Certain condition on the second fundamental form of CR-submanifolds in odd-dimensional unit spheres

M. Asadollahzadeh, E. Abedi, G. Haghighatdoost

Abstract

In this paper, we study $(n+1)$-dimensional real submanifolds M with $(n-1)$-contact CR dimension. On these manifolds there exists an almost contact structure F which is naturally induced from the ambient space. Also, we study the condition $h(F X, Y)-h(X, F Y)=$ $g(F X, Y) \varphi, \quad \varphi \in T M^{\perp}$, on the almost contact structure F and on the second fundamental form h of these submanifolds and we characterize certain model spaces in contact odd-dimensional unit sphere.

M.S.C. 2010: 53C40, 53C25.

Key words: contact structure, contact CR-submanifold,odd-dimensional unit sphere, second fundamental form.

1 Introduction

Let \bar{M} be a $(2 m+1)$-dimensional Sasakian manifold with Sasakian structure tensors (ϕ, ξ, η, g). The structure tensors satisfy:

$$
\begin{align*}
& \phi^{2} X=-X+\eta(X) \xi, \phi \xi=0, \eta(\xi)=1, \eta(\phi X)=0, \tag{1.1}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi), \tag{1.2}
\end{align*}
$$

for any vector fields X and Y on \bar{M} [11]. Let M be a submanifold tangent to the structure vector field ξ isometrically immersed in the Sasakian manifold \bar{M}. Then M is called a contact $C R$-submanifold of \bar{M} if there exists a differentiable distribution $D: x \longrightarrow D_{x} \subset T_{x} M$ on M satisfying:

- D is invariant with respect to ϕ, i.e., $\phi D_{x} \subset D_{x}$
- The complementary orthogonal distribution $D^{\perp}: x \longrightarrow D_{x}^{\perp} \subset T_{x} M$ is antiinvariant with respect to ϕ, i.e., $\phi D_{x}^{\perp} \subset T_{x}^{\perp} M$
for $x \in M$. If $\operatorname{dim} D=0$, then the contact CR-submanifold M is called an antiinvariant submanifold of \bar{M} tangent to ξ. If $\operatorname{dim} D^{\perp}=0$, then M is an invariant submanifold of \bar{M} [12]. Contact CR-submanifold of maximal CR-dimension in an odddimensional unit sphere satisfying the condition $h(F X, Y)+h(X, F Y)=0$ has been studied in [7], [8] and [9]. In the present article we study connected $(n+1)$-dimensional real submanifolds of codimension $(p=2 m-n)$ of the odd-dimensional unit sphere $S^{2 m+1}$ which are contact CR-submanifolds of contact CR-dimension $(n-1)$, that is, $\operatorname{dim} D^{\perp}=2$. In Section 2 we collect some basic relations concerning submanifolds, in particular we discuss the notion of contact CR-submanifolds of the Sasakian manifold $S^{2 m+1}$. Section 3 is devoted to the study of contact CR-submanifolds which satisfy the condition $h(F X, Y)-h(X, F Y)=g(F X, Y) \varphi, \quad \varphi \in T M^{\perp}$ on the structure tensor F naturally induced from the almost contact structure ϕ of the ambient manifold and on the second fundamental form h of a submanifold M. M. Djoric studied this relation for complex Euclidean space and complex projective space in [2] and [3]. In Section 4, using the codimension reduction theorem in [5], we obtain codimension reduction result for contact CR-submanifolds of an odd-dimensional unit sphere. Also in [10], Takagi showed that if M is a complete connected hypersurface of $S^{2 m+1}$ having 4 constant principal curvatures with the one multiplicity of 1 , then M is congruent to $M^{2 n}(t)$ for a number t with $0<t<\frac{\pi}{4}$. And in [6], Nakagawa and Yokote proved:
Theorem : For a complete orientable hypersurface with constant principal curvature in $S^{2 n+1}$, we assume that for a (f, g, u, v, λ) - structure on M, there exists a constant ϕ such that $H_{k}^{i} f_{j}^{k}+f_{k}^{i} H_{j}^{k}=2 \phi f_{j}^{i}$ or equivalently $f_{j}^{k} H_{k i}-f_{k}^{i} H_{k j}=2 \phi f_{j i}$, where H_{j}^{i} denotes the second fundamental tensor in M. Then either of the following two assertions (a) and (b) is true:
(a) M is isometric to one of the following spaces:
- the great sphere $S^{2 n+1}(1) ;$
- the small sphere $S^{2 n}(c)$, where $c=1+\phi^{2}$;
- the product manifold $S^{2 n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$, where $c_{1}=1+\phi^{2}$ and $c_{2}=1+\frac{1}{\phi^{2}}$;
- the product manifold $S^{n}\left(c_{1}\right) \times S^{n}\left(c_{2}\right)$, where $c_{1}=2\left(1+\phi^{2}+\phi \sqrt{1+\phi^{2}}\right)$ and $c_{2}=2\left(1+\phi^{2}-\phi \sqrt{1+\phi^{2}}\right)$
(b) M has exactly four distinct constant principal curvatures of multiplicities $n-$ $1, n-1,1$ and 1 , respectively.
Finally in Section 5 we provide a sufficient condition in order for such a submanifold to be the model space of $S^{2 n_{1}+1}\left(c_{1}\right) \times S^{2 n_{2}+1}\left(c_{2}\right)$, where c_{1} and c_{2} will be introduced in Section 5 .

2 Preliminaries

Let $S^{2 m+1}$ be a $(2 m+1)$-unit sphere and $Z \in S^{2 m+1}$. We put $\xi=J Z$ where J is the complex structure of the complex $(m+1)$-space \mathbb{C}^{m+1}. We consider the orthogonal projection $\pi: T_{Z} \mathbb{C}^{m+1} \rightarrow T_{Z} S^{2 m+1}$, and put $\phi=\pi \circ J$. Then we see that (ϕ, ξ, η, g) is a Sasakian structure on $S^{2 m+1}$, where η is a 1-form dual to ξ and g is the standard metric tensor field on $S^{2 m+1}$. Hence, $S^{2 m+1}$ can be regarded as a Sasakian manifold
of constant ϕ-sectional curvature 1 [1],[12]. Consider M, an $(n+1)$-dimensional contact CR-submanifold in $S^{2 m+1}$ which is tangent to the structure vector field ξ. The subspace D_{x} is the ϕ-invariant subspace $T_{x} M \cap \phi T_{x} M$ of the tangent space $T_{x} M$ of M at $x \in M$. Then ξ is not in D_{x} at any x in M. Let D_{x}^{\perp} denote the complementary orthogonal subspace to D_{x} in $T_{x} M$. For any nonzero vectors U orthogonal to ξ and contained in D_{x}^{\perp}, we have ϕU normal to M which we denote by N, that is,

$$
\begin{equation*}
N=\phi U \tag{2.1}
\end{equation*}
$$

It is clear that $\phi T M \subset T M \oplus \operatorname{span}\{N\}$. In the following we assume that $\operatorname{dim} D_{x}=$ $n-1$ and $\operatorname{dim} D_{x}^{\perp}=2$, at each point x in M. We denote by $\nu(M)$ the complementary orthogonal subbundle of ϕD^{\perp} in the normal bundle $T M^{\perp}$. We have the following orthogonal direct sum decomposition $T M^{\perp}=\phi D^{\perp} \oplus \nu(M)$. It is easy to see that $\nu(M)$ is ϕ-invariant. For vector field X tangent to M and for a local frame $\left\{N, N_{\alpha}\right\}_{\alpha=1, \ldots, p-1}$, we have the following decomposition into tangential and normal parts

$$
\begin{gather*}
\phi X=F X+u(X) N \tag{2.2}\\
\phi N_{\alpha}=P N_{\alpha}, \quad \phi N=-U \quad \alpha=1, \ldots, p-1, \tag{2.3}
\end{gather*}
$$

where F and P are skew-symmetric linear endomorphisms acting on $T_{x} M$ and $T_{x}^{\perp} M$ and u is a 1 -form on M. Since ξ is tangent to M, from (1.1), (1.2) and (2.1), we conclude

$$
\begin{gather*}
g(X, U)=u(X) \tag{2.4}\\
F \xi=0, \quad u(\xi)=0, \quad F U=0, \quad u(U)=1 \tag{2.5}
\end{gather*}
$$

Using (2.1) again, we get

$$
\begin{equation*}
F^{2} X=-X+\eta(X) \xi+u(X) U \tag{2.6}
\end{equation*}
$$

also,

$$
\begin{equation*}
u(F X)=0 \tag{2.7}
\end{equation*}
$$

Let us denote by $\bar{\nabla}$ and ∇ the Riemannian connection of $S^{2 m+1}$ and M, respectively and by ∇^{\perp} the normal connection induced from $\bar{\nabla}$ in the normal bundle of M. Then the Gauss and Weingarten formulae for M are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.8}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.9}
\end{align*}
$$

for any vector fields X, Y tangent to M and any vector field N normal to M, where h denotes the second fundamental form and A_{N} denotes the shape operator (second fundamental tensor) corresponding to N.

Since $\nu(M)$ is ϕ-invariant we can take a local orthonormal frame $\left\{N, N_{\alpha}, N_{\alpha^{*}}\right\}_{\alpha=1, \ldots, q}$ of normal vectors to M, such that $N_{1^{*}}=\phi N_{1}, \ldots, N_{q^{*}}=\phi N_{q}$ then we have

$$
\begin{gather*}
\bar{\nabla}_{X} N_{\alpha}=-A_{\alpha} X-S_{\alpha}(X) N+\sum_{\beta=1}^{q}\left\{S_{\alpha \beta}(X) N_{\beta}+S_{\alpha \beta^{*}}(X) N_{\beta^{*}}\right\}, \tag{2.11}\\
\bar{\nabla}_{X} N_{\alpha^{*}}=-A_{\alpha^{*}} X-S_{\alpha^{*}}(X) N+\sum_{\beta=1}^{q}\left\{S_{\alpha^{*} \beta}(X) N_{\beta}+S_{\alpha^{*} \beta^{*}}(X) N_{\beta^{*}}\right\}, \tag{2.12}
\end{gather*}
$$

where $q=\frac{p-1}{2}$ and S^{\prime} 's are the coefficients of the normal connection ∇^{\perp} and $A, A_{\alpha}, A_{\alpha^{*}}$, are the shape operators corresponding to the normals $N, N_{\alpha}, N_{\alpha^{*}}$, respectively. In addition the second fundamental form h and the shape operators $A, A_{\alpha}, A_{\alpha^{*}}$ are related by

$$
\begin{equation*}
h(X, Y)=g(A X, Y) N+\sum_{\alpha=1}^{q}\left\{g\left(A_{\alpha} X, Y\right) N_{\alpha}+g\left(A_{\alpha^{*}} X, Y\right) N_{\alpha^{*}}\right\} \tag{2.13}
\end{equation*}
$$

Differentiating covariantly relations (2.1), (2.2), using (2.10) and comparing the tangential and normal parts, we get

$$
\begin{gather*}
\left(\nabla_{Y} F\right) X=-g(X, Y) \xi+\eta(X) Y-g(A Y, X) U+u(X) A Y \tag{2.14}\\
\nabla_{Y} U=F A Y \tag{2.15}\\
\left(\nabla_{Y} u\right) X=g(F A Y, X) \tag{2.16}
\end{gather*}
$$

Since the ambient space is Sasakian, then

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \phi\right) X=-g(X, Y) \xi+\eta(X) Y \tag{2.17}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=\phi X \tag{2.18}
\end{equation*}
$$

Using (2.2), the last relation gives

$$
\begin{equation*}
\nabla_{X} \xi=F X \tag{2.19}
\end{equation*}
$$

and

$$
g(A \xi, X)=u(X)
$$

that is

$$
\begin{equation*}
A \xi=U \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
A_{\alpha} \xi=A_{\alpha^{*}} \xi=0, \quad \alpha=1, \ldots, q \tag{2.21}
\end{equation*}
$$

3 Contact CR-submanifolds of an odd-dimensional unit sphere

In this section we consider $(n+1)$-dimensional contact CR-submanifold M satisfying in the condition

$$
\begin{equation*}
h(F X, Y)-h(X, F Y)=g(F X, Y) \varphi, \quad \varphi \in T^{\perp} M \tag{3.1}
\end{equation*}
$$

for all X, Y tangent to M. Using (2.13) and setting

$$
\varphi=\rho N+\sum_{\alpha=1}^{q}\left(\rho^{\alpha} N_{\alpha}+\rho^{\alpha^{*}} N_{\alpha^{*}}\right)
$$

we obtain

$$
\begin{gathered}
h(F X, Y)-h(X, F Y)=g((A F+F A) X, Y) N \\
+\sum_{\alpha=1}^{q}\left\{g\left(\left(A_{\alpha} F+F A_{\alpha}\right) X, Y\right) N_{\alpha}+g\left(\left(A_{\alpha^{*}} F+F A_{\alpha^{*}}\right) X, Y\right) N_{\alpha^{*}}\right\} \\
=g(F X, Y)\left(\rho N+\sum_{\alpha=1}^{q}\left(\rho^{\alpha} N_{\alpha}+\rho^{\alpha^{*}} N_{\alpha^{*}}\right)\right)
\end{gathered}
$$

Then,

$$
\begin{gather*}
A F X+F A X=\rho F X, \tag{3.2}\\
A_{\alpha} F X+F A_{\alpha} X=\rho^{\alpha} F X, \tag{3.3}\\
A_{\alpha^{*}} F X+F A_{\alpha^{*}} X=\rho^{\alpha^{*}} F X, \tag{3.4}
\end{gather*}
$$

for all X tangent to M.
By (2.2), (2.17) and the relation

$$
\phi\left(\bar{\nabla}_{X} N_{\alpha}\right)=\bar{\nabla}_{X}\left(\phi N_{\alpha}\right)-\left(\bar{\nabla}_{X} \phi\right) N_{\alpha}
$$

we have

$$
\phi\left(\bar{\nabla}_{X} N_{\alpha}\right)=\bar{\nabla}_{X} N_{\alpha^{*}}
$$

From a direct computation and comparing the tangential and normal parts, we get

$$
\begin{gather*}
A_{\alpha^{*}} X=F A_{\alpha} X-S_{\alpha}(X) U, \tag{3.5}\\
S_{\alpha \beta}(X)=S_{\alpha^{*} \beta^{*}}(X) \tag{3.6}\\
S_{\alpha \beta^{*}}(X)=-S_{\alpha^{*} \beta}(X), \tag{3.7}\\
S_{\alpha^{*}}(X)=u\left(A_{\alpha} X\right) \tag{3.8}
\end{gather*}
$$

Similarly we obtain

$$
\begin{gather*}
A_{\alpha} X=-F A_{\alpha^{*}} X+S_{\alpha^{*}}(X) U \tag{3.9}\\
S_{\alpha}(X)=-u\left(A_{\alpha^{*}} X\right) \tag{3.10}
\end{gather*}
$$

Also using (3.5), (3.8), (3.9) and (3.10)

$$
\begin{gather*}
g\left(\left(A_{\alpha} F+F A_{\alpha}\right) X, Y\right)=S_{\alpha}(X) u(Y)-S_{\alpha}(Y) u(X) \tag{3.11}\\
g\left(\left(A_{\alpha^{*}} F+F A_{\alpha^{*}}\right) X, Y\right)=S_{\alpha^{*}}(X) u(Y)-S_{\alpha^{*}}(Y) u(X) \tag{3.12}
\end{gather*}
$$

Lemma 3.1. Let M be a $(n+1)$-dimensional contact $C R$-submanifold of $C R$-dimension $(n-1)$ of $S^{2 m+1}$. If (3.1) is satisfied then

$$
\begin{gathered}
A_{\alpha} F+F A_{\alpha}=0 \\
A_{\alpha^{*}} F+F A_{\alpha^{*}}=0 \quad \text {, that is, } \rho^{\alpha}=\rho^{\alpha^{*}}=0
\end{gathered}
$$

Proof. Since (3.1) is equivalent to (3.3) and (3.4), then using (3.11) and (3.12) we have

$$
\begin{aligned}
g\left(\rho^{\alpha} F X, Y\right) & =S_{\alpha}(X) u(Y)-S_{\alpha}(Y) u(X) \\
g\left(\rho^{\alpha^{*}} F X, Y\right) & =S_{\alpha^{*}}(X) u(Y)-S_{\alpha^{*}}(Y) u(X)
\end{aligned}
$$

Then

$$
\begin{gather*}
\rho^{\alpha} g(F X, Y)=S_{\alpha}(X) u(Y)-S_{\alpha}(Y) u(X) \tag{3.13}\\
\rho^{\alpha^{*}} g(F X, Y)=S_{\alpha^{*}}(X) u(Y)-S_{\alpha^{*}}(Y) u(X) \tag{3.14}
\end{gather*}
$$

Putting $Y=U$ in (3.13) and (3.14) we have

$$
\begin{align*}
S_{\alpha}(X) & =S_{\alpha}(U) u(X) \tag{3.15}\\
S_{\alpha^{*}}(X) & =S_{\alpha^{*}}(U) u(X) \tag{3.16}
\end{align*}
$$

Substituting (3.15) and (3.16) in (3.13) and (3.14) respectively, we obtain

$$
\rho^{\alpha}=\rho^{\alpha^{*}}=0
$$

Hence,

$$
\begin{gather*}
A_{\alpha} F+F A_{\alpha}=0 \tag{3.17}\\
A_{\alpha^{*}} F+F A_{\alpha^{*}}=0 \tag{3.18}
\end{gather*}
$$

Further, using (3.2), (2.5) and (2.6) we get

$$
\begin{equation*}
A U=\xi+\alpha U, \quad \text { such that } \alpha=g(A U, U)=u(A U) \tag{3.19}
\end{equation*}
$$

Lemma 3.2. Let M be a complete $(n+1)$-dimensional contact $C R$-submanifold of $C R$-dimension $(n-1)$ of $S^{2 m+1}$. If the condition (3.1) is satisfied, then U is an eigenvector of the shape operator A_{α} with respect to the normal vector field N_{α} at any point of M. Also the same result holds for the shape operator $A_{\alpha^{*}}$.

Proof.

$$
F^{2}\left(A_{\alpha} U\right)=F\left(F A_{\alpha} U\right)=F\left(\left(\rho^{\alpha} F-A_{\alpha} F\right) U\right)
$$

Using (2.5) and (2.6) we have

$$
-A_{\alpha} U+\eta\left(A_{\alpha} U\right) \xi+u\left(A_{\alpha} U\right) U=0
$$

With (2.21) the last relation reads

$$
\begin{equation*}
A_{\alpha} U=\beta U \tag{3.20}
\end{equation*}
$$

where $\beta=u\left(A_{\alpha} U\right)$.
Similarly

$$
\begin{equation*}
A_{\alpha^{*}} U=\gamma U \tag{3.21}
\end{equation*}
$$

where $\gamma=u\left(A_{\alpha^{*}} U\right)$.
Also, from (3.8) and (3.10) we get

$$
\begin{align*}
A_{\alpha} U & =S_{\alpha^{*}}(U) U \tag{3.22}\\
A_{\alpha^{*}} U & =-S_{\alpha}(U) U \tag{3.23}
\end{align*}
$$

Since $S^{2 m+1}$ is of constant curvature 1,

$$
\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y
$$

From a direct computation and from the equation above, the Codazzi equation implies that

$$
\begin{gather*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= \tag{3.24}\\
\sum_{\alpha=1}^{q}\left\{S_{\alpha}(X) A_{\alpha} Y-S_{\alpha}(Y) A_{\alpha} X+S_{\alpha^{*}}(X) A_{\alpha^{*}} Y-S_{\alpha^{*}}(Y) A_{\alpha^{*}} X\right\} \\
\left(\nabla_{X} A_{\alpha}\right) Y-\left(\nabla_{Y} A_{\alpha}\right) X=S_{\alpha}(X) A Y-S_{\alpha}(Y) A X \tag{3.25}\\
+\sum_{\beta=1}^{q}\left\{S_{\alpha \beta}(X) A_{\beta} Y-S_{\alpha \beta}(Y) A_{\beta} X+S_{\alpha \beta^{*}}(X) A_{\beta^{*}} Y-S_{\alpha \beta^{*}}(Y) A_{\beta^{*}} X\right\}
\end{gather*}
$$

$$
\begin{gather*}
\left(\nabla_{X} A_{\alpha^{*}}\right) Y-\left(\nabla_{Y} A_{\alpha^{*}}\right) X=S_{\alpha^{*}}(X) A Y-S_{\alpha^{*}}(Y) A X \tag{3.26}\\
+\sum_{\beta=1}^{q}\left\{S_{\alpha \beta^{*}}(X) A_{\beta} Y-S_{\alpha \beta^{*}}(Y) A_{\beta} X+S_{\alpha^{*} \beta^{*}}(X) A_{\beta^{*}} Y-S_{\alpha^{*} \beta^{*}}(Y) A_{\beta^{*}} X\right\} .
\end{gather*}
$$

In addition from a direct calculation, the Ricci equation is

$$
\begin{align*}
& g\left(\left(A_{\alpha} A-A A_{\alpha}\right) X, Y\right)+\left(\nabla_{X} S_{\alpha}\right) Y-\left(\nabla_{Y} S_{\alpha}\right) X \tag{3.27}\\
& +\sum_{\beta=1}^{q}\left\{S_{\alpha \beta}(Y) S_{\beta}(X)-S_{\alpha \beta}(X) S_{\beta}(Y)\right\} \\
& +\sum_{\beta=1}^{q}\left\{S_{\alpha \beta^{*}}(Y) S_{\beta^{*}}(X)-S_{\alpha \beta^{*}}(X) S_{\beta^{*}}(Y)\right\}=0 .
\end{align*}
$$

Lemma 3.3. Let M be an $(n+1)$-dimensional $C R$-submanifold of $C R$-dimension $(n-1)$ of $S^{2 m+1}$. If (3.1) is satisfied, then the unit normal vector field N is parallel with respect to the normal connection. Furthermore $A_{\alpha}=0=A_{\alpha^{*}}$, where $A_{\alpha}, A_{\alpha^{*}}$, are the shape operators for the normals $N_{\alpha}, N_{\alpha^{*}}$, respectively.
Proof. Differentiating (3.22) and using (2.15) we get

$$
\begin{gather*}
g\left(\left(\nabla_{X} A_{\alpha}\right) Y-\left(\nabla_{Y} A_{\alpha}\right) X, U\right)+g\left(A_{\alpha} A F X, Y\right)-g\left(A_{\alpha} A F Y, X\right)= \tag{3.28}\\
X\left(S_{\alpha^{*}}(U)\right) u(Y)-Y\left(S_{\alpha^{*}}(U)\right) u(X)+S_{\alpha^{*}}(U) g((F A+A F) X, Y) .
\end{gather*}
$$

Substituting (3.25) in the above relation and using (3.15), (3.16), (3.19), (3.22), (3.23) we obtain

$$
\text { 29) } \begin{align*}
& S_{\alpha}(U) \eta(X) u(Y)-S_{\alpha}(U) \eta(Y) u(X)+\sum_{\beta=1}^{q}\left\{S_{\alpha \beta}(Y) S_{\beta^{*}}(X)-S_{\alpha \beta}(X) S_{\beta^{*}}(Y)\right\} \tag{3.29}\\
& +\sum_{\beta=1}^{q}\left\{S_{\alpha \beta^{*}}(Y) S_{\beta}(X)-S_{\alpha \beta^{*}}(X) S_{\beta}(Y)\right\}+g\left(A_{\alpha} A F X, Y\right)-g\left(A_{\alpha} A F Y, X\right)= \\
& X\left(S_{\alpha^{*}}(U)\right) u(Y)-Y\left(S_{\alpha^{*}}(U)\right) u(X)+S_{\alpha^{*}}(U) \rho g(F X, Y) .
\end{align*}
$$

Taking $Y=U$ and $X=U$ in the last relation we obtain

$$
\begin{gather*}
-g\left(F A_{\alpha} A X, Y\right)+\rho g\left(F A_{\alpha} X, Y\right)-g\left(F A A_{\alpha} X, Y\right)-S_{\alpha}(U) \eta(Y) u(X) \tag{3.30}\\
=S_{\alpha^{*}}(U) \rho g(F X, Y) .
\end{gather*}
$$

Replacing Y with $F Y$ and using (2.6)we get

$$
\begin{gather*}
-g\left(\left(A_{\alpha} A+A A_{\alpha}\right) X, Y\right)+2 \alpha S_{\alpha^{*}}(U) u(X) u(Y) \tag{3.31}\\
+S_{\alpha^{*}}(U) \eta(X) u(Y)+S_{\alpha^{*}}(U) u(X) \eta(Y) \\
+\rho\left\{g\left(A_{\alpha} X, Y\right)-S_{\alpha^{*}}(U) g(X, Y)+S_{\alpha^{*}}(U) \eta(X) \eta(Y)\right\}=0 .
\end{gather*}
$$

Now, differentiating relation (3.15), we have

$$
\left(\nabla_{X} S_{\alpha}\right)(Y)=X\left(S_{\alpha}(U)\right) u(Y)+S_{\alpha}(U) g(F A Y, X)
$$

Replacing X with Y and subtracting the two equations, we get

$$
\begin{gather*}
\left(\nabla_{X} S_{\alpha}\right)(Y)-\left(\nabla_{Y} S_{\alpha}\right)(X)=X\left(S_{\alpha}(U)\right) u(Y)-Y\left(S_{\alpha}(U)\right) u(X) \tag{3.32}\\
+\rho S_{\alpha}(U) g(F A X, Y)
\end{gather*}
$$

Now from relations (3.27) and (3.32) we conclude
(3.33) $g\left(\left(A_{\alpha} A-A A_{\alpha}\right) X, Y\right)+X\left(S_{\alpha}(U)\right) u(Y)-Y\left(S_{\alpha}(U)\right) u(X)+\rho S_{\alpha}(U) g(F A X, Y)$
$\sum_{\beta=1}^{q}\left\{S_{\alpha \beta}(Y) S_{\beta}(X)-S_{\alpha \beta}(X) S_{\beta}(Y)\right\}+\sum_{\beta=1}^{q}\left\{S_{\alpha \beta^{*}}(Y) S_{\beta^{*}}(X)-S_{\alpha \beta^{*}}(X) S_{\beta^{*}}(Y)\right\}=0$.
For $Y=U$ and $X=U$, using (3.15) and (3.16) the last relation gives

$$
g\left(\left(A A_{\alpha}-A_{\alpha} A\right) X, Y\right)=\rho S_{\alpha}(U) g(F X, Y)-S_{\alpha^{*}}(U)(\eta(X) u(Y)-\eta(Y) u(X))
$$

Now adding equations (3.31) and (3.34) gives

$$
\begin{aligned}
& -2 g\left(A_{\alpha} A X, Y\right)+2 \alpha S_{\alpha^{*}}(U) u(X) u(Y)+2 S_{\alpha^{*}}(U) u(X) \eta(Y)+\rho S_{\alpha}(U) g(F X, Y) \\
& +\rho\left\{g\left(A_{\alpha} X, Y\right)-S_{\alpha^{*}}(U) g(X, Y)+S_{\alpha^{*}}(U) \eta(X) \eta(Y)\right\}=0
\end{aligned}
$$

Taking $Y=U$ and (3.19) in the last relation we conclude

$$
-2 \beta g(X, \xi)+\left(-2 \alpha \beta+2 \alpha S_{\alpha^{*}}(U)+\rho \beta-\rho S_{\alpha^{*}}(U)\right) g(X, U)=0
$$

Finally,

$$
\begin{equation*}
-2 \beta \xi+\left(-2 \alpha \beta+2 \alpha S_{\alpha^{*}}(U)+\rho \beta-\rho S_{\alpha^{*}}(U)\right) U=0 \tag{3.35}
\end{equation*}
$$

Since with (3.20) and (3.22), $\beta=S_{\alpha^{*}}(U)$ then the last relation shows

$$
\begin{equation*}
\beta=S_{\alpha^{*}}(U)=0 \quad \text { and } \quad A_{\alpha}(U)=0 \tag{3.36}
\end{equation*}
$$

By (3.16) we get

$$
\begin{equation*}
S_{\alpha^{*}}(X)=0 \tag{3.37}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
A_{\alpha}(X)=g\left(A_{\alpha} X, U\right) U=0 \tag{3.38}
\end{equation*}
$$

In a similar manner

$$
\begin{gather*}
S_{\alpha}(X)=0 \tag{3.39}\\
A_{\alpha^{*}}(X)=0 \tag{3.40}
\end{gather*}
$$

4 Codimension reduction of contact CR-submanifolds in odd-dimensional unit sphere

In this section, we apply the Erbacher's reduction of codimension theorem to contact CR-submanifold in an odd-dimensional unit sphere. Let M be a connected submanifold in a Riemannian manifold. The first normal space $N_{1}(x)$ is defined to be the orthogonal complement of the set $N_{0}(x)=\left\{\zeta \in T_{x}^{\perp} M \mid A_{\zeta}=0\right\}$ in $T_{x}^{\perp} M$ [12]. Erbacher proved the following theorem [5]:

Theorem 4.1. Let $\psi: M^{n} \longrightarrow \bar{M}^{n+p}(\widetilde{c})$ be an isometric immersion of a connected n dimensional Riemannian manifold into an $(n+p)$-dimensional Riemannian manifold $\bar{M}^{n+p}(\widetilde{c})$ of constant sectional curvature \widetilde{c}. If $N \supset N_{1}$ and N is a subbundle of $T M^{\perp}$ invariant with respect to the normal connection and l is the dimension of N, then there exists a totally geodesic submanifold N^{n+l} of $\bar{M}^{n+p}(\widetilde{c})$ such that $\psi\left(M^{n}\right) \subset N^{n+l}$.

Let M be a connected contact CR-submanifold of $S^{2 m+1}$ whose contact CRdimension is $(n-1)$, i.e, $\operatorname{dim} D^{\perp}=2$. For any orthogonal direct sum decomposition $T M^{\perp}=V_{1} \oplus V_{2}$, it is easy to see that V_{1} is invariant with respect to the normal connection if and only if V_{2} is invariant with respect to the normal connection. Using the results of the previous section and Theorem 4.1, we have the following result

Theorem 4.2. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of contact $C R$-dimension $(n-1)$ of $S^{2 m+1}$. If the condition (3.1) is satisfied, then there exists a totally geodesic unit sphere of dimension $(n+2)$ of $S^{2 m+1}$ such that $M \subset S^{n+2}$.

Proof. By Lemma 3.3, the first normal space $N_{1}(x)=\phi D_{x}^{\perp}$. Hence, by Theorem 4.1 we can conclude that there exists a $(n+2)$-dimensional totally geodesic unit sphere S^{n+2} such that $M \subset S^{n+2}$.

Lemma 4.3. Let M be a $(n+1)$-dimensional contact $C R$-submanifold of $C R$-dimension $(n-1)$ of $S^{2 m+1}$. If (3.1) is satisfied, then α defined in relation (3.19) is constant.

Proof. Differentiating equation (3.19) and using (2.15)

$$
\left(\nabla_{X} A\right) U=(X \alpha) U+\alpha F A X+F X-A F A X
$$

Since A is self-adjoint then $\nabla_{X} A$ is symmetric, so

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) Y, U\right)=g\left(\left(\nabla_{X} A\right) U, Y\right) & =(X \alpha) u(Y)+\alpha g(F A X, Y)+g(F X, Y) \\
& -g(A F A X, Y)
\end{aligned}
$$

Interchanging X with Y and subtracting the last two equations, we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X, U\right) & =(X \alpha) u(Y)-(Y \alpha) u(X)+\alpha \rho g(F X, Y) \\
& +2 g(F X, Y)-2 g(A F A X, Y)=0
\end{aligned}
$$

from Lemma 3.3, equations (3.2) and (3.24). Taking $Y=U$ we have

$$
\begin{equation*}
X \alpha=(U \alpha) u(X) \tag{4.1}
\end{equation*}
$$

Then we conclude that

$$
\begin{equation*}
\operatorname{grad\alpha }=\lambda U, \quad \text { which } \lambda=U \alpha \tag{4.2}
\end{equation*}
$$

Taking the covariant derivative of the last equation and reversing X and Y and subtracting the two relations we get,

$$
\begin{equation*}
(Y \lambda) u(X)+\lambda g(F A Y, X)-(X \lambda) u(Y)-\lambda g(F A X, Y)=0 \tag{4.3}
\end{equation*}
$$

since $g\left(\nabla_{X}(\operatorname{grad\alpha }), Y\right)=g\left(\nabla_{Y}(\operatorname{grad} \alpha), X\right)$.
With (3.2) the last relation reads:

$$
\begin{equation*}
(Y \lambda) u(X)-(X \lambda) u(Y)-\rho \lambda g(F X, Y)=0 \tag{4.4}
\end{equation*}
$$

Replacing X and Y with U and putting in (4.4) we have:

$$
\begin{equation*}
\rho \lambda g(F X, Y)=0 \tag{4.5}
\end{equation*}
$$

Since $\rho \neq 0$ then, $\lambda=U \alpha=0$, which means that α is constant.

5 Model space of contact CR-submanifolds satisfying $h(F X, Y)-h(X, F Y)=g(F X, Y) \varphi, \quad \varphi \in T^{\perp} M$

Let X be an eigenvector of the shape operator A corresponding to the eigenvalue β. Since A is symmetric, using (2.20) we have:

$$
\begin{equation*}
u(X)=\beta \eta(X) \tag{5.1}
\end{equation*}
$$

Also using (3.19) we get:

$$
\begin{equation*}
\beta u(X)=\eta(X)+\alpha u(X) \tag{5.2}
\end{equation*}
$$

Substituting (5.1) in (5.2) we have:

$$
\begin{equation*}
\beta^{2} \eta(X)-\alpha \beta \eta(X)-\eta(X)=0 \tag{5.3}
\end{equation*}
$$

From the last equation, we have two cases:

- $\beta^{2}-\alpha \beta-1=0$;
- $\eta(X)=0$ which shows that X is orthogonal to ξ and from (5.1) is also orthonormal to U.

Theorem 5.1. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of $C R$ dimension $(n-1)$ of an odd-dimensional unit sphere. Also let X be an eigenvector of the shape operator A corresponding to the eigenvalue β. If X is not orthogonal to U and ξ and (3.1) is satisfied, then A has exactly two distinct principal curvatures.

Proof. From the first case we have:

$$
\beta^{2}-\alpha \beta-1=0
$$

so A has exactly two principal curvatures which are;

$$
\beta_{1}=\frac{\alpha+\sqrt{\alpha^{2}+4}}{2}
$$

and

$$
\beta_{2}=\frac{\alpha-\sqrt{\alpha^{2}+4}}{2}
$$

Theorem 5.2. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of $C R$ dimension $(n-1)$ of an odd-dimensional unit sphere. Also let X be an eigenvector of the shape operator A corresponding to the eigenvalue β. If X is orthogonal to U and ξ and (3.1) is satisfied, then A has at most two distinct principal curvatures.

Proof. Since α is constant, by equation (4.4) we have:

$$
\begin{equation*}
\alpha \rho g(F X, Y)+2 g(F X, Y)-2 g(A F A X, Y)=0 \tag{5.4}
\end{equation*}
$$

or,

$$
\begin{equation*}
(\alpha \rho+2) F X-2 A F A X=0 \tag{5.5}
\end{equation*}
$$

Applying F to the last relation, using (2.6) and the fact that X is orthogonal to ξ we get:

$$
\begin{equation*}
2 A^{2} X-2 \rho A X+(\alpha \rho+2) A X=0 \tag{5.6}
\end{equation*}
$$

Since X is an eigenvector then the last relation reads:

$$
2 \beta^{2}-2 \rho \beta+(\alpha \rho+2)=0
$$

and consequently A has at most two principal curvatures which are:

$$
\beta_{1}=\frac{\rho+\sqrt{\rho^{2}-2(\alpha \rho+2)}}{2}
$$

and

$$
\beta_{2}=\frac{\rho-\sqrt{\rho^{2}-2(\alpha \rho+2)}}{2}
$$

Now let us denote the eigenspace by

$$
T_{k}=\left\{X \in T M \mid A X=\beta_{k} X\right\}, \quad k=1,2
$$

Lemma 5.3. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of $C R$ dimension $(n-1)$ of an odd-dimensional unit sphere. Also let X be an eigenvector of the shape operator A corresponding to the eigenvalues β_{1} and β_{2}. Then,

1. T_{k} is parallel ;i.e. for $X, Y \in T_{k}$ we have $\nabla_{X} Y \in T_{k}$;
2. For $\beta_{1} \neq \beta_{2}$ we have $\nabla_{X} Y \perp T_{k}$.

Lemma 5.4. T_{k} are involutive for $k=1,2$.
Since T_{k} are involutive then they are integrable. Let M_{k} be the integral submanifold of T_{k}.

Lemma 5.5. M_{k} are totally geodesic submanifolds for $k=1,2$.
Now using the above lemmas we can conclude that:
Theorem 5.6. Let M be a $(n+1)$-dimensional $C R$-submanifold of $C R$-dimension $(n-1)$ of an odd-dimensional unit sphere. If (3.1) is satisfied then either of the following two assertions (a) and (b) is true:
M is isometric to one of the following spaces:

- the product manifold $S^{2 n_{1}+1}\left(c_{1}\right) \times S^{2 n_{2}+1}\left(c_{2}\right)$, where $n_{1}+n_{2}=\frac{n-1}{2}$ and $c_{1}=\frac{1}{\beta_{1}}$ and $c_{2}=\frac{1}{\beta_{2}}$ which β_{1} and β_{2} are defined in Theorem 5.1;
- the product manifold $S^{2 n_{1}+1}\left(c_{1}\right) \times S^{2 n_{2}+1}\left(c_{2}\right)$, where $n_{1}+n_{2}=\frac{n-1}{2}$ and $c_{1}=\frac{1}{\beta_{1}}$ and $c_{2}=\frac{1}{\beta_{2}}$ which β_{1} and β_{2} are defined in Theorem 5.2.

References

[1] Bejancu, A.: Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, (1986).
[2] Djoric, M.: Codimension reduction and second fundamental form of CRsubmanifolds in complex space forms, J. Math. Anal. Appl. 356 (2009), 237241.
[3] Djoric, M., Okumura, M.:Certain condition on the second fundamental form of CR-submanifolds of maximal CR-dimension of complex projective space, Israel Journal of Mathematics 169 (2009), 47-59.
[4] Do Carmo, M. P.: Riemannian Geometry, Birkhauser, Boston, 1992.
[5] Erbacher, J.: Reduction of the codimension of an isometric immersion, J. Differential Geom 5. (1971) 333-340.
[6] Nakagawa, Hisao., Yokote,Ichiro.: compact hypersurfaces of odd-dimensional sphere, KODAI MATH. SEM. REP 25 (1973), 225-245.
[7] Kim, H. S., Pak, J. S.: Certain contact CR-submanifolds of an odd-dimensional uint sphere, Bull. Korean Math. Soc 44 (2007), 109-116.
[8] Kwon, J. H., Pak, J. S.: Contact CR-submanifolds of an odd-dimensional unit sphere, Geom. Dedicata 114 (2005), 1-11.
[9] Kwon, J. H., Pak, J. S.: On some contact CR-submanifolds of an odd dimensional unit sphere, Soochow J. Math. 26 (2000), 427-439.
[10] Takagi, Ryoichi.: A class of hypersurfaces with constant principal curvatures in sphere, J. Differential Geometry 11, 1976, 225-233.
[11] Yano, K., Kon, M.: Contact CR-submanifolds, Kodai Math J. 5, 1982, 238-252.
[12] Yano, K., Kon, M.: CR-submanifolds of Keahlerian and Sasakian manifolds, Brikhsauer, Boston, Basel, Stuttgart, 1983.

Author's address:
Mehri Asadollahzadeh
Institute of Mathematical Sciences, University of Bonab, Azarbaijan, Iran.
E-mail: m.a.zadeh@bonabu.ac.ir
Esmaiel Abedi
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
E-mail: esabedi@azaruniv.edu

Ghorbanali Haghightdoost
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
E-mail: gorbanali@azaruniv.edu

