Spin^T structure and Dirac operator on Riemannian manifolds

Ş. Bulut, A.K. Erkoca

Abstract. In this paper, we describe the group $\operatorname{Spin}^T(n)$ and give some properties of this group. We construct Spin^T spinor bundle \mathbb{S} by means of the spinor representation of the group $\operatorname{Spin}^T(n)$ and define covariant derivative operator and Dirac operator on \mathbb{S} . Finally, Schrödinger-Lichnerowicz type formula is derived by using these operators.

M.S.C. 2010: 15A66, 58Jxx.

Key words: The group $\operatorname{Spin}^{T}(n)$; spinor bundle; Schrödinger-Lichnerowicz type formula; Dirac operator.

1 Introduction

Spin and Spin^c structures is effective tool to study the geometry and topology of manifolds, especially in dimension four. Spin and Spin^c manifolds have been studied extensively in [1, 2, 3, 4]. For any compact Lie group G the Spin^G structure have been studied in [5, 6]. However, the spinor representation is replaced by a hyperkahler manifold, also called target manifold. In this paper, we define the Lie group $\operatorname{Spin}^T(n)$ as a quotient group. The groups $\operatorname{Spin}(n)$ and $\operatorname{Spin}^c(n)$ are the subset of $\operatorname{Spin}^T(n)$. We define Spin^T structure on any Riemannian manifold. The spinor representation of $\operatorname{Spin}^T(n)$ is defined by the help of the spinor representation of $\operatorname{Spin}(n)$. By using the spinor representation of $\operatorname{Spin}^T(n)$ we construct the Spin^T spinor bundle S. Finally, we give Schrödinger-Lichnerowicz type formula by using covariant derivative operator and Dirac operator on S.

This paper is organized as follows. We begin with a section introducing the group $\operatorname{Spin}^{T}(n)$. The following section is dedicated to the construction of the spinor bundle \mathbb{S} , the study the Dirac operator associated to Levi-Civita connection ∇ . In the final section we obtain Schrödinger-Lichnerowicz type formula.

Balkan Journal of Geometry and Its Applications, Vol.23, No.1, 2018, pp. 28-36.

[©] Balkan Society of Geometers, Geometry Balkan Press 2018.

2 The group $\mathbf{Spin}^T(n)$

Definition 2.1. The group $\text{Spin}^T(n)$ is defined as

$$Spin^T(n) := (Spin(n) \times S^1 \times S^1) / \{\pm 1\}.$$

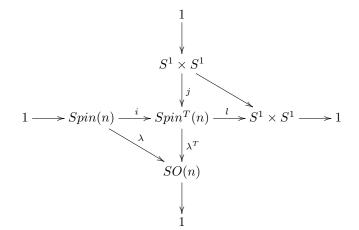
The elements of $\text{Spin}^T(n)$ are thus classes $[g, z_1, z_2]$ of pairs $(g, z_1, z_2) \in Spin(n) \times S^1 \times S^1$ under the equivalence relation

$$(g, z_1, z_2) \sim (-g, -z_1, -z_2).$$

We can define the following homomorphisms:

- a. The map $\lambda^T : Spin^T(n) \longrightarrow SO(n)$ is given by $\lambda^T([g, z_1, z_2]) = \lambda(g)$ where the map $\lambda : Spin(n) \to SO(n)$ is the two-fold covering map given by $\lambda(g)(v) = gvg^{-1}$.
- b. $i: Spin(n) \longrightarrow Spin^{T}(n)$ is the natural inclusion map i(g) = [g, 1, 1].
- c. $j: S^1 \times S^1 \longrightarrow Spin^T(n)$ is the inclusion map $j(z_1, z_2) = [1, z_1, z_2]$.
- d. $l: Spin^T(n) \longrightarrow S^1 \times S^1$ is given by $l([g, z_1, z_2]) = (z_1^2, z_1 z_2).$
- e. $p: Spin^{T}(n) \longrightarrow SO(n) \times S^{1} \times S^{1}$ is given by $p([g, z_{1}, z_{2}]) = (\lambda(g), z_{1}^{2}, z_{1}z_{2})$. Hence, $p = \lambda^{T} \times l$. Here p is a 2-fold covering.

Thus, we obtain the following commutative diagram where the row and the column are exact.



Moreover, we have the following exact sequence:

$$1 \longrightarrow \mathbb{Z}_2 \longrightarrow Spin^T(n) \xrightarrow{p} SO(n) \times S^1 \times S^1 \longrightarrow 1.$$

Theorem 2.1. The group $Spin^{T}(n)$ is isomorphic to $Spin^{c}(n) \times S^{1}$.

Proof. We define the map φ in the following way:

$$\begin{array}{rccc} Spin(n) \times S^1 \times S^1 & \xrightarrow{\varphi} & Spin^c(n) \times S^1 \\ (g, z_1, z_2) & \mapsto & ([g, z_1], z_1 z_2) \end{array}$$

It can be easily shown that φ is a surjective homomorphism and the kernel of φ is $\{(1,1,1), (-1,-1,-1)\}$. Thus, the group $\operatorname{Spin}^T(n)$ is isomorphic to $\operatorname{Spin}^c(n) \times S^1$. \Box

Since $\operatorname{Spin}(n)$ is contained in the complex $\operatorname{Clifford}$ algebra $\mathbb{C}l_n$, the spin representation κ of the group $\operatorname{Spin}(n)$ extends to a $\operatorname{Spin}^T(n)$ -representation. For an element $[g, z_1, z_2]$ from $\operatorname{Spin}^T(n)$ and any spinor $\psi \in \Delta_n$, the spinor representation κ^T of $\operatorname{Spin}^T(n)$ is given by

$$\kappa^T[g, z_1, z_2]\psi = z_1^2 z_2 \kappa(g)(\psi).$$

Proposition 2.2. If n = 2k + 1 is odd, then κ^T is irreducible.

Proof. Assume that $\{0\} \neq W \neq \Delta_{2k+1}$ is a Spin^T invariant subspace. Thus, we have $\kappa^T[g, z_1, z_2](W) \subseteq W$. That is, $z_1^2 z_2 \kappa(g)(W) \subseteq W$. In this case, for every $w \in W$ there exists a $w' \in W$ such that $z_1^2 z_2 \kappa(g)(w) = w'$. As $\kappa(g)(w) = \frac{1}{z_1^2 z_2} w' \in W$ and the representation κ of Spin(n) is irreducible if n is odd, this is a contradiction. The representation κ^T of Spin^T(n) has to be irreducible for n = 2k + 1.

Proposition 2.3. If n = 2k is even, then the spinor space Δ_{2k} decomposes into two subspaces $\Delta_{2k} = \Delta_{2k}^+ \oplus \Delta_{2k}^-$.

Proof. We know that the Spin(n) representation Δ_{2k} decomposes into two subspaces Δ_{2k}^+ and Δ_{2k}^- . Thus, we obtain $z_1^2 z_2 \kappa(g) (\Delta_{2k}^+) \subseteq \Delta_{2k}^+$ and $z_1^2 z_2 \kappa(g) (\Delta_{2k}^-) \subseteq \Delta_{2k}^-$. Namely, $\kappa^T[g, z_1, z_2] (\Delta_{2k}^+) \subseteq \Delta_{2k}^+$ and $\kappa^T[g, z_1, z_2] (\Delta_{2k}^-) \subseteq \Delta_{2k}^-$. Hence, the Spin^T(2k) representation Δ_{2k} decomposes into two subspaces Δ_{2k}^+ and Δ_{2k}^- . It can be easily seen that the Spin^T(2k) representation Δ_{2k}^\pm is irreducible.

The Lie algebra of the group $\operatorname{Spin}^{T}(n)$ is described by

$$\mathfrak{spin}^T(n) = \mathfrak{spin}(n) \oplus i\mathbb{R} \oplus i\mathbb{R}.$$

The differential $p_* : \mathfrak{spin}^T(n) \to \mathfrak{so}(n) \oplus i\mathbb{R} \oplus i\mathbb{R}$ is defined by

$$p_*(e_{\alpha}e_{\beta},\lambda i,\mu i) = (2E_{\alpha\beta},2\lambda i,(\lambda+\mu)i)$$

where λ and μ are any real numbers and $E_{\alpha\beta}$ is the $n \times n$ matrix with entries $(E_{\alpha\beta})_{\alpha\beta} = -1$, $(E_{\alpha\beta})_{\beta\alpha} = 1$ and all others are equal to zero. The inverse of the differential p_* is given by

$$p_*^{-1}(E_{\alpha\beta},\lambda i,\mu i) = (\frac{1}{2}e_{\alpha}e_{\beta},\frac{1}{2}\lambda i,(\mu-\frac{1}{2}\lambda)i).$$

3 Spin^T structure, Spinor bundle and Dirac operator

Definition 3.1. A Spin^T structure on an oriented Riemannian manifold (M^n, g) is a Spin^T(n) principal bundle $P_{Spin^T(n)}$ together with a smooth map $\Lambda : P_{Spin^T(n)} \to P_{SO(n)}$ such that the following diagram commutes:

$$P_{Spin^{T}(n)} \times Spin^{T}(n) \longrightarrow P_{Spin^{T}(n)}$$

$$\downarrow^{\Lambda \times \lambda^{T}} \qquad \qquad \downarrow^{\Lambda}$$

$$P_{SO(n)} \times SO(n) \longrightarrow P_{SO(n)}$$

From above definition we can construct a two-fold covering map

$$\Pi: P_{Spin^{T}(n)} \to P_{SO(n)} \times P_{S^{1} \times S^{1}}.$$

Given a Spin^T structure $(P_{Spin^{T}(n)}, \Lambda)$, the map $\lambda^{T} : Spin^{T}(n) \longrightarrow SO(n)$ induces an isomorphism

$$P_{Spin^T(n)}/S^1 \times S^1 \cong P_{SO(n)}$$

In similar way, $Spin^T(n)/_{Spin(n)} \cong S^1 \times S^1$ implies the isomorphism

$$P_{Spin^T(n)}/Spin(n) \cong P_{S^1 \times S^1}.$$

Note that on account of the inclusion map $i : Spin(n) \to Spin^{T}(n)$, every spin structure on M induces a Spin^T structure. Similarly, since there exists a inclusion map $Spin^{c}(n) \to Spin^{T}(n)$, every Spin^c structure on M induces a Spin^T structure.

Let (M^n, g) be an oriented connected Riemannian manifold and $P_{SO(n)} \to M$ the SO(n)-principal bundle of positively oriented orthonormal frames. The Levi-Civita connection ∇ on $P_{SO(n)}$ determines a connection 1-form ω on the principal bundle $P_{SO(n)}$ with values in $\mathfrak{so}(n)$, locally given by

$$\omega^e = \sum_{i < j} g(\nabla e_i, e_j) E_{ij}$$

where $e = \{e_1, \ldots, e_n\}$ is a local section of $P_{SO(n)}$ and E_{ij} is the $n \times n$ matrix with entries $(E_{ij})_{ij} = -1$, $(E_{ij})_{ji} = 1$ and all others are equal to zero.

We fix a connection

$$(A,B):TP_{S^1\times S^1}\to i\mathbb{R}\oplus i\mathbb{R}$$

on the principal bundle $P_{S^1 \times S^1}$. The connections ω and (A, B) induce a connection

$$\omega \times (A,B) : T(P_{SO(n)} \times P_{S^1 \times S^1}) \to \mathfrak{so}(n) \oplus i\mathbb{R} \oplus i\mathbb{R}$$

on the fibre product bundle $P_{SO(n)} \times P_{S^1 \times S^1}$. Now we can define a connection 1-form $\widetilde{\omega \times (A, B)}$ on the principal bundle $P_{Spin^T(n)}$ such that the following diagram commutes:

$$\begin{split} TP_{Spin^{T}(n)} & \xrightarrow{\omega \times (\overline{A}, B)} \mathfrak{spin}^{T}(n) = \mathfrak{spin}(n) \oplus i\mathbb{R} \oplus i\mathbb{R} \\ & \bigvee_{I} \\ T(P_{SO(n)} \times P_{S^{1} \times S^{1}}) \xrightarrow{\omega \times (A, B)} \mathfrak{so}(n) \oplus i\mathbb{R} \oplus i\mathbb{R} \end{split}$$

That is, the equality

$$p_* \circ \omega \times (A, B) = (\omega \times (A, B)) \circ \Pi_*$$

holds.

Definition 3.2. The spinor bundle of a Spin^T manifold is defined as the associated vector bundle

$$\mathbb{S} = P_{Spin^T(n)} \times_{\kappa^T} \Delta_n$$

where $\kappa^T : Spin^T(n) \to GL(\Delta_n)$ is the spinor representation of $Spin^T(n)$. In case of n = 2k the spinor bundle splits into the sum of two subbundles \mathbb{S}^+ and \mathbb{S}^- such that

$$\mathbb{S} = \mathbb{S}^+ \oplus \mathbb{S}^-, \qquad \mathbb{S}^{\pm} = P_{Spin^T(n)} \times_{\kappa^T^{\pm}} \Delta_n^{\pm}.$$

Any spinor field ψ can be identified with the map $\psi: P_{Spin^{T}(n)} \to \Delta_{n}$ satisfying the transformation rule $\psi(pg) = \kappa^{T}(g^{-1})\psi(p)$. The absolute differential of a section ψ with respect to $\omega \times (A, B)$ determines a covariant derivative

$$\widetilde{\nabla}: \Gamma(\mathbb{S}) \to \Gamma(T^*M \otimes \mathbb{S})$$

given by

$$\widetilde{\nabla}\psi = d\psi + \kappa_{*1}^T (\omega \times (A, B))\psi$$

where $\kappa_{*1}^T : \mathfrak{spin}^T(n) \to End(\Delta_n)$ is the derivative of κ at the identity $1 \in Spin^T(n)$. It can be also shown that

$$\kappa_{*1}^{T}(e_{\alpha}e_{\beta},\lambda i,\mu i) = \kappa(e_{\alpha}e_{\beta}) + (2\lambda i + \mu i)Id$$

where λ and μ are any real numbers and κ is the spin representation of the group $\operatorname{Spin}(n)$.

Now we give the local formulas for connections. Fix a section $s: U \to P_{S^1 \times S^1}$ of the principal bundle $P_{S^1 \times S^1}$. Then, we obtain the local connection form

$$(A^s, B^s): TU \to i\mathbb{R} \oplus i\mathbb{R}$$

where $A^s, B^s: TU \to i\mathbb{R}$. $e \times s: U \to P_{SO(n)} \times P_{S^1 \times S^1}$ is a local section of the fiber product bundle $P_{SO(n)} \times P_{S^1 \times S^1}$. $e \times s$ is a lift of this section to the two-fold covering $\Pi: P_{Spin^T(n)} \to P_{SO(n)} \times P_{S^1 \times S^1}$. The local connection form $\omega \times (A, B)^{(e \times s)}$ on the principal bundle $P_{Spin^T(n)}$ is given by the formula

$$\widetilde{\omega \times (A,B)}^{(e \times s)} = \left(\frac{1}{2} \sum_{i < j} g(\nabla e_i, e_j) e_i e_j, \frac{1}{2} A^s, B^s - \frac{1}{2} A^s\right)$$

Hence, this connection form induces a connection $\widetilde{\nabla}$ on the spinor bundle S. We can locally describe $\widetilde{\nabla}$ by

(3.1)
$$\widetilde{\nabla}_X \psi = d\psi(X) + \frac{1}{2} \sum_{i < j} g(\nabla_X e_i, e_j) e_i e_j \psi + \frac{1}{2} A^s \psi + B^s \psi$$

where $\psi: U \to \Delta_n$ is a section of the spinor bundle S.

Definition 3.3. The first order differential operator

$$D_{(A,B)} = \mu \circ \widetilde{\nabla} : \Gamma(\mathbb{S}) \xrightarrow{\widetilde{\nabla}} \Gamma(T^*M \otimes \mathbb{S}) \xrightarrow{\mu} \Gamma(\mathbb{S})$$

where μ denotes Clifford multiplication, is called the Dirac operator.

The Dirac operator $D_{(A,B)}$ is locally given by

(3.2)
$$D_{(A,B)}\psi = \sum_{i=1}^{n} e_i \cdot \widetilde{\nabla}_{e_i}\psi$$

where $\{e_1, \ldots, e_n\}$ is a local orthonormal frame on the manifold M.

The Dirac operator has the following property:

Theorem 3.1. Let f be a smooth function and $\psi \in \Gamma(\mathbb{S})$ be a spinor field. Then,

$$D_{(A,B)}(f \cdot \psi) = (gradf \cdot \psi) + f D_{(A,B)} \psi.$$

Proof. By using the definition of the Dirac operator $D_{(A,B)}$ we can compute $D_{(A,B)}(f \cdot \psi)$ as follows:

$$D_{(A,B)}(f \cdot \psi) = \sum_{\substack{i=1\\i=1}}^{n} e_i \cdot \widetilde{\nabla}_{e_i}(f \cdot \psi)$$

$$= \sum_{\substack{i=1\\i=1}}^{n} e_i \cdot (e_i(f) \cdot \psi + f \widetilde{\nabla}_{e_i} \psi)$$

$$= \sum_{\substack{i=1\\i=1}}^{n} e_i(f) e_i \cdot \psi + f \sum_{\substack{i=1\\i=1}}^{n} e_i \cdot \widetilde{\nabla}_{e_i} \psi$$

$$= (gradf) \cdot \psi + f D_{(A,B)} \psi$$

Now we can define the Laplace operator on the spinor bundle S.

Definition 3.4. Let $\psi \in \Gamma(\mathbb{S})$ be a spinor field. The Laplace operator Δ on spinors is defined by

(3.3)
$$\Delta \psi = -\sum_{i=1}^{n} \left(\widetilde{\nabla}_{e_i} \widetilde{\nabla}_{e_i} \psi + div(e_i) \widetilde{\nabla}_{e_i} \psi \right).$$

4 Schrödinger-Lichnerowicz type formula

The square $D^2_{(A,B)}$ of the Dirac operator and the Laplace operator Δ are second order differential operators. We derive Schrödinger-Lichnerowicz type formula by computing their difference $D^2_{(A,B)} - \Delta$.

The curvature $R^{\mathbb{S}}$ of the spinor covariant derivative $\widetilde{\nabla}$ is an $End(\mathbb{S})$ valued 2-form by

$$R^{\mathbb{S}}(X,Y)\psi = \widetilde{\nabla}_X \widetilde{\nabla}_Y \psi - \widetilde{\nabla}_Y \widetilde{\nabla}_X \psi - \widetilde{\nabla}_{[X,Y]} \psi$$

where $\psi \in \Gamma(\mathbb{S})$ and $X, Y \in \Gamma(TM)$. Now we want to describe $\mathbb{R}^{\mathbb{S}}$ in terms of the curvature tensor \mathbb{R} .

Let $\Omega^{\omega}: TP_{SO(n)} \times TP_{SO(n)} \to \mathfrak{so}(n)$ be the curvature form of the Levi-Civita connection with the components

$$\Omega^{\omega} = \sum_{i < j} \Omega_{ij} E_{ij}$$

where $\Omega_{ij} : TP_{SO(n)} \times TP_{SO(n)} \to \mathbb{R}$. The commutative diagram defining the connection $\widetilde{\omega \times (A, B)}$ implies that the curvature form of $\widetilde{\omega \times (A, B)}$ is

$$\Omega^{\omega \times (A,B)} = \frac{1}{2} \sum_{i < j} \Pi^*(\Omega_{ij}) e_i e_j \oplus \frac{1}{2} \Pi^*(dA) \oplus \Pi^*(dB).$$

Hence the 2-form $R^{\mathbb{S}}$ with values in the spinor bundle \mathbb{S} is obtained by the following formula:

$$R^{\mathbb{S}}(.,.)\psi = \frac{1}{2}\sum_{i< j}\Omega_{ij}e_ie_j\cdot\psi + \frac{1}{2}dA\cdot\psi + dB\cdot\psi.$$

Let $\{e_1, \ldots, e_n\}$ be orthonormal frame field, $\Omega_{ij}(X, Y) = g(R(X, Y)e_i, e_j)$ the components of the curvature form of the Levi-Civita connection,

 $X = \sum_{k=1}^{n} X^{k} e_{k}$ and $Y = \sum_{l=1}^{n} Y^{l} e_{l}$ be vector fields on the Riemannian manifold M. Then we have

$$\Omega_{ij}(X,Y) = g(R(X,Y)e_i,e_j)$$

$$= \sum_{k,l=1}^n R_{klij} X^k Y^l$$

$$= \sum_{k,l=1}^n R_{klij} e^k(X) e^l(Y)$$

$$= \frac{1}{2} \sum_{k,l=1}^n R_{klij} (e^k \wedge e^l)(X,Y).$$

where $\{e^1, \ldots, e^n\}$ is the frame dual to $\{e_1, \ldots, e_n\}$. Thus, we obtain the following local formula for the curvature form

$$\Omega^{\omega \times (\overline{A,B})} = \frac{1}{4} \sum_{i < j} \sum_{k,l=1}^{n} R_{klij} (e^k \wedge e^l) e_i e_j + \frac{1}{2} dA + dB$$

and the 2-form $R^{\mathbb{S}}(.,.)$ is calculated as follows:

$$R^{\mathbb{S}}(.,.)\psi = \frac{1}{4} \sum_{i < j} \sum_{k,l=1}^{n} R_{klij} (e^k \wedge e^l) e_i e_j \cdot \psi + \frac{1}{2} dA \cdot \psi + dB \cdot \psi.$$

By using the above properties of the curvature form $R^{\mathbb{S}}$ on spinor bundle \mathbb{S} we deduce the following result:

Proposition 4.1. Let Ric be the Ricci tensor. Then, the following relation holds:

(4.1)
$$\sum_{\alpha=1}^{n} e_{\alpha} \cdot R^{\mathbb{S}}(X, e_{\alpha})\psi = -\frac{1}{2}Ric(X) \cdot \psi + \frac{1}{2}(X \sqcup dA) \cdot \psi + (X \sqcup dB) \cdot \psi$$

Proof. In [1] it is proved the following relation:

(4.2)
$$\sum_{\alpha=1}^{n} \sum_{i < j} \sum_{k,l=1}^{n} R_{klij} (e^k \wedge e^l) e_{\alpha} e_i e_j \cdot \psi = -2Ric(X) \cdot \psi$$

It can be easily seen the following two relations:

(4.3)
$$\sum_{\alpha=1}^{n} e_{\alpha} \cdot dA(X, e_{\alpha}) \cdot \psi = (X \sqcup dA) \cdot \psi$$

and

(4.4)
$$\sum_{\alpha=1}^{n} e_{\alpha} \cdot dB(X, e_{\alpha}) \cdot \psi = (X \sqcup dB) \cdot \psi.$$

Then, using (4.2), (4.3) and (4.4), we obtain the claimed equivalence.

Now, we derive Schrödinger-Lichnerowicz-type formula in the following way:

Proposition 4.2. Let s be scalar curvature of the Riemannian manifold and let $dA = \Omega^A$ and $dB = \Omega^B$ be the imaginary-valued 2-forms of the connections (A, B) in the $(S^1 \times S^1)$ -bundle associated with $Spin^T$ structure. Then, we have the following formula:

$$D^2_{(A,B)}\psi = \Delta\psi + \frac{s}{4}\psi + \frac{1}{2}dA\cdot\psi + dB\cdot\psi.$$

Proof.

$$(4.5) D^{2}_{(A,B)}\psi = \sum_{i,j} e_{i} \cdot \widetilde{\nabla}_{e_{i}}(e_{j} \cdot \widetilde{\nabla}_{e_{j}}\psi)$$

$$= \sum_{i,j} e_{i} \cdot \nabla_{e_{i}}e_{j} \cdot \widetilde{\nabla}_{e_{j}}\psi + e_{i}e_{j} \cdot \widetilde{\nabla}_{e_{i}}\widetilde{\nabla}_{e_{j}}\psi$$

$$= \sum_{i,j,k} g(\nabla_{e_{i}}e_{j}, e_{k})e_{i}e_{k} \cdot \widetilde{\nabla}_{e_{j}}\psi + \sum_{i,j} e_{i}e_{j} \cdot \widetilde{\nabla}_{e_{i}}\widetilde{\nabla}_{e_{j}}\psi$$

$$= \Delta\psi + \sum_{j,i\neq k} g(\nabla_{e_{i}}e_{j}, e_{k})e_{i}e_{k} \cdot \widetilde{\nabla}_{e_{j}}\psi + \sum_{i\neq j} e_{i}e_{j} \cdot \widetilde{\nabla}_{e_{i}}\widetilde{\nabla}_{e_{j}}\psi$$

Now we can calculate the following sum:

$$\sum_{i \neq k} g(\nabla_{e_i} e_j, e_k) e_i e_k = -\sum_{i \neq k} g(e_j, \nabla_{e_i} e_k) e_i e_k$$
$$= -\sum_{i < k} g(e_j, \nabla_{e_i} e_k - \nabla_{e_k} e_i) e_i e_k$$
$$= \sum_{i < k} g(e_j, [e_k, e_i]) e_i e_k$$

From (4.5) we get

$$\begin{split} D^2_{(A,B)}\psi &= \Delta \psi + \sum_{j,i < k} g(e_j, [e_k, e_i]) e_i e_k \widetilde{\nabla}_{e_j} \psi + \sum_{i < j} e_i e_j \cdot (\widetilde{\nabla}_{e_i} \widetilde{\nabla}_{e_j} \psi - \widetilde{\nabla}_{e_j} \widetilde{\nabla}_{e_i} \psi) \\ &= \Delta \psi + \sum_{i < j} e_i e_j (\widetilde{\nabla}_{e_i} \widetilde{\nabla}_{e_j} \psi - \widetilde{\nabla}_{e_j} \widetilde{\nabla}_{e_i} \psi - \widetilde{\nabla}_{[e_i, e_j]} \psi) \\ &= \Delta \psi + \frac{1}{2} \sum_{i,j} e_i e_j R^{\mathbb{S}}(e_i, e_j) \psi. \end{split}$$

Using the identity (4.1) and multiplying by e_i we deduce that

$$D^{2}_{(A,B)}\psi = \Delta\psi - \frac{1}{4}\sum_{i}e_{i}Ric(e_{i})\cdot\psi + \frac{1}{4}\sum_{i}e_{i}\cdot(e_{i} \sqcup dA)\cdot\psi + \frac{1}{2}\sum_{i}e_{i}\cdot(e_{i} \sqcup dB)\cdot\psi \\ = \Delta\psi + \frac{s}{4}\psi + \frac{1}{2}dA\cdot\psi + dB\cdot\psi.$$

References

- [1] T. Friedrich, Dirac Operators in Riemannian Geometry, AMS, 2000.
- [2] H. B. Lawson, M. L. Michelsohn, Spin Geometry, Princeton Univ., 1989.
- [3] L. I. Nicolaescu, Lectures on the Geometry of Manifolds, World Scientific, 2007.
- [4] D. A. Salamon, Spin geometry and Seiberg-Witten invariants, in preparation.
- [5] A. Teleman, Non-Abelian Seiberg-Witten theory, Int. J. Math. 8, 4 (1997), 507-535.
- [6] V. Thakre, Dimensional reduction of non-linear Seiberg-Witten equations, preprint, arXiv:1502.01486v1.

Authors' address:

Şenay Bulut, Ali Kemal Erkoca Anadolu University, Department of Mathematics, 26470, Eskişehir, Turkey. E-mail: skarapazar@anadolu.edu.tr ; ake@anadolu.edu.tr