Tangent structures and analytical mechanics

Maïdo Rahula

Abstract

We establish a link between the sector-forms of White [10] and the exterior forms of Cartan. We show that the Hamiltonian system on $T^{2} M$ reduces to Lagrange's equations on the osculating bundle OscM. The structures $T^{k} M$ and $\mathrm{Osc}^{k-1} M$ are presented explicitly.

M.S.C. 2010: 58A30, 70H03, 79H05

Key words: tangent structures; analytical mechanics; Hamiltonian systems.

1. Tangent bundles and osculators

The tangent functor T iterated k times associates to a smooth manifold M its k-fold tangent bundle $T^{k} M$ (the k th level of M) and associates to a smooth map $\varphi: M_{1} \rightarrow$ M_{2} the graded morphism $T^{k} \varphi: T^{k} M_{1} \rightarrow T^{k} M_{2}$, the k th derivative of φ. The level $T^{k} M$ has a multiple vector bundle structure with k projections onto $T^{k-1} M$

$$
\rho_{s} \doteq T^{k-s} \pi_{s}: T^{k} M \rightarrow T^{k-1} M, \quad s=1,2, \ldots, k
$$

where π_{s} is the natural projection $T^{s} M \rightarrow T^{s-1} M$.
Local coordinates in neighbourhoods

$$
T^{s} U \subset T^{s} M, s=1,2, \ldots, k, \quad \text { where } T^{s-1} U=\pi_{s}\left(T^{s} U\right)
$$

are determined automatically by those in the neighbourhood $U \subset M$, the quantities (u^{i}) being regarded either as coordinate functions on U or as the coordinate components of the point $u \in U$:

```
\(U: \quad\left(u^{i}\right), i=1,2, \ldots, n=\operatorname{dim} M\),
\(T U: \quad\left(u^{i}, u_{1}^{i}\right), \quad\) with \(\quad u^{i} \doteq u^{i} \circ \pi_{1}, u_{1}^{i} \doteq d u^{i}\),
\(T^{2} U: \quad\left(u^{i}, u_{1}^{i}, u_{2}^{i}, u_{12}^{i}\right)\),
    with \(u^{i} \doteq u^{i} \circ \pi_{1} \pi_{2}, u_{1}^{i} \doteq d u^{i} \circ \pi_{2}, u_{2}^{i} \doteq d\left(u^{i} \circ \pi_{1}\right), u_{12}^{i} \doteq d^{2} u^{i}\),
```

etc.

We set up the following convention: to introduce coordinates on $T^{k} U$ we take the coordinates on $T^{k-1} U$ and repeat them with an additional index k - so that a tangent vector is preceded by its point of origin. This indexing is convenient since
the symbols with index s thereby become coordinates in the fibre of the projection $\rho_{s}, s=1,2, \ldots, k$.

Thus, for example, under the projections $\rho_{s}: T^{3} U \rightarrow T^{2} U, s=1,2,3$, the coordinates with index 1,2 and 3 are each suppressed in turn:

$$
\begin{array}{cll}
\left(u^{i}, u_{1}^{i}, u_{2}^{i}, u_{12}^{i}, u_{3}^{i}, u_{13}^{i}, u_{23}^{i}, u_{123}^{i}\right) \\
\rho_{1} \swarrow & \rho_{2} \downarrow & \searrow \rho_{3} \\
\left(u^{i}, u_{2}^{i}, u_{3}^{i},, u_{23}^{i}\right) & \left(u^{i}, u_{1}^{i}, u_{3}^{i},, u_{13}^{i}\right) & \left(u^{i}, u_{1}^{i}, u_{2}^{i},, u_{12}^{i}\right) .
\end{array}
$$

The level $T^{k} M$ is a smooth manifold of dimension $2^{k} n$ and admits an important subspace of dimension $(k+1) n$ called the osculating bundle of M of order $k-1$ and denoted $\mathrm{Osc}^{k-1} M$. The bundle $\mathrm{Osc}^{k-1} M$ is determined by the equality of the projections

$$
\rho_{1}=\rho_{2}=\ldots=\rho_{k}
$$

meaning that an element of $T^{k} M$ belongs to the bundle $\mathrm{Osc}^{k-1} M$ precisely when all its k projections into $T^{k-1} M$ coincide. In this case all coordinates with the same number of lower indices coincide. For example, the first bundle Osc M is determined in $T^{2} U \subset T^{2} M$ by the equations $u_{1}^{i}=u_{2}^{i}$, the second bundle $\operatorname{Osc}^{2} M$ in $T^{3} U \subset T^{3} M$ by $u_{1}^{i}=u_{2}^{i}=u_{3}^{i}, u_{12}^{i}=u_{13}^{i}=u_{23}^{i}$, etc. The coordinates in $\mathrm{Osc}^{k-1} M$ will be denoted by the derivatives of the coordinate functions on U, that is to say $\left(u^{i}, d u^{i}, d^{2} u^{i}, \ldots, d^{k} u^{i}\right)$.

The immersion $\zeta: \operatorname{Osc} M \hookrightarrow T^{2} M$ and its derivative $T \zeta$ are determined in coordinates by matrix formulae:

$$
\begin{aligned}
& \left(\begin{array}{c}
u^{i} \\
u_{1}^{i} \\
u_{2}^{i} \\
u_{12}^{i}
\end{array}\right) \circ \zeta=\left(\begin{array}{c}
u^{i} \\
d u^{i} \\
d u^{i} \\
d^{2} u^{i}
\end{array}\right),\left(\begin{array}{c}
u_{3}^{i} \\
u_{13}^{i} \\
u_{23}^{i} \\
u_{123}^{i}
\end{array}\right) \circ T \zeta=\left(\begin{array}{c}
d u^{i} \\
d^{2} u^{i} \\
d^{2} u^{i} \\
d^{3} u^{i}
\end{array}\right) \\
& T \zeta\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial\left(d u^{i}\right)}, \frac{\partial}{\partial\left(d^{2} u^{i}\right)}\right)=\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u_{1}^{i}}+\frac{\partial}{\partial u_{2}^{i}}, \frac{\partial}{\partial u_{12}^{i}}\right) .
\end{aligned}
$$

The fibres of the bundle Osc M are the integral manifolds of the distribution

$$
\left\langle\partial_{i}^{1}+\partial_{i}^{2}, \partial_{i}^{12}\right\rangle, \quad \text { with } \quad \partial_{i}^{1}+\partial_{i}^{2} \doteq \frac{\partial}{\partial u_{1}^{i}}+\frac{\partial}{\partial u_{2}^{i}}, \quad \partial_{i}^{12} \doteq \frac{\partial}{\partial u_{12}^{i}}
$$

The functions ($u_{1}^{i}-u_{2}^{i}$) vanish on $\operatorname{Osc} M$.
Historically, osculating bundles were introduced under various names long before the bundles $T^{k} M$. The systematic study begun 60 years ago by V.Vagner [9] culminated in recent times with Miron-Atanasiu theory [2]. Meanwhile the theme of levels $T^{k} M$ remained unjustly neglected for the obvious reason that the multiple fibre bundle structure demands a whole new understanding and new approach: see [5], [7]. Attempts such as [10] and the so-called synthetic formulation of $T^{k} M$ [3] made progress in that direction.

While an infinitesimal displacement of the point $u \in M$ is determined by a tangent vector u_{1} to M, an infinitesimal displacement of the element $\left(u, u_{1}\right) \in T M$ is determined by the quantities $\left(u_{2}, u_{12}\right)$, representing a tangent vector to $T M$, etc. This
interpretation of the elements of $T^{k} M$ allows us to develop the theory of higher order motion. Clearly the future belongs to these bundles.

White considers on the level $T^{k} M$ or on a k-multiple vector bundle certain sectorforms which are functions simultaneously linear in all the fibres of k projections: see [10]. In particular the sector-forms on $T^{2} U$ and $T^{3} U$ can be written as

$$
\begin{aligned}
& \Phi=\varphi_{i j} u_{1}^{i} u_{2}^{j}+\varphi_{i} u_{12}^{i} \\
& \Psi=\psi_{i j k} u_{1}^{i} u_{2}^{j} u_{3}^{k}+\psi_{i j}^{1} u_{1}^{i} u_{23}^{j}+\psi_{i j}^{2} u_{2}^{i} u_{13}^{j}+\psi_{i j}^{3} u_{3}^{i} u_{12}^{j}+\psi_{i} u_{123}^{i}
\end{aligned}
$$

with coefficients in U. For example, in each term of Ψ we see the index 1 (or 2 or 3) appear exactly once. This means that the function Ψ is linear on the fibres of ρ_{1} (and ρ_{2} and ρ_{3}).

Any scalar function can be lifted from the level $T^{k-1} M$ to the level $T^{k} M$ by k different projections $\rho_{s}: T^{k} M \rightarrow T^{k-1} M$. For example, for the sector form Φ above there are three possibilities of lifting to $T^{3} M$:

$$
\Phi \circ \rho_{1}=\varphi_{i j} u_{2}^{i} u_{3}^{j}+\varphi_{i} u_{23}^{i}, \quad \Phi \circ \rho_{2}=\varphi_{i j} u_{1}^{i} u_{3}^{j}+\varphi_{i} u_{13}^{i}, \quad \Phi \circ \rho_{3}=\varphi_{i j} u_{1}^{i} u_{2}^{j}+\varphi_{i} u_{12}^{i} .
$$

Proposition. Every Cartan k-form can be regarded as a sector-form in the sense of White, a scalar function on $T^{k} M$ that is constant on the fibres of $O s c^{k-1} M$.

Proof. The sector form Φ is constant on Osc M if and only if its derivatives vanish on OscM. Thus

$$
\begin{aligned}
& \Phi=\varphi_{i j} u_{1}^{i} u_{2}^{j}+\varphi_{i} u_{12}^{i} \Rightarrow \\
&\left(\partial_{i}^{1}+\partial_{i}^{2}\right) \Phi=\varphi_{i j} u_{2}^{j}+\varphi_{j i} u_{1}^{j}=\left(\varphi_{i j}+\varphi_{j i}\right) u_{1}^{j}-\varphi_{i j}\left(u_{1}^{j}-u_{2}^{j}\right), \\
& \partial_{i}^{12} \Phi=\varphi_{i} \Rightarrow \varphi_{(i j)}=0, \varphi_{i}=0
\end{aligned}
$$

By definition Φ is an antisymmetric bilinear form and can therefore be expressed in the coordinates $\left(u^{i}, d u^{i}\right)$ as a 2 -form $\Phi=\varphi_{[i j]} d u^{i} \wedge d u^{j}$. Thus the sector-form Φ is constant on $\operatorname{Osc} M$ if and only if it is a Cartan 2-form.

In the case $k=3$ the fibres $\operatorname{Osc}^{2} M$ of dimension $3 n$ are the integral manifolds of the distribution

$$
\left\langle\partial_{i}^{1}+\partial_{i}^{2}+\partial_{i}^{3}, \partial_{i}^{23}+\partial_{i}^{13}+\partial_{i}^{12}, \partial_{i}^{123}\right\rangle
$$

For the sector-form Ψ (see above) we have

$$
\begin{aligned}
& \Psi=\psi_{i j k} u_{1}^{i} u_{2}^{j} u_{3}^{k}+\psi_{i j}^{1} u_{1}^{i} u_{23}^{j}+\psi_{i j}^{2} u_{2}^{i} u_{13}^{j}+\psi_{i j}^{3} u_{3}^{i} u_{12}^{j}+\psi_{i} u_{123}^{i} \Rightarrow \\
& \left(\partial_{i}^{1}+\partial_{i}^{2}+\partial_{i}^{3}\right) \Psi=\psi_{i j k} u_{2}^{j} u_{3}^{k}+\psi_{j i k} u_{1}^{j} u_{3}^{k}+\psi_{j k i} u_{1}^{j} u_{2}^{k}+\psi_{i j}^{1} u_{23}^{j}+\psi_{i j}^{2} u_{13}^{j}+\psi_{i j}^{3} u_{12}^{j}, \\
& \left(\partial_{i}^{23}+\partial_{i}^{13}+\partial_{i}^{12}\right) \Psi=\psi_{j i}^{1} u_{1}^{j}+\psi_{j i}^{2} u_{2}^{j}+\psi_{j i}^{3} u_{3}^{j} \\
& \quad \partial_{i}^{123} \Psi=\psi_{i} .
\end{aligned}
$$

The derivatives vanish on the fibres $\mathrm{Osc}^{2} M$ when the following conditions hold:

$$
\varphi_{(i j k)}=0, \quad \psi_{i j}^{1}+\psi_{i j}^{2}+\psi_{i j}^{3}=0, \quad \psi_{i}=0
$$

These conditions are necessary and sufficient for the sector-form Ψ to be constant on on $\operatorname{Osc}^{2} M$, but not for Ψ to be a Cartan 3 -form. However, every 3 -form $\tilde{\Psi}=$
$\varphi_{i j k} d u^{i} \wedge d u^{j} \wedge d u^{k}$ can be regarded as a homogeneous sector-form that is constant on $\operatorname{Osc}^{2} M$.

The argument extends likewise to the cases $k>3$.
White's theory of sector-forms is much more extensive than that of Cartan exterior forms. In particular, exterior differentiation is an operation on the set of sector-forms that are constant on the osculating bundles.

There is, however, one inconvenience: sector-forms are represented in natural coordinates in terms which are not invariant. To get rid of this one can use affine connexions and adapted coordinates. In $T^{2} U$, for example, the 'bad' coordinates u_{12}^{i} can be replaced by adapted coordinates $U_{12}^{i}=\Gamma_{j k}^{i} u_{1}^{j} u_{2}^{k}+u_{12}^{i}$ using the coefficients $\Gamma_{j k}^{i}$ of the affine connection. The sector-form Φ is represented by two invariant terms:

$$
\Phi=\left(\varphi_{i j}-\varphi_{k} \Gamma_{i j}^{k}\right) u_{1}^{i} u_{2}^{j}+\varphi_{i} U_{12}^{i}
$$

In the parentheses we recognize the prototype of the covariant derivative. In fact, for the 1-form $\Theta=\theta_{i} u_{1}^{i}$ the ordinary differential can be written

$$
d \Theta=\theta_{i, j} u_{1}^{i} u_{2}^{j}+\theta_{i} u_{12}^{i}, \quad \theta_{i, j}=\frac{\partial \theta_{i}}{\partial u^{j}}
$$

or $d \Theta=\nabla_{j} \theta_{i} u_{1}^{i} u_{2}^{j}+\theta_{i} U_{12}^{i}$ with the covariant derivative $\nabla_{j} \theta_{i}=\theta_{i, j}-\theta_{k} \Gamma_{i j}^{k}$.
The connexions play an important role here. The local forms appear in the unified and intrinsic structures

$$
\Delta_{h} \oplus \Delta_{v} \text { on } T M, \quad \Delta \oplus \Delta_{1} \oplus \Delta_{2} \oplus \Delta_{12} \text { on } T^{2} M, \quad \text { etc. }
$$

The theory extends by iteration to the levels $T^{k} M$: see [1], [8].

2. Hamilton, Lagrange, Legendre

The essential importance of the levels $T M$ and $T^{2} M$ for analytical mechanics was first emphasized by Godbillon [4].

Specifically, Hamiltonian geometry is built on the levels $T M$ and $T^{2} M$. Associated to a function $H=H\left(u, u_{1}\right)$ (called the Hamiltonian) is the vector field X on $T M$ where

$$
X=\sum_{i} H_{u_{1}^{i}} \partial_{i}-\sum_{i} H_{u^{i}} \partial_{i}^{1}, \quad H_{i} \doteq \frac{\partial H}{\partial u^{i}}, \quad H_{u_{1}^{i}} \doteq \frac{\partial H}{\partial u_{1}^{i}}
$$

for which the flow $a_{t}=\exp t X$ is determined by the system of differential equations (Hamiltonian system)

$$
\left\{\begin{array}{c}
\dot{u}^{i}=H_{u_{1}^{i}} \\
\dot{u}_{1}^{i}=-H_{u^{i}}
\end{array}, \quad \dot{u}^{i} \doteq \frac{d u^{i}}{d t}, \dot{u}_{1}^{i} \doteq \frac{d u_{1}^{i}}{d t}\right.
$$

Under the correspondence

$$
\left(u^{i}, u_{1}^{i}, u_{2}^{i}, u_{12}^{i}\right) \rightsquigarrow\left(u^{i}, u_{1}^{i}, \dot{u}^{i}, \dot{u}_{1}^{i}\right)
$$

we see this as a section of the bundle $\pi_{2}: T^{2} M \rightarrow T M$, of dimension $2 n$. The function H and the symplectic form $\Omega=d u^{i} \wedge d u_{1}^{i}[6]$ are invariant with respect to the vector field X :

$$
X H=0, \quad \mathcal{L}_{X} \Omega=0 .
$$

Theorem. The Hamiltonian system reduces to Lagrange's equations on the osculating bundle OscM.

Proof. The passage from the Hamiltonian $H=H\left(u, u_{1}\right)$ to the Lagrangian $L=$ $L\left(u, u_{2}\right)$ ought to be realized through the equation (Legendre transformation)

$$
H\left(u, u_{1}\right)-\sum_{i} u_{1}^{i} u_{2}^{i}+L\left(u, u_{2}\right)=0
$$

However, this equation, which should hold identically on $T^{2} M$, is contradictory:

$$
d\left(H-\sum_{i} u_{1}^{i} u_{2}^{i}+L\right) \equiv 0 \Rightarrow H_{u^{i}}+L_{u^{i}}=0, H_{u_{1}^{i}}=u_{2}^{i}, L_{u_{2}^{i}}=u_{1}^{i}
$$

On the other hand, on $\operatorname{Osc} M$ where $u_{1}^{i}=u_{2}^{i}=\dot{u}$, the passage $H \rightsquigarrow L$ is well determined. On Osc M the Hamiltonian system can be written in Lagrangian form:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}^{i}}\right)-\frac{\partial L}{\partial u^{i}}=0
$$

The Lagrangian system determines a section of the bundle $\operatorname{Osc} M \rightarrow T M$, of the same dimension $2 n$ as the Hamiltonian system on $T^{2} M$.

The Hamiltonian geometry on the levels $T^{k} M$ and the Lagrangian geometry on the osculating bundles $\mathrm{Osc}^{k-1} M$ for $k>2$ are structured according to an iterative scheme.

References

[1] Atanasiu, G., Balan, V., Brînzei, N., Rahula, M., Differential Geometric Structures: Tangent Bundles, Connections in Bundles, Exponential Law in the Jet Space (in Russian), Librokom, Moscow, 2010, 320 pp.
[2] Atanasiu, G., Balan, V., Brînzei, N., Rahula, M., Second Order Differential Geometry and Applications: Miron-Atanasiu Theory (in Russian), Librokom, Moscow, 2010, 250 pp.
[3] Bertram, W., Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings, Memoirs of AMS, no. 900, 2008, (Zbl pre5250766).
[4] Godbillon, C., Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969, (Zbl 1074.24602).
[5] Ehresmann, Ch., Catégories doubles et catégories structurées, C.R. Acad. Sci., Paris, 256(1958), 1198-1201.
[6] Kushner, A., Lychagin, V., Rubtsov, V., Contact Geometry and Nonlinear Differential Equations, Ser. Encyclopedia of Mathematics and its Applications, No. 101, Cambridge UP, 2007.
[7] Pradines, J., Suites exactes vectorielles doubles et connexions, C.R. Acad. Sci., Paris, 278(1974), 1587-1590.
[8] Rahula, M., New Problems in Differential Geometry, WSP, 1993, (Zbl 0795.53002).
[9] Vagner, V. V., Theory of differential objects and foundations of differential geometry (in Russian), Appendix in: Veblen, O., Whitehead, J.H.C., The Foundations of Differential Geometry, IL, Moscow, 1949, 135-223.
[10] White, E. J., The Method of Iterated Tangents with Applications in Local Riemannian Geometry, Monographs and Studies in Mathematics, 13. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.

Author's address:
Maïdo Rahula
Tartu University, J.Liivi 2 Tartu, 50409 Estonia.
E-mail: rahula@ut.ee

