]>i ), β]j〉,

see (4.4)–(4.5). Tracing of (4.3), we obtain

ρφσ1(Ag) = −σ1(A)− γij3 〈A(β]>j ), β]i 〉.

Then, using
Tr (Defβ]i

)>|TF = div β]i − βi(Z̄) +N(βi(N)),

(4.9) and Lemma 2.2, we get (4.8)–(4.9). �

Example 4.1. (i) One may ask the question: “When D is totally geodesic with
respect to g, i.e., Ag = 0?” In this case, when ∇̄βi = 0 and βi(N) = 0, by Proposi-
tion 4.1, Ā has a special form

Ā = W i ⊗ βi + ωi ⊗ β]i ,

for some vector fields W i and 1-forms ωi. If p = 1 then, necessarily, rank Ā ≤ 2.

In next corollary and proposition, for simplicity, we assume that D is integrable
and p = 1.

Corollary 4.3 (The second mean curvature). If p = 1 and ∇̄β] = 0 then

(ρφ)2σ2(Ag) = (ρ c1)2σ2(Ā) +
1

8
m(m− 1)n(ρ)2 − 1

2
(m− 1) c1ρn(ρ)σ1(Ā)

+
1

4
β(U)〈 2 γ3A(β]>) + U, β]〉 − 1

4
(b2 − β(N)2)〈 2 γ3A(β]>) + U, U〉

+ (
m−1

2
n(ρ)− ρc1σ1(Ā))〈γ3A(β]>) + U, β]〉+ ρc1〈γ3A(β]>) + U, Ā(β]>)〉,(4.10)

where A = −ρ c1Ā+ Sym(U ⊗ β>) and U is given in (4.5).

Proof. By conditions, Defβ] = 0. Thus, by Proposition 4.1,

ρ φAg = ρ c1Ā−
1

2
n(ρ) id>−A1 −A2,

where A1 = 1
2 U ⊗ β

> and A2 = ( 1
2 U

[ + γ3(β ◦ A))⊗ β]> are rank 1 matrices (thus
σ2(Ai) = 0) and

A = −ρ c1Ā+
1

2
n(ρ) id>+ Sym(U ⊗ β>)

is symmetric. Applying the identity

σ2(
∑

i
Pi) =

∑
i
σ2(Pi) +

∑
i<j

(
σ1(Pi)σ1(Pj)− σ1(PiPj)

)
,
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to matrices P1 = ρ c1Ā, P2 = − 1
2 n(ρ) id>, P3 = −A1 and P4 = −A2, and using

equalities 〈(β ◦ A)], u〉 = 〈A(u>), β]〉 and σ2(id>) = m(m− 1)/2, we get

(ρ φ)2σ2(Ag) = (ρ c1)2σ2(Ā) +m(m− 1)n(ρ)2/8

− 1

2
(m− 1) c1ρn(ρ)σ1(Ā) + σ1(A1)σ1(A2)− σ1(A1A2)

+
(
(m− 1)n(ρ)/2− ρ c1σ1(Ā)

)
σ1(A1 +A2) + ρ c1σ1(Ā(A1 +A2)),

where

σ1(A1) = β(U)/2, σ1(A2) = 〈2 γ3A(β]>) + U, β]〉/2,
σ1(A1A2) = (b2 − β(N)2)〈2γ3A(β]) + U, U〉/4,

σ1(Ā(A1 +A2)) = 〈γ3A(β]>) + U, Ā(β]>)〉.

From the above (4.10) follows. �

In next proposition, we express Z through Z̄, see (4.2), and invariants of D with
respect to a.

Proposition 4.4. Let g be a new Riemannian metric determined by an integrable
distribution D, a 1-form β and a function φ(s) on (M,a) with conditions (2.4), (2.10).
Then

ρZ = Z + γ3β(Z)β]>,

where the vector field Z is given by

Z =
[
p1∇̄>(γ1/φ) + p2∇̄>(c1/φ(s))

]
φ(s)−1 +

[
p3Z̄ + p4Ā(β]>) + p5∇̄>(β(N))

]
φ−2,

p1 = c1
(
(4ρ1γ1 − ρ0 + 3ρ1sγ

2
1)b2 − ρ+ c21ρ1s

)
β(N)− ρ1(2sγ1 + 1)c21β(N)

2

− ρ1(sγ1 + 1)b2c21 + γ1(ρ0 − 2γ1ρ1 − γ2
1ρ1s)b

4 + γ1ρb
2,

p2 = (ρ0 − 2ρ1sγ
2
1 − 3ρ1γ1) c1β(N)

2
+
(
γ1(2γ1ρ1 + γ2

1ρ1s− ρ0)b2

+ ρ1(2 + 3sγ1) c21 − γ1ρ
)
β(N)− c31ρ1s+ (ρ− γ1ρ1(sγ1 + 1)b2)c1,

p3 = γ1(3γ1ρ1 + 2γ2
1ρ1s− ρ0)c1β(N)

3
+ ((ρ0 − 5ρ1sγ

2
1 − 5ρ1γ1)c21 + γ2

1ρ

+ γ2
1(ρ0 − 2γ1ρ1 − γ2

1ρ1s)b
2)β(N)

2
+ (2ρ1(1 + 2sγ1)c31

+ γ1c1((3γ1ρ1 + 2γ2
1ρ1s− ρ0)b2 − 2ρ))β(N)− c41ρ1s+ (ρ− γ1ρ1(sγ1 + 1)b2)c21,

p4 = γ1(ρ0 − 2γ2
1ρ1s− 3γ1ρ1) c1β(N)

2
+ γ1c1((ρ0 − 2γ1ρ1 − γ2

1ρ1s)b
2 + ρ)

+ [(4ρ1γ1 − ρ0+3ρ1sγ
2
1) c21 + γ2

1(2γ1ρ1 + γ2
1ρ1s− ρ0)b2 − γ2

1ρ]β(N)− ρ1(sγ1 + 1) c31,

p5 = γ1[c31ρ1s− ρ1(2sγ1 + 1)c21β(N) + c1(γ1ρ1(1 + γ1s)b
2 − ρ)].

Moreover, if β] is tangent to D and b = const then

Z = φ−2
{
c21[ ρ− c21ρ1s− γ1ρ1(sγ1 + 1) b2]Z̄

+ c1[γ1ρ− ρ1(sγ1 + 1) c21 + γ1(ρ0 − 2 γ1ρ1 − γ2
1ρ1s)b

2]Ā(β])
}
.

Proof. Extend X ∈ TxF onto a neighborhood of a point x ∈ M with the property
(∇̄Y X)> = 0 for any Y ∈ TxM . By formula (4.6), we obtain at x :

(4.11) g(Z,X) = g([X, ν], ν).
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Using equalities ν = φ−1(c1N − γ1β
]) and [X, fY ] = X(f)Y + f [X,Y ] we get

g([X, ν], ν) = (c1/φ)X(c1/φ) g(N,N)−X(c1γ1/φ
2) g(N, β])

+ (γ1/φ)X(γ1/φ) g(β], β]) + (c1/φ)2g([X,N ], N)

− (γ1c1/φ
2) [ g([X,β]], N) + g([X,N ], β]) ] + (γ1/φ)2g([X,β]], β]).(4.12)

To compute first three terms in (4.12), by (2.2) for p = 1,

(4.13) g(u, v) = ρ〈u, v〉+ρ0β(u)β(v)+ρ1(β(u)〈n, v〉+β(v)〈n, u〉−β(n)〈n, u〉〈n, v〉),

and Lemma 2.1, we find

g(β], β]) = ρ b2 + ρ0b
4 + 2ρ1b

2s− ρ1s
3,

g(N, β]) = (ρ+ ρ0b
2 + ρ1s)β(N) + ρ1(b2 − s2)〈n,N〉,

g(N,N) = ρ+ ρ0β(N)2 + 2 ρ1β(N)〈n,N〉 − ρ1s〈n,N〉2.

To compute last four terms in (4.12), we will use

[X,β]] = [X,β]>] +X(β(N))N + β(N)
(
〈Z,X〉N − Ā(X)

)
,

[X,N ] = ∇̄XN − ∇̄NX = −Ā(X)− 〈∇̄NX, N〉N = 〈Z̄, X〉N − Ā(X),

and by (4.13) and Lemma 2.1, obtain the equalities

g([X,N ], β]) = (ρ+ ρ0b
2 + ρ1s)〈[X,N ], β]〉+ ρ1(b2 − s2)〈[X,N ], n〉,

g([X,β]], β]) = (ρ+ ρ0b
2 + ρ1s)〈[X,β]], β]〉+ ρ1(b2 − s2)〈[X,β]], n〉,

g([X,N ], N) = ρ〈[X,N ], N〉+ (ρ0β(N) + ρ1〈n,N〉)〈[X,N ], β]〉
+ ρ1(β(N)− s〈n,N〉)〈[X,N ], n〉,

g([X,β]], N) = ρ〈[X,β]], N〉+ (ρ0β(N) + ρ1〈n,N〉)〈[X,β]], β]〉
+ ρ1(β(N)− s〈n,N〉)〈[X,β]], n〉.

Thus,

g([X, ν], ν) = (c1/φ)X(c1/φ) [ρ+ ρ0β(N)2 + 2 ρ1β(N)〈n,N〉
− ρ1s〈n,N〉2]−X(γ1c1/φ

2) [(ρ+ ρ0b
2 + ρ1s)β(N) + ρ1(b2

− s2)〈n,N〉] + (γ1/φ)X(γ1/φ) [ρ b2 + ρ0b
4 + 2ρ1b

2s− ρ1s
3]

+ (c1φ)2[ρ〈[X,N ], N〉+ (ρ0β(N)+ρ1〈n,N〉)β([X,N ])

+ ρ1(β(N)−s〈n,N〉)〈n, [X,N ]〉]− (γ1c1/φ
2)[ρ〈[X,β]], N〉+(ρ0β(N)

+ ρ1〈n,N〉)β([X,β]]) + ρ1(β(N)− s〈n,N〉)〈n, [X,β]]〉]
+ (γ1c1/φ

2) [(ρ+ ρ0b
2 + ρ1s)β([X,N ]) + ρ1(b2 − s2)〈n, [X,N ]〉]

+ (γ2
1/φ

2) [(ρ+ ρ0b
2 + ρ1s)β([X,β]]) + ρ1(b2 − s2)〈n, [X,β]]〉].
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Note that 〈n,N〉 = c1 − γ1β(N) and β(n) = c1β(N)− γ1b
2, see (2.5), and

〈[X,N ], N〉 = 〈Z̄,X〉,
〈[X,N ], β]〉 = 〈β(N)Z̄ − Ā(β]>), X〉,
〈[X,N ], n〉 = c1〈[X,N ], N〉 − γ1〈[X,N ], β]〉

= 〈(c1−γ1β(N))Z̄ + γ1Ā(β]>), X〉,
〈[X,β]], N〉 = 〈∇̄(β(N)) + β(N)Z̄, X〉,
〈[X,β]], β]〉 = bX(b)− 〈∇̄β]X,β]〉 = 〈b ∇̄b+ β(N)2Z̄ − β(N)Ā(β]>), X〉,
〈[X,β]], n〉 = c1〈[X,β]], N〉 − γ1〈[X,β]], β]〉

= 〈(c1β(N)− γ1β(N)2)Z̄ − γ1b ∇̄b+ γ1β(N)Ā(β]>), X〉.

By (4.11), g(Z, X) = 〈Z, X〉. With the help of Lemma 2.2 we complete the proof. �

5 The Reeb type integral formula

In this section we apply results in Sections 1 – 4 to prove a new integral formula
for a closed Riemannian manifold with a set of linearly independent 1-forms and a
codimension one distribution, which generalizes the Reeb’s integral formula (0.1).

Theorem 5.1. Let g be a new Riemannian metric determined by D = kerω, 1-forms
βi (1 ≤ i ≤ p) on a closed Riemannian manifold (M,a) and a function φ(s), where
s = (s1, . . . , sp), with conditions (2.4), (2.10). Then∫

M

µg(n)(ρ φ)−1
{
ρ c1σ1(Ā)− (m/2)n(ρ) + ρ γi1(βi(Z̄)−N(βi(N))) + βi(U

i)

− γij3 〈A(β]>i ), β]>j 〉 − ρ φ(β]i (γ
i
1φ) + γi1φβ

]
i (logµg(n)))

}
d vola = 0.(5.1)

Proof. For the metric g the Reeb’s integral formula (0.1) reads∫
M

Hβ d volg = 0 .(5.2)

By (5.2), we have ∫
M

µg(n)σ1(Ag) d vola = 0.

Corollary 4.2 and using f i div β]i = div (f iβ]i ) − β
]
i (f

i) with f i = µg(n) γi1/φ, yield
(5.1). �

The integral formula (5.1) holds when all 1-forms are defined outside a closed
submanifold of codimension ≥ 2 under convergence of some integrals, see discussion
in [7, 16]. The singular case is important since many manifolds admit no codimension-
one distributions or foliations, while all of them admit non-vanishing 1-forms outside
some “set of singularities”.

Corollary 5.2. In conditions of Theorem 5.1 for p = 1, let b and β(N) be constant.
Then

(5.3)

∫
M

〈q1Ā(β]>) + q2Z̄, β
]〉d vola = 0,
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where the constants q1 and q2 are given by

q1 = −ρ(ρ+ (b2 − β(N)2)γ2)−1(c1ρ1γ1(1 + s γ1) + γ2(c1 − β(N)γ1)),

q2 = γ1ρ− c1ρ1ρ(ρ+ (b2 − β(N)2)γ2)−1(1 + s γ1)(c1 − β(N)γ1).

Proof. If b and β(N) are constant, that is β] and its D⊥-component have constant
lengths, then s, ρ, ρi, γi, c1 and φ(s), µg(n) are also constant. In this case, (5.1) yields
(5.3). �

There are topological obstructions to the existence of codimension one totally
geodesic and Riemannian foliations on a closed Riemannian manifold, see [4, 6]. For
such foliations we get

Corollary 5.3. In conditions of Theorem 5.1 for p = 1, let b and β(N) be constant.
(i) If Ā = 0 and q2 6= 0 then either β(Z̄) ≡ 0 or β(Z̄)x · β(Z̄)x′ < 0 for some points
x 6= x′. (ii) If Z̄ = 0 and q1 6= 0 then either 〈Ā(β]>), β]〉 ≡ 0 or 〈Ā(β]>), β]〉x ·
〈Ā(β]>), β]〉x′ < 0 for some points x 6= x′.

Example 5.1. (i) For Randers metric (p = 1), by (5.1) we get, see [13],∫
M

(c c1)m+1c−1
(

(c c1)σ1(Ā)− m+ 2

2
(N + c−1

1 β])(c c1) + c1N(c)

− (c1 − c)
[
N(c) + 〈c−1Ā(β]>) + Z̄, β]〉

])
d vola = 0,(5.4)

which is the Reeb formula when β = 0. If β(N) = 0 then (5.4) reads∫
M

c2m+1
(
c2σ1(Ā)− (m+ 1) cN(c)− (m+ 2)β](c)

)
d vola = 0.

If b and β(N) 6= 0 are constant then (5.4) reads
∫
M
〈Ā(β]>) + c Z̄, β]〉d vola = 0 , see

also (5.3) with q1 = c−1c1(c− c1) and q2 = c1(c− c1).
(ii) For Kropina metric, if β(N) = 0 then µg(n) = (2/b)2m+2, and

γ1 = −
√

2/(2b), γ2 = 0, c1 = 1/
√

2,

s = b/
√

2, ρ = 4/b2, ρ0 = 12/b4, ρ1 = −8
√

2/b3.

Hence, by Proposition 4.1 for p = 1, σ1(Ag) = b
2 σ1(Ā)− 1

2 div β]+ m√
2
n(b)+ 1

2 b β
](b),

and, we get integral formula∫
M

(2

b

)2m+2{
b σ1(Ā) +

√
2mn(b)− 2m+ 1

b
β](b)

}
d vola = 0 ,

which for b = const reduces to (0.1) for metric a.
(iii) The following application of (5.3) (when b and β(N) are constant) seems to

be interesting. Let Z̄ = 0, q1 6= 0 and α-unit vector field X ∈ XD be an eigenvector of
Ā with an eigenvalue λ : M \Σ→ R. Then β] = ε′X + εN , where ε = const ∈ (0, δ0)
and ε′ = const ∈ (0,

√
1− ε2), obeys (5.3). Thus,

∫
M
λ d vola = 0. Consequently,

either λ ≡ 0 on M or λ(x)λ(x′) < 0 for some points x 6= x′. Furthermore, this implies
Reeb formula (0.1) for 〈·, ·〉:∫

M

σ1(Ā) d vola =
∑

i

∫
M

λi d vola = 0.
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6 The counterpart of Reeb integral formula

In this section we assume for simplicity that D is integrable and p = 1, and use
(α, β)-metrics.

The counterpart of the Reeb integral formula for the second mean curvature reads

(6.1)

∫
M

(2σ2(Ā)− RicN,N ) d vola = 0.

Here RicN,N = Tra(u→ R̄N,uN) is the Ricci curvature of a in the N -direction. The
proof of (6.1), see e.g. [11], is based on the Divergence theorem applied to

div (σ1(Ā)N + Z̄) = RicN,N − 2σ2(Ā).

We will generalize (6.1) for codimension one foliations with general (α, β)-metrics on
M . In this case, the volume form of g with µg given in (3.6) obeys

(6.2) d volg = µg(n) d vola .

Let Ricgν,ν = Trg(u → Rgν,u ν) be the Ricci curvature of g in the ν-direction, where
Rgu,v = [∇v,∇u] − ∇[v,u] is the curvature tensor derived using the Levi-Civita con-
nection of g. The Chern connection Dν is torsion free and almost metric, it is deter-
mined by

(6.3) g(Dν
u v, w)− g(∇u v, w) = Cν(Dν

w ν, u, v)− Cν(Dν
u ν, v, w)− Cν(Dν

v ν, u, w),

see [14], for any vector fields u, v, w, where g(∇u v, w) is given in (4.6).
The difference T = Dν − ∇ is called the contorsion tensor. It is a symmetric

tensor because both connections, ∇ and Dν , are torsion-free. By (6.3), Dν
ν ν = ∇ν ν

holds; hence, Tν ν = 0 (thus, ν is geodesic for F if and only if it is geodesic for g).
Comparing the curvature RDu,v = [Dν

v , D
ν
u]−Dν

[v,u] of Dν with Rgu,v, we find

(6.4) RDν,u −Rgν,u = (∇uT )ν − (∇νT )u − [Tν , Tu], u ∈ TM.

In [5], the Ricci curvature RicDy = Trg(u → RDy,u y) of (α, β)-metric is expressed

through Ricy of α; in particular, ∇̄β = 0 provides RicDy = Ricy (y 6= 0).

Let C]ν be a (1, 1)-tensor g-dual to the symmetric bilinear form Cν(Z, · , · ):

g(C]ν(u), v) = Cν(Z, u, v), u, v ∈ TM.

Note that Ag + C]ν is the shape operator of the leaves with respect to Dν , see [13].
By (6.3), we get

(6.5) Tν = −C]ν , Tr Tν = −σ1(C]ν) = −Iν(Z).

Unlike Theorem 5.1, the following theorem contains non-Riemannian quantities.

Theorem 6.1. Let g be a new metric determined by a codimension-one foliation
F (TF = D), a 1-form β on (M,a), and a function φ(s) with the conditions (2.4),
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(2.10) and ∇̄β] = 0. Then∫
M

{[
(c1ρ)2 (2σ2(Ā)− RicN,N ) +

1

4
m(m− 1)n(ρ)2 − (m− 1) c1ρn(ρ)σ1(Ā)

+
1

2
β(U)〈2γ3A(β]>) + U, β]〉 − 1

2
(b2 − β(N)2)〈2γ3A(β]>) + U,U〉 −

(
2ρ c1σ1(Ā)

−(m− 1)n(ρ)
)
〈γ3A(β]>) + U, β]〉+ 2 ρ c1〈γ3A(β]>) + U, Ā(β]>)〉

]
(ρ φ(s))−2

− Iν((Ag + C]ν + σ1(Ag) id)Z)− 2σ1(AgC]ν)− σ1((C]ν)2)
}
µg(n) d vola = 0 ,(6.6)

where Ag, A and U are given in Proposition 4.1, Z is given in Proposition 4.4 and
µg(n) is given in (3.6) with y = n and s = β(n).

Proof. We will use the adjoint (1,2)-tensor T ∗ defined by

g(T ∗u v, w) = g(Tuw, v)

for u, v, w ∈ TM . Note that T ∗ν ν = 0 and define Trg T ∗ =
∑
i T ∗bi bi – the trace of

T ∗ with respect to g. Assuming (∇ν bi)> = 0 and (∇bi ν)⊥ = 0 at a point x ∈ M ,
calculate at x:∑

i
g((∇i T )ν ν, bi) = 2

∑
i
g(T ∗ν bi, Ag(bi)) = 2σ1(C]νA

g),∑
i
g((∇ν T )i ν, bi) = divg(Trg T ∗),

∑
i
g([Ti, Tν ] ν, bi) = −σ1((C]ν)2),

using the symmetry Ti ν = Tν bi. Then, applying (6.4) we get

RicDν,ν −Ricgν,ν =
∑

i
[ g((∇iT )ν ν, bi)− g((∇νT )i ν, bi) + g([Ti, Tν ] ν, bi) ]

= 2σ1(C]νA
g)− σ1((C]ν)2)− div⊥g (Tr> T ∗).(6.7)

From (6.7) and

div⊥g (Trg T ∗) = divg((Trg T ∗)⊥)− g(Trg T ∗, σ1(Ag) ν − Z)

we obtain

divg((Trg T ∗)⊥) = Ricgν,ν −RicDν,ν

+ g(Trg T ∗, σ1(Ag) ν − Z)− 2σ1(AgC]ν)− σ1((C]ν)2).(6.8)

Then, using (6.3) and (6.5), we find

g(Trg T ∗, ν) = −
∑

i
Cν(Dν

ν ν, bi, bi) = −σ1(C]ν) = −Iν(Z),

g(Trg T ∗, u) = −
∑

i
Cν(Dν

u ν, bi, bi) = Iν((Ag + C]ν)(u))

for u ∈ D. By the above we obtain

g(Trg T ∗, σ1(Ag) ν − Z) = −Iν((Ag + C]ν + σ1(Ag) id)Z).
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By conditions, b = const and R̄(X,Y )β] = 0 (X,Y ∈ TM). Using

RicDn,n = Ricn,n = c 2
1 RicN,N + γ2

1 Ric β],β] − 2 c1γ1

∑
i
〈R̄(N, bi)β

], bi〉

and RicDν,ν = φ−2 RicDn,n, we find

RicDν,ν = (c1/φ)2 RicN,N .

By the above, (6.1) and (6.2) for g, using (6.8) and Corollary 4.3, we find (6.6). �

Corollary 6.2. In conditions of Theorem 6.1, let β(N) = const, Z̄ = 0 and q3 6= 0,
where

q3 =
qρ(4 ρ c1 − (b2 − β(N)2)q)− 4ρ2c 2

1 γ2

4(ρ+ (b2 − β(N)2)γ2)
,

q = ρ1c1γ1(1 + s γ1)− (ρ0 − ρ1γ1) (c1 − β(N)γ1)− γ1γ2β(N).

Then Ā(β]>) = 0, hence rank(Ā) < m. If F is totally umbilical then F is totally
geodesic.

Proof. By conditions, s, ρ, ρi, γi, c1 are constant (since b and β(N) are constant) and
RicDν,ν = Ricgν,ν . Hence, see (6.8),∫

M

{
g(Trg T ∗, σ1(Ag) ν − Z)− 2σ1(AgC]ν)− σ1((C]ν)2)

}
d volg = 0.

Thus, (6.6) and (6.1) yield∫
M

{1

4
β(U)〈2 γ3A(β]>) + U, β]〉 − 1

4
(b2 − β(N)2)〈 2 γ3A(β]>) + U, U〉

−ρ c1σ1(Ā)〈γ3A(β]>) + U, β]〉+ ρ c1〈γ3A(β]>) + U, Ā(β]>)〉
}

d vola = 0,(6.9)

where, in view of ∇̄>n β]> = −γ1β(N)Ā(β]>), we have

U = qĀ(β]>), A = −ρ c1Ā+ q Sym(Ā(β]>)⊗ β>).

If β(N) = const then β(Z̄) = 0 and 〈Ā(β]>), β]>〉 = 0:

0 = 〈∇̄N β], N〉 = 〈∇̄N (β]> + β(N)N), N〉 = −〈β], Z̄〉,
0 = 〈∇̄β]>β], N〉 = 〈∇̄β]>(β]> + β(N)N), N〉 = −〈Ā(β]>), β]〉.

By (6.9), ∫
M

q3‖Ā(β]>)‖2α d vola = 0,

and q3 6= 0 yields Ā(β]>) ≡ 0. If F is totally umbilical then 0 = 〈Ā(β]>), β]>〉 =
‖β]>‖2aσ1(Ā), hence σ1(Ā) = 0. By the above, Ā = 0 on M . �

Example 6.1. For Randers metric, we obtain q3 = 1
4 c

2c 2
1 ((c − 2 c1)2 − 1) with

c1 = c + β(N) and c =
√

1− b2 + β(N)2. For Kropina metric, we have q3 =

− 1
16 β(N)(16 c1s

3 + b2β(N)− β(N)3) s−10 with s =
√
b(b− β(N))/2.
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Let k1 ≤ k2 ≤ . . . ≤ km be the eigenvalues of Ag. One can consider the integral

UF =

∫
M

∑
i<j

(ki − kj)2 d volg,

which measures “how far from g-umbilicity” is a foliation F , see [6] for Riemannian
case. Put

µmin = min
y∈TM\{0}

µgy (y).

Theorem 6.3. Let g be a new Riemannian metric determined by a codimension-one
foliation F , a 1-form β on (M,a), and a function φ with conditions (2.4), (2.10),
∇̄β = 0, β(N) = const and RicN,N ≤ −r < 0. Then

(6.10) UF ≥ mr (c1/φ(s)) 2µminVola(M).

In particular, if c1 6= 0 then F is nowhere g-totally umbilical.

Proof. One may show that∑
i<j

(ki − kj)2 = (m− 1)σ2
1(Ag)− 2mσ2(Ag).

Hence, and by (6.1) for g we obtain

UF ≥ −m
∫
M

2σ2(Ag) d volg = −m
∫
M

Ricgν,ν d volg .

By conditions, Ricgν,ν = (c1/φ(s)) 2 RicN,N , and s, ρ, ρi, γi, c1, φ(s), µg(ν) are constant.
Thus,

UF ≥ −m (c1/φ(s)) 2µmin

∫
M

RicN,N d vola,

which reduces to (6.10) since our assumption RicN,N ≤ −r < 0. �

Following [3] for Riemannian case, define the energy of a vector field ν by

E(ν) =
m+ 1

2
Volg(M) +

1

2

∫
M

‖Dν‖2g d volg .

By (6.1) for g and the inequality ‖Dν ‖2g ≥ 2
m σ2(Ag), see [3], we get the following.

Theorem 6.4. Let g be a new Riemannian metric determined by a codimension-one
foliation F , a 1-form β on (M,a), and a function φ with conditions (2.4), (2.10),
∇̄β] = 0 and β(N) = const. Then for a unit g-normal ν,

E(ν) ≥ µmin

(m+ 1

2
Vola(M) +

c 2
1

2mφ2

∫
M

RicN,N d vola

)
.
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