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Abstract. On a Weyl manifold (M, ĝ, w), we consider
◦
∇ the Levi-Civita

connection associated to a metric g ∈ ĝ , ∇ the symmetric connection,
compatible with the Weyl structure w and the family of linear connections

C ={
λ

∇ :=
◦
∇ + λ(∇ −

◦
∇) | λ ∈ R}. For

λ

∇ ∈ C, we investigate some

properties of the deformation algebra U(M,
λ

∇ −
◦
∇). Next, we study the

case when
◦
∇ and

λ

∇ determine the same Ricci tensor and the case when

the curvature tensors of the connections
◦
∇ and

λ

∇ are proportional.
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1 Introduction

The general problem of ”Comparison geometry” is: to what extent topological, dif-
ferential, differential affine, metric, etc invariants determine some structure on a
manifold, up to a homeomorphism, diffeomorphism, isometry, etc. Usually, one com-
pares a given manifold with some ”standard” manifolds, such as space forms, Einstein
spaces, or special product manifolds.

The topic originated in the Erlangen Program of F. Klein and was founded ex-
plicitely in the work of E. Cartan, under the so-called ”equivalence problem”([3]).
In the first half of the 20-th century, local methods were developed by S. Chern, G.
Vranceanu ([12]) and others (see [4] for a modern review). Global methods arrose in
the second half of the 20-th century, especially in global Riemannian geometry.

Our paper finds sufficient conditions for the curvature tensor (or the Ricci tensor)
determines the Levi-Civita connection. On a Weyl manifold, we consider some special
connections and, with them, we construct several deformation algebras. Properties
of these deformation algebras will determine ”how far apart” will be the involved
curvature tensors, or the Ricci tensors. In particular, we characterize the situation
when the curvature tensors, or the Ricci tensors, coincide.
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2 Definitions and notations

Let M be an n−dimensional C∞ differentiable manifold. We denote by F (M) the ring
of real-valued functions of class C∞ defined on M and by T r

s (M) the F (M)−module
of tensor fields of type (r, s). In particular, for T 1

0 (M) (respectively T 0
1 (M)) we use

the notation X (M) (respectively Λ1 (M)).
Let A ∈ T 1

2 (M).The F (M)−module X (M) becomes an F (M)−algebra, de-
noted by U (M, A), with the product of two vector fields X and Y defined by

(2.1) X ◦ Y = A (X, Y ) .

In particular, if A = ∇−∇, where ∇ and ∇ are two arbitrary linear connections
on M , then U (

M,∇−∇)
is called the deformation algebra associated to

(∇,∇)
.

Let A ∈ T 1
2 (M) and m > 0, m ∈ Z. An object X ∈ U (M,A) is called almost

m-principal field if there exists an 1−form ω ∈ Λ1 (M) and a function f ∈ F (M)
such that ([7])

(2.2) A
(
Z, X(m)

)
= fZ + ω (Z)X, ∀Z ∈ X (M) ,

where X(m) = X(m−1) ◦X, X(1) = X.

If m = 1, then (2.2) shows that X is an almost principal field in the algebra
U (M, A). If m = 1 and f = 0, then X is a principal field in the algebra U (M,A). If
m = 1 and ω = 0, then X is almost special field. If m = 1, f = 0 and ω = 0, then X
is special field. If A (X, X) = 0, then X is 2−nilpotent field.

Let (M, g) be now an n−dimensional semi-Riemannian manifold and let ĝ the
conformal structure generated by g, i.e. ĝ = {eug | u ∈ F (M)}.

Let w be a Weyl structure on the conformal manifold (M, ĝ), i.e. an application
w : ĝ −→ Λ1 (M), which verifies ([1], [5], [6]) w (eug) = w (g)− du, ∀u ∈ F (M). The
triple (M, ĝ, w) is called a Weyl manifold.

Let (M, ĝ, w) be a Weyl manifold. A linear connection ∇ on M is called compatible
with the Weyl structure w if ∇Xg + w (g) (X) g = 0, for all X ∈ X (M).

It is well known that there exists an unique symmetric linear connection∇, defined
on M , compatible with the Weyl structure ([10]). This linear connection ∇ is called
the Weyl conformal connection and is defined by ([9])

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(X, Z))− Z(g(X,Y )) + w(g)(X)g(Y, Z) +
+w (g) (Y ) g (X,Z)− w (g) (Z) g (X, Y ) + g ([X,Y ] , Z) +
+g ([Z,X] , Y )− g ([Y, Z] , X) ,

for all X,Y, Z ∈ X (M). Let
◦
∇ be the Levi-Civita connection associated to g and let

A = ∇−
◦
∇ ∈ T 1

2 (M). We have

(2.3) 2g(A(X,Y ), Z) = w(g)(X)g(Y, Z) + w(g)(Y )g(X, Z)− w(g)(Z)g(X, Y ),

for all X, Y, Z ∈ X (M). A natural problem is to deduce properties of two semi-
Riemannian manifolds from properties of the deformation algebra of their Levi-Civita



100 Liviu Nicolescu, Gabriel-Teodor Pripoae and Virgil Damian

connections; a remarkable particular case is when the latter ones coincide (see also
[2]).

Let gij , Ai
jk and ui the components, in a system of local coordinates, of g, A and

of the 1−form 1
2w (g), respectively. Then (2.3) can be written

(2.4) Ai
jk = δi

juk + δi
kuj − gjkui.

We define the family of linear connections ([8])

C =
{

λ

∇ :=
◦
∇+ λA | λ ∈ R

}
.

(In the affine space of all linear connections on M , C is the ”affine line” passing

through the ”point”
◦
∇ and of ”direction” A).

Let
◦
R and

λ

R be the curvature tensor field of the connection
◦
∇ and

λ

∇, respectively.

3 The main results

Theorem 3.1. Let M be an n−dimensional connected manifold, n > 3. The following
assertions are equivalent:

(i)
λ

∇ =
◦
∇;

(ii)
λ

R =
◦
R, if

◦
Rp : TpM × TpM × TpM −→ TpM is surjective, ∀p ∈ M ;

(iii)
λ

∇ and
◦
∇ admit the same geodesics;

(iv) the algebra U
(

M,
λ

∇−
◦
∇

)
is associative;

(v) if
◦
Rp : TpM × TpM × TpM −→ TpM is surjective, ∀p ∈ M and the 1−form

w (g) is exact, then
λ

∇ and
◦
∇ have the same Ricci tensor.

Proof. (i)=⇒(ii), (i)=⇒(iii), (i)=⇒(iv), (i)=⇒(v) are trivial. (ii)=⇒(i). From (ii),
λ

∇X

λ

R =
λ

∇X

◦
R, ∀X ∈ X (M). Then, ∀X, Y, Z, V ∈ X (M),

(
λ

∇X

λ

R)(Y,Z, V ) = (
◦
∇X

◦
R)(Y,Z, V ) +

λ

A(X,
◦
R(Y, Z)V )−

◦
R(

λ

A(X, Y ), Z)V

−
◦
R(Y,

λ

A(X, Z))V −
◦
R(Y, Z)

λ

A(X,V ),(3.1)

where we denoted by
λ

A =
λ

∇−∇ = λA. Similarly, we obtain

(
λ

∇Y

λ

R)(Z, X, V ) = (
◦
∇Y

◦
R)(Z,X, V ) +

λ

A(Y,
◦
R(Z,X)V )−

◦
R(

λ

A(Y,Z), X)V

−
◦
R(Z,

λ

A(Y,X))V −
◦
R(Z, X)

λ

A(Y, V ),(3.2)
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(
λ

∇Z

λ

R)(X, Y, V ) = (
◦
∇Z

◦
R)(X,Y, V ) +

λ

A(Z,
◦
R(X,Y )V )−

◦
R(

λ

A(Z,X), Y )V

−
◦
R(X,

λ

A(Z, Y ))V −
◦
R(X, Y )

λ

A(Z, V ).(3.3)

Using the Bianchi identities, from (3.1), (3.2) and (3.3), it follows

λ

{
A

(
X,

◦
R (Y, Z)V

)
+ A

(
Y,

◦
R (Z, X) V

)
+ A

(
Z,

◦
R (X,Y ) V

)

−
◦
R (Y, Z) A (X,V )−

◦
R (Z, X)A (Y, V )−

◦
R (X, Y )A (Z, V )

}
= 0.

From this, we deduce λ = 0, so we proved (i); hence

A

(
X,

◦
R (Y, Z) V

)
+ A

(
Y,

◦
R (Z,X)V

)
+ A

(
Z,

◦
R (X, Y ) V

)

(3.4) −
◦
R (Y, Z) A (X, V )−

◦
R (Z, X) A (Y, V )−

◦
R (X, Y )A (Z, V ) = 0.

In local coordinates, (3.4) is written

(3.5)
(

δs
i

◦
Rr

ljk + δs
k

◦
Rr

lij + δs
j

◦
Rr

lki

)
ur +

(
gil

◦
Rs

rjk + gjl

◦
Rs

rki + gkl

◦
Rs

rij

)
ur = 0.

We make s := i and sum with respect to i; it follows

(3.6) (n− 2)
◦
Rr

ljkur +
( ◦

Rlrjk − gjl

◦
Rrk + gkl

◦
Rrj

)
ur = 0,

where
◦
Rjl =

◦
Ri

jil are the components of Ricci tensor. Multiplying (3.6) by gjl and
summing with respect to j and l, it follows

(3.7) (n− 2)
◦
Rrkur = 0.

From (3.6) and (3.7) we get

(3.8) (n− 3)
◦
Rr

ljkur = 0.

Because we supposed n > 3, from (3.8) we have

(3.9)
◦
Rr

ljkur = 0.

The relations (3.9) show that, for every p ∈ M ,

(3.10) (w (g))p

( ◦
Rp (Xp, Yp)Zp

)
= 0, ∀Xp, Yp, Zp ∈ TpM.

Because
◦
Rp : TpM × TpM × TpM −→ TpM is surjective, from (3.10) we obtain

w (g))p = 0, ∀p ∈ M , so w (g) = 0 and using (2.3), we find

(3.11) g (A (X,Y ) , Z) = 0, ∀X, Y, Z ∈ X (M) .
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Because g is non-degenerate, from (3.11) it follows A = 0, so
λ

A = λA = 0, i.e.
λ

∇ =
◦
∇.

(iii)=⇒(i) The linear connections
λ

∇ and
◦
∇ are symmetric, hence they admit the

same geodesics if and only if there exists an 1−form on M such that

(3.12)
λ

∇XY =
◦
∇XY + ω (X)Y + ω (Y )X, ∀X,Y ∈ X (M) .

From (3.12) and from
λ

A = λA, we obtain

(3.13) λA (X,X) = 2ω (X)X, ∀X ∈ X (M) .

For Y = X, from (2.3) it follows

(3.14) 2g (A (X, X) , Z) = 2w (g) (X) g (X,Z)−w (g) (Z) g (X,X) , ∀X, Z ∈ X (M) .

From (3.13) and (3.14), we obtain

(3.15) 4ω (X) g (X,Z)− 2λw (g) (X) g (X, Z) = −λw (g) (Z) g (X, X) ,

for all X, Z ∈ X (M).
Because n > 3, for every p ∈ M and every Zp ∈ TpM − {0}, there exists a vector

Xp ∈ TpM − {0} such that we have

(3.16) gp (Xp, Zp) = 0, gp (Xp, Xp) 6= 0.

From (3.15) and (3.16), we get

(w (g))p (Zp) = 0, ∀Zp ∈ TpM − {0} , ∀p ∈ M ,

so w (g) = 0 and from (2.3) we obtain that A = 0, so
λ

A = 0, i.e.
λ

∇ =
◦
∇.

(iv)=⇒(i) For λ = 0 is trivial. We suppose λ 6= 0. Because the algebra U
(

M,
λ

∇−
◦
∇

)

is commutative, it follows that U
(

M,
λ

∇−
◦
∇

)
is associative if and only if we have

(3.17) A (X,A (Y, Z)) = A (Y,A (X, Z)) , ∀X, Y, Z ∈ X (M) .

In local coordinates, (3.17) becomes

(3.18) Ai
skAs

jl −Ai
slA

s
jk = 0.

From (3.18), using (2.4), we can write

(3.19) δi
kujul − δi

lujuk + gjlu
iuk − gjkuiul + δi

lgjkusu
s − δi

kgjlu
sus = 0.

In (3.19), we make i := k and sum with respect to i; it follows

(n− 2) (ujul − gjlusu
s) = 0.

Because n > 3, we obtain

(3.20) ujul − gjlu
sus = 0.
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Multiplying (3.20) by gjl and summing with respect to j and l, we get

(3.21) usus = 0.

From (3.20) and (3.21) we obtain ujul = 0, ∀j, l ∈ {1, 2, ..., n}. Therefore w (g) = 0

and, from (2.3), it follows A = 0, so
λ

∇ =
◦
∇.

(v)=⇒(i) In local coordinates, the conformal Weyl connection has the components

(3.22) Γi
jk =

∣∣i
jk

∣∣ + δi
juk + δi

kuj − gjkui,

where
∣∣∣ijk

∣∣∣ are the Christoffel symbols of the second kind, constructed using the me-

tric components gij . From (3.22) and from
λ

∇ =
◦
∇ + λ

(
∇−

◦
∇

)
, we obtain the

components of the linear connection
λ

∇:

(3.23)
λ

Γi
jk =

∣∣i
jk

∣∣ + δi
jψk + δi

kψj − gjkψi,

where ψi = λui. The curvature tensor of the connection
λ

∇ has the components

(3.24)
λ

Ri
jkl =

◦
Ri

jkl + δi
j (ψkl − ψlk) + δi

kψjl − δi
lψjk − gjkψi

l + gjlψ
i
k,

where we denoted
ψjl =

∂ψj

∂xl
+

∣∣r
jl

∣∣ ψr + ψjψl − 1
2
φ2gjl,

ψi
l = gijψjl, φ2 = grsψ

rψs = ψiψ
i.

If we assign i = k and sum, from (3.24) we obtain

(3.25)
λ

Rjl =
◦
Rjl + (n− 1)ψjl − ψlj + gjlϕ,

where
λ

Rjl =
λ

Ri
jil, ϕ = ψi

i = gjlψjl,
◦
Rjl =

◦
Ri

jil. Because the 1−form w (g) is exact, it
follows that ψjl = ψlj . From (3.25), we have

(3.26)
λ

Rjl =
◦
Rjl + (n− 2)ψjl + gjlϕ.

Using the hypothesis,
λ

Rjl =
◦
Rjl. Therefore, from (3.26) we get

(3.27) (n− 2) ψjl + gjlϕ = 0.

Multiplying (3.27) by gjl and summing with respect to j and l, it follows

(3.28) ϕ = 0.

From (3.27) and (3.28), we have

(3.29) ψjl = 0, ψi
l = 0.
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The relations (3.28) and (3.29) show that

λ

Ri
jkl =

◦
Ri

jkl.

From the last relation, we find (i). ¤

Remark 3.1. For n = 3, the theorem remains true if we replace the condition

”
◦
Rp : TpM ×TpM ×TpM −→ TpM is surjective, ∀p ∈ M” by ”the Ricci tensor of the

semi-Riemannian manifold (M, g) is non-degenerate”. This is easy to see from (3.7).

Theorem 3.2. Let U
(

M,
λ

∇−
◦
∇

)
be the deformation algebra as above. We suppose

that the manifold M is connected and n > 2. The following assertions are equivalent:

(i)
λ

∇ =
◦
∇;

(ii) all elements of the deformation algebra U
(

M,
λ

∇−
◦
∇

)
are almost principal

fields;

(iii) all elements of the deformation algebra U
(

M,
λ

∇−
◦
∇

)
are principal fields;

(iv) all elements of the deformation algebra U
(

M,
λ

∇−
◦
∇

)
are almost special fields;

(v) all elements of the deformation algebra U
(

M,
λ

∇−
◦
∇

)
are special fields;

(vi) all elements of the deformation algebra U
(

M,
λ

∇−
◦
∇

)
are 2− nilpotent fields.

Proof. (i)=⇒(ii), (i)=⇒(iii), (i)=⇒(iv), (i)⇐⇒(v), (i)⇐⇒(vi) are obvious.

(iv)=⇒(i). Because
λ

A (Z, X) = fXZ, ∀X, Z ∈ X (M), it follows that there exists

an 1−form θ on M such that θ (X) = fX . We have, therefore
λ

A (Z, X) = θ (X)Z,

∀X,Z ∈ X (M). Because
λ

A is symmetric, we get θ (X) Z = θ (Z) X, ∀X, Z ∈ X (M).
In local coordinates, the last equality is written θiδ

j
k = θkδj

i . If we make j = i and

sum, we obtain (n− 1) θk = 0, so θ = 0 and, finally,
λ

∇ =
◦
∇.

(iii)=⇒(i). We have
λ

A (Z, X) = ω (Z)X, ∀X, Z ∈ X (M). Because
λ

A (Z,X) =
λ

A (X,Z), ∀X,Z ∈ X (M), we obtain ω (Z)X = ω (X) Z, ∀X, Z ∈ X (M), which

implies ω = 0, i.e.
λ

∇ =
◦
∇.

(ii)=⇒(i). Using the hypothesis, we have

λ

A (Z, X) = fXZ + ω (Z) X, ∀X, Z ∈ X (M) .
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From here, it follows that there exists an 1−form η, defined on M , such that η (X) =

fX . Therefore, we have
λ

A (Z,X) = η (X)Z + ω (Z)X, ∀X, Z ∈ X (M). Because
λ

A is
symmetric, we find that

(η (X)− ω (X))Z = (η (Z)− ω (Z)) X, ∀X,Z ∈ X (M) .

In local coordinates, the last equality may be written

(ηi − ωi) δj
k − (ηk − ωk) δj

i = 0.

If we assign j = k and sum, we get

(n− 1) (ηi − ωi) = 0, ∀i ∈ {1, 2, ..., n} .

Therefore η = ω and we have

λ

∇ZX =
◦
∇ZX + η (X) Z + η (Z)X, ∀X, Z ∈ X (M) .

The last equality shows that the symmetric linear connections
λ

∇ and
◦
∇ admit the

same geodesics. Using Theorem 3.1, we obtain
λ

∇ =
◦
∇. ¤

Remark 3.2. In the following, we will denote by C ∈ T 1
3 (M) the curvature conformal

Weyl tensor. Let Ci
jkl the components of C in a system of local coordinates. Then,

we have ([11], [12])

Ci
jkl =

◦
Ri

jkl −
1

n− 2

(
δi
k

◦
Rjl − δi

l

◦
Rjkgjkgis

◦
Rsl + gjlg

is
◦
Rsk

)

+
grs

◦
Rrs

(n− 1) (n− 2)
(
δi
kgjl − δi

lgjk

)
.

Theorem 3.3. With the above notations, we suppose that

(i) the 1−form w (g) is exact;

(ii)
◦
Rp : TpM × TpM × TpM −→ TpM is surjective, ∀p ∈ M ;

(iii) the curvature conformal Weyl tensor is nowhere vanishing, i.e. Cp 6= 0, ∀p ∈ M .

If there exists a function f ∈ F (M), f (p) 6= 0, ∀p ∈ M , such that
λ

R = f
◦
R, then

λ

∇ =
◦
∇.

Proof. In local coordinates, the linear connection
λ

∇ has the components

λ

Γi
jk =

∣∣i
jk

∣∣ + δi
jψk + δi

kψj − gjkψi,
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where
∣∣∣ijk

∣∣∣ are the Christoffel symbols of the second kind, constructed using the metric

components gij and ψi are the components of 1−form λ
2 w (g). Because the 1−form

w (g) is exact, the last equalities imply

(3.30)
λ

Ri
jkl =

◦
Ri

jkl + δi
kψjl − δi

lψjk − gjkψi
l + gjlψ

i
k,

where

(3.31) ψjl =
∂ψj

∂xl
+

∣∣r
jl

∣∣ ψr + ψjψl − 1
2
gjlψ

sψs = ψlj , ψi
k = gijψjk.

From (3.30), we have

(3.32)
λ

Rjl =
◦
Rjl + (n− 2)ψjl + gjlg

rsψrs,

where
λ

Rjl =
λ

Rk
jkl =

λ

Rlj . Multiplying (3.32) by gjl and summing with respect to j
and l, we obtain

(3.33) gjl
λ

Rjl = gjl
◦
Rjl + 2 (n− 1) grsψrs.

Because n > 3, from (3.32) and (3.33) we deduce that

(3.34) grsψrs =
1

2 (n− 1)

(
λ

Rrs −
◦
Rrs

)
grs

(3.35) ψjl =
1

n− 2

(
λ

Rjl −
◦
Rjl

)
− gjl

2 (n− 1) (n− 2)
grs

(
λ

Rrs −
◦
Rrs

)
.

Introducing (3.34), (3.35) in (3.30), we find

λ

Ri
jkl −

1
n− 2

(
δi
k

λ

Rjl − δi
l

λ

Rjk + gjkgis
λ

Rsl + gjlg
is

λ

Rsk

)

(3.36) +
grs

λ

Rrs

(n− 1) (n− 2)
(
δi
kgjl − δi

lgjk

)
= Ci

jkl,

where

Ci
jkl =

◦
Ri

jkl −
1

n− 2

(
δi
k

◦
Rjl − δi

l

◦
Rjk − gjkgis

◦
Rsl + gjlg

is
◦
Rsk

)

+
grs

◦
Rrs

(n− 1) (n− 2)
(
δi
kgjl − δi

lgjk

)

are the components of the curvature conformal Weyl tensor C. On the other hand,
λ

R = f
◦
R implies that

λ

Ri
jkl = f

◦
Ri

jkl,
λ

Rjl = f
◦
Rjl, grs

λ

Rrs = fgrs
◦
Rrs,



On some families of linear connections 107

λ

Ri
jkl −

1
n− 2

(
δi
k

λ

Rjl − δi
l

λ

Rjk − gjkgis
λ

Rsl + gjlg
is

λ

Rsk

)

(3.37) +
grs

λ

Rrs

(n− 1) (n− 2)
(
δi
kgjl − δi

lgjk

)
= fCi

jkl.

Because Cp 6= 0, ∀p ∈ M , it follows that the functions Ci
jkl are nowhere vanishing.

Taking this into the account, the relations (3.36) and (3.37) show that we have f = 1,

so
λ

R =
◦
R. Using Theorem (3.1), we obtain

λ

∇ =
◦
∇. ¤

Theorem 3.4. Let (M, g) be a connected n−dimensional semi-Riemannian manifold,
with n ≥ 3. We consider two Weyl structures w and w′ on the conformal manifold
(M, ĝ). Let ∇ (resp. ∇′) be the symmetric conformal Weyl connection, compatible
with the Weyl structure w (resp. w′). Define the family of linear connections

C̃= {∇+ λ (∇′ −∇) | λ ∈ R} .

For λ ∈ R, we consider the linear connection
λ

∇ = ∇+λ (∇′ −∇) ∈ C̃. The following
assertions are equivalent:

(i)
λ

∇ = ∇;

(ii) the deformation algebra U
(

M,
λ

∇−∇
)

is associative;

(iii)
λ

∇ and ∇ admit the same geodesics;

(iv) all the elements of the deformation algebra U
(

M,
λ

∇−∇
)

are almost principal

fields.

Proof. (i)=⇒(ii), (i)=⇒(iii), (i)=⇒(iv) are obvious.

(ii)=⇒(i) The algebra U
(

M,
λ

∇−∇
)

is commutative. It follows that U
(

M,
λ

∇−∇
)

is associative if and only if we have

(3.38)
λ

A

(
X,

λ

A (Y,Z)
)
−

λ

A

(
Y,

λ

A (X, Z)
)

= 0, ∀X, Y, Z ∈ X (M) ,

where
λ

A =
λ

∇−∇ = λA′, A′ =
λ

∇−∇.
For λ = 0 the assertion is trivial. We suppose λ 6= 0. The linear connection ∇′ is

defined by

2g(∇′XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y )) + w′(g)(X)g(Y,Z) +
+w′(g)(Y )g(X, Z)− w′(g)(Z)g(X, Y ) + g([X, Y ], Z) +
+g([Z, X], Y )− g([Y,Z], X), ∀X, Y, Z ∈ X (M) .



108 Liviu Nicolescu, Gabriel-Teodor Pripoae and Virgil Damian

From here, it follows that A′ is given by

(3.39) g (A′ (X, Y ) , Z) = ϕ (X) g (Y, Z) + ϕ (Y ) g (X, Z)− ϕ (Z) g (X, Y ) ,

∀X, Y, Z ∈ X (M) ,

where we used the notation 2ϕ = w′ (g)− w (g).
Let A′ijk (resp. ϕi) the components of A′ (resp. ϕ) in a system of local coordinates.

Then we can rewrite (3.39) as

(3.40) A′ijk = δi
jϕk + δi

kϕj − gjkϕi,

where ϕi = gikϕk. In local coordinates, (3.38) can be written
(
δi
kϕl − δi

lϕk

)
ϕj +

(
δi
lgjk − δi

kgjl

)
ϕsϕ

s + (gjlϕk − gjkϕl) ϕi = 0.

For i = k, we sum and obtain

(3.41) (n− 2) (ϕjϕl − gjlϕsϕ
s) = 0.

Because n ≥ 3, from (3.41) we get

(3.42) ϕjϕl − gjlϕsϕ
s = 0.

Multiplying (3.42) by gjl and summing with respect to j and l, we have ϕsϕ
s = 0.

Taking into account this, from (3.42) follows ϕjϕl = 0, ∀j, l ∈ {1, 2, ..., n}. We obtain

ϕ = 0, i.e. w = w′. From (3.39) we find A′ = 0, so
λ

A = 0, i.e.
λ

∇ = ∇.

(iii)=⇒(i). Because the linear connections
λ

∇ and ∇ are symmetric, it follows that
they admit the same geodesics if and only if there exists an 1−form σ, defined on M ,
such that

(3.43)
λ

∇XY = ∇XY + σ (X)Y + σ (Y )X, ∀X, Y ∈ X (M) .

From (3.43) we get

(3.44) λA′ (X,X) = 2σ (X)X, ∀X ∈ X (M) .

For λ = 0, we obtain σ = 0 and from (3.34) we have
λ

∇ = ∇. We shall consider the
case for λ 6= 0. For Y = X, from (3.39), we find

(3.45) g (A′ (X,X) , Z) = 2ϕ (X) g (X,Z)− ϕ (Z) g (X,X) , ∀X,Z ∈ X (M) .

From (3.44) and (3.45), we get

(3.46) {2σ (X)− 2λϕ (X)} g (X,Z) + λϕ (Z) g (X,X) = 0, ∀X,Z ∈ X (M) .

Because n ≥ 3, for any p ∈ M and any Zp ∈ TpM −{0}, there exists Xp ∈ TpM −{0}
such that we have

(3.47) gp (Xp, Zp) = 0, gp (Xp, Xp) 6= 0.
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From (3.46) and (3.47) we obtain ϕp (Zp) = 0, for any Zp ∈ TpM − {0} and any
p ∈ M . Therefore, ϕ = 0, so w′ = w. From (3.39) follows g (A′ (X, Y ) , Z) = 0,
∀X,Y, Z ∈ X (M). Because the metric g is non-degenerate, from the last equality

we find A′ (X,Y ) = 0, ∀X, Y ∈ X (M), so A′ = 0. In conclusion,
λ

A = λA′ = 0, i.e.
λ

∇ = ∇.

(iv)=⇒(i). Because all elements of the algebra U
(

M,
λ

∇−∇
)

are almost principal

fields, it follows that for any X ∈ X (M) there exists a function fX ∈ F (M) and an
1−form ω ∈ Λ1 (M) such that

(3.48)
λ

A (Z, X) = fXZ + ω (Z) X, ∀Z, X ∈ X (M) .

From (3.48), there exists an 1−form η ∈ Λ1 (M) such that η (X) = fX . From (3.48),
we obtain

(3.49)
λ

A (Z,X) = η (X)Z + ω (Z)X, ∀Z, X ∈ X (M) .

Because the algebra U
(

M,
λ

∇−∇
)

is abelian, from the last equality follows η = ω

and from (3.49) we obtain

λ

∇ZX = ∇ZX + η (X) Z + η (Z)X, ∀Z, X ∈ X (M) .

The last equality shows that the symmetric and linear connections
λ

∇ and ∇ admit

the same geodesics. From here,
λ

∇ = ∇. ¤
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