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Abstract. The paper is devoted to the geometrical theory, on the phase
space, of the classical concept of scleronomic Riemannian mechanical sys-
tems in the general case when the external forces depend on the material
points and their velocities. We discuss the canonical semispray, the nonlin-
ear connection, the metrical connection, the electromagnetic field and the
almost Hermitian model of the mentioned mechanical system. Based on
the methods of Lagrange geometry we prepare here the framework for the
investigation of the geometrical theory of Riemannian mechanical systems
whose external forces depend on the accelerations of order k ≥ 1.
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1 Introduction

The geometrization of the scleronomic Riemannian mechanical systems with external
forces depending on the velocity of the material point has been developed by Joseph
Klein. His paper [9], published in 1962 in Annales de l’Institut Fourier, still remains
the essential reference in this subject. Later on, the problem was treated by other
well known mathematicians, see [5, 10, 11, 12]. A modern study of these mechanical
systems, using the methods of Lagrange theory, can be found in the papers of R.Miron
[13], I.Bucataru and R.Miron [3] and in the recent book ”Finsler-Lagrange geometry.
Applications to dynamical systems” by I.Bucataru and R.Miron, appeared in the
Publishing House of Romanian Academy [2].

The geometrical theory of these systems is built on the base manifold TM of the
tangent bundle of the configurations space M . Hereafter we call TM the phase space.

A scleronomic Riemannian mechanical system (SRMS on short) is a triple ΣR =
(M, T, Fe), where M is a real n-dimensional differentiable manifold, called the con-

figuration space, n is called the freedom degree of the system, T =
1
2
gij(x)

dxi

dt

dxj

dt
is
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the kinetic energy of a given Riemannian space Rn = (M, g) and Fe(x, dx
dt ) are the ex-

ternal forces a-priori given. Obviously, the nonconservative Riemannian mechanical
systems are particular cases of SRMS.

In this case, the Lagrange equations are expressed by

(I)
d

dt

( ∂L

∂yi

)
− ∂L

∂xi
= Fi(x, y), yi =

dxi

dt
.

Fundamental results in the geometric theory of SRMS on the phase space TM has
been obtained by J. Klein ([9]), E. Cartan, A. Lichnerowicz, I. Bucataru, R. Miron
([2]) and others.

An important geometrical object is the canonical semi-spray S determined by ΣR
only and whose integral curves are the solution curves of the Lagrange equations (I).
Therefore, the geometrical theory of the SRMS ΣR is the differential geometry of
the pair (TM,S). It follows that the nonlinear connection N determined by S is the
canonical nonlinear connection of ΣR.

Let us recall here one important property that characterizes the canonical semi-
spray S:

The vector field S defined on the phase space TM is the only one satisfying the
equation

iSω = −dT + σ,

where ω = 2gijδy
j ∧ dxi is the almost symplectic structure of ΣR and σ = Fi(x, y)dxi

is the 1-form on TM of the external forces Fe.

However, some other important problems have not been studied yet, for example
the study of the vector field S as dynamical system on TM , the evolution nonlinear
connection N determined by S, the structure equations of the N -metrical connec-
tion, the electromagnetic field of ΣR (in the case when Rn = (M, gij) is a pseudo-
Riemannian space), the gravitational field gij(x) studied by means of the N -metrical
connection of ΣR, the almost Hermitian model of ΣR on TM . Only a part of these
topics will be studied in the present paper.

The methods used in the study of geometrical theory of SRMS are borrowed from
the geometry of Lagrange spaces of order k ≥ 1. We will consider in the following
only the case k = 1. The case k > 1 will be studied in future by considering the
following problem.

Study the geometry of the scleronomic Riemannian mechanical systems ΣR = (M, T, Fe)
whose external forces Fe depend on the material points x and on their accelerations
of order 1,2,...k, namely, dx

dt ,
d2x
dt2 , ..., dkx

dtk .

The difficulty here consists in finding the Lagrange equations of order k for ΣR.
The solution of the problem is based on the prolongation of order k ≥ 1 of the
Riemannian space Rn = (M, g), ([15]).

This category of SRMS will be studied in a forthcoming paper.
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2 Preliminaries. Semisprays on TM

Let M be an n-dimensional, real differentiable manifold, named the configuration
space, n being the number of degrees of freedom. A point of M will be denoted by x
and its local coordinates by (xi), (i = 1, 2, . . . , n). The velocity of x with respect to
the time t will be denoted by ẋ = dx

dt and its coordinates by ẋi = dxi

dt . These notations
are usual in Lagrange geometry, ([16]).

Let us consider the tangent bundle (TM, π,M), whose total space TM is a 2n-
dimensional differentiable manifold called the phase space (we point out that in classi-
cal mechanics the cotangent space T ∗M is considered as the phase space). We prefer
this naming for TM because it is more intuitive.

In the following we denote by (xi, dxi

dt ) = (xi, yi) the coordinates of a point u =
(x, dx

dt ) = (x, y) ∈ TM . A change of local coordinates (xi, yi) −→ (x̃i, ỹi) is given by

(2.1) x̃i = x̃i(x1, .., xn), det

(
∂x̃i

∂xj

)
6= 0, ỹi =

∂x̃i

∂xj
yj .

The Einstein summation convention is used for all i, j, k, ... = 1, 2, .., n.

The natural basis
(

∂

∂xi
,

∂

∂yi

)
of the tangent vector space TuTM transforms with

respect to (2.1) as follows:

(2.2)
∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂ỹj

∂xi

∂

∂ỹj
,

∂

∂yi
=

∂x̃j

∂xi

∂

∂ỹj
.

From (2.2) we can see that the vector fields
(

∂

∂yi

)
, (i = 1, .., n) generate an integrable

distribution V of local dimension n on TM , called the vertical distribution.
Also, from (2.1) and (2.2) we obtain that

IC = yi ∂

∂yi
.

is a vertical vector field on TM , called the Liouville vector field, with the property
IC 6= 0 on T̃M = TM \ {0}.

There exists a F(TM)-linear application J : χ(TM) −→ χ(TM) defined by

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.

One can see that J is globally defined on TM and it has the following properties
KerJ = V, ImJ = V and J2 = 0. The application J is called the tangent structure
on TM .

A semispray on the manifold TM is a vector field S ∈ χ(TM) with the property

J(S) = IC.

Locally, a semispray S can be expressed as follows:

(2.3) S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
.



Geometrization of the scleronomic Riemannian mechanical systems 81

The functions Gi(x, y) give the coefficients of the semispray S. The system of func-
tions {Gi(x, y)}, (i = 1, .., n), determine a geometric object field on TM whose trans-
formation rule, with respect to (2.1), is:

(2.4) 2G̃i = 2
∂x̃i

∂xj
Gj − ∂ỹi

∂xj
yj .

Conversely, a geometric object field Gi having the transformation rule (2.4) deter-
mines, by (2.3), a semispray S. Example. For a Riemannian spaceRn = (M, gij(x)),
the system of functions 2Ǧi(x, y) = γi

jk(x)yjyk gives us the coefficients of a semis-
pray, γi

jk(x) being the Christoffel symbols of gij . A semispray S is a spray if and only
if its coefficients Gi are 2-homogeneous functions with respect to yi (see [17, p.8]).
Hence this semispray reduces to a spray.

We remark that the difference between two semisprays S and S′ on TM is a
vertical vector field.

It follows that the vector field S′ on TM , defined by S′ = S + Fe, is a semispray,
where S is a semispray and Fe is a vertical vector field.

Therefore, by fixing a semispray S and choosing in a suitable way a vertical vector
field Fe, we obtain any semispray S′ on TM.

3 Nonlinear connections on TM

As we have seen in the previous section, there exists a vertical distribution V on
TM of local dimension n, which is integrable. It is naturally to question the existence
of distributions N on TM, complementary to the vertical distribution V. The answer
to this question is affirmative, these distributions exist.

A regular distribution N on TM , complementary to the vertical distribution V ,
is called a nonlinear connection. Using it, the tangent space TuTM splits in a direct
sum of the vertical subspace Vu and an horizontal (complementarity) subspace Nu:

(3.1) TuTM = Nu ⊕ Vu,

for any u ∈ TM .
A detailed theory of nonlinear connections can be found in the monograph [17].
The distribution N of a nonlinear connection is called the horizontal distribution.
It can be easily seen that if M is paracompact then there exist nonlinear connec-

tions on TM .
In the local coordinates (xi, yi), the nonlinear connection N can be characterized

by the local basis:

(3.2)
δ

δxi
=

∂

∂xi
−N j

i(x, y)
∂

∂yj
.

The system of functions N j
i(x, y) is called the system of coefficients of the nonlin-

ear connection N ([2, 16, 17]). With respect to a change of coordinates (2.1) the
coefficients N j

i(x, y) transforms by the rule:

(3.3)
∂x̃j

∂xk
Nk

i = Ñ j
k
∂x̃k

∂xi
+

∂ỹj

∂xi
.
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Conversely, if a system of functions N j
i (x, y) on TM is given, having the rule of

transformation (3.3), then it determines a nonlinear connection N on TM .
Remark that N is a linear connection if the functions N j

i(x, y) are linear with
respect to the variables yi, namely N i

j(x, y) = Γi
jk(x)yk.

The following formulas hold good:

(3.4)

[
δ

δxi
,

δ

δxj

]
= Rk

ij
∂

∂yk
, where Rk

ij =
δNk

i

δxj
− δNk

j

δxi
.

We point out that Rk
ij is a d-tensor field (d- means ”distinguished”, [16, 17]) and it

is called the curvature tensor of the nonlinear connection N.
From here it immediately follows that N is an integrable distribution if and only

if Rk
ij = 0.

The d-tensor field defined by

tkij =
∂Nk

i

∂yj
− ∂Nk

j

∂yi

is called the (weak) torsion tensor of the nonlinear connection N .
We emphasize that a nonlinear connection N determines some important geomet-

ric structures on TM as: the almost complex structure IF, the almost product structure
IP and the adjoint structure Θ = IF + J (see [2, 16]). Namely, we have

J ◦ IP = J, IP ◦ J = −J, IF2 = −Id, Θ2 = 0,

IF ◦ J + J ◦ IF = Θ ◦ J + J ◦Θ = h + v = Id,

where h and v are the projections determined by N and V , respectively.

Recall that the system of vectors
(

δ

δxi
,

∂

∂yi

)
is an adapted basis to the direct

decomposition (3.1). Its dual basis is (dxi, δyi), where

(3.5) δyi = dyi + N i
j(x, y)dxj .

Using the formulas (3.2), (3.5), it follows that the previous structures can be
expressed in local coordinates by the tensors:

J =
∂

∂yi
⊗ dxi, Θ =

δ

δxi
⊗ δyi,

IF =
δ

δxi
⊗ δyi − ∂

∂yi
⊗ dxi, IP =

δ

δxi
⊗ dxi − ∂

∂yi
⊗ δyi.

Any semispray S, having the coefficients Gi, determines a nonlinear connection N
with the coefficients:

N i
j(x, y) =

∂Gi

∂yj
(x, y).

If N i
j(x, y) are the coefficients of a nonlinear connection N, then Gi(x, y) =

1
2
N i

j(x, y)yj

are the coefficients of a semispray given by

S = yi ∂

∂xi
−N j

iy
i ∂

∂yj
= yi δ

δxi
,

called the associated semispray of the nonlinear connection N.
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4 The dynamical covariant derivative

The dynamical covariant derivative with respect to the nonlinear connection N is
introduced as derivative operator in the d-tensor fields algebra([2]).

Let us consider a nonlinear connection N having the coefficients N i
j and the

associated semispray S = yi δ

δxi
.

We introduce here the dynamical covariant derivative corresponding to the pair
(S, N) as the operator ∇ : χv(TM) −→ χv(TM) defined by:

∇
(

Xi ∂

∂yi

)
=

(
SXi + XjN i

j

) ∂

∂yi
.

Consequently, for any f ∈ F(TM), ∀X ∈ χv(TM), we have ∇f = Sf , ∇(X + Y ) =
∇X +∇Y , ∇(fX) = ∇fX + f∇X.

From here we deduce that

∇
(

∂

∂yi

)
= N j

i
∂

∂yj
.

As usual ([2]) we can extend the operator ∇ to the algebra of d-tensor fields. There-
fore, for a d-vector field Xi we have

∇Xi = Xi| = SXi + XjN i
j ,

and for a d-one form ωi

∇ωi = ωi| = Sωi − ωjN
j
i .

Analogously, for a covariant d-tensor field, we have, for instance

gij | = ∇g

(
∂

∂yi
,

∂

∂yj

)
= Sgij − gsjN

s
i − gisN

s
j .

If gij is a metric tensor on TM, then N is called metrical with respect to gij if
gij | = 0. Equivalently, we have Sgij = gsjN

s
i + gisN

s
j .

Let c : t ∈ I ⊂ R −→ c(t) =
(
xi(t)

) ∈ M be a curve on M and c̃ =
(

xi(t),
dxi

dt
(t)

)

its extension to TM.
The curve c is an autoparallel curve of the nonlinear connection N if the curve c̃

is an horizontal curve on TM. In other words, c is an autoparallel curve if and only if

d2xi

dt2
+ N i

j(x,
dx

dt
)
dxj

dt
= 0.

If N is the nonlinear connection N i
j(x, y) = γi

jk(x)yk, then for ∀Xi(x) we have

∇Xi = ykXi|k = yk

(
∂Xi

∂xk
+ Xmγi

mk

)
,

where Xi|k is the ∇ operator of h-covariant derivative of Xi(x, y) with respect to the
N -linear connection (γi

jk(x), 0), [16]. The theory of the N -linear connections and of
the corresponding covariant derivatives is well known ([16], [17]).
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5 Scleronomic Riemannian mechanical systems

The definition of mechanical systems which external forces depend on material
point and its velocity, given by J. Klein ([9]) requires the study of the geometry of the
phase space. The geometrization of these systems can not be done using Riemannian
techniques only ([13], [18], [19], [20]) as in the classical case, when the external forces
does not depend on velocities.

In order to overpass this difficulty, we shall apply the methods of Lagrange geom-
etry ([2], [13], [16], [17]) considering the external forces to be a vertical vector field on
the phase space. A good example are the so-called Liouville-Riemannian mechanical
systems, where the external forces are given in the form Fe = a(x, y) IC, a ∈ F(TM),
a 6= 0.

Generally, the main idea is to determine a canonical semispray on the phase space,
which depends on the considered mechanical system only and which integral curves
are the evolution curves of the mechanical system. Thus, one can regard the geometry
of the canonical semispray as the geometry of the considered mechanical system.

Following J. Klein ([9]) we can give

Definition 5.1. A scleronomic Riemannian mechanical system (a SRSM on short)
is a triple ΣR = (M,T, Fe), where

• M is an n-dimensional differentiable manifold, called the configuration space;

• T =
1
2
gij(x)ẋiẋj is the kinetic energy;

• gij(x) is the metric tensor of a given Riemannian (or pseudo-Riemannian space)
Rn = (M, gij(x));

• Fe(x, y) = F i(x, y)
∂

∂yi
is a vertical vector field given on the phase space TM .

Fe called the external forces field.

The covariant components of the external forces Fe(x, y) are given by

Fi(x, y) = gij(x)F j(x, y).

Examples.

1. The SRMS ΣR, where Fe(x, y) = a(x, y) IC, a 6= 0, a ∈ F(TM). Thus F i(x, y) =
a(x, y)yi. This ΣR can be called the Liouville SRMS, [3].

2. The SRMS ΣR, where Fe(x, y) = F i(x) ∂
∂yi , and Fi(x) = gradif(x), called

conservative systems.

3. The SRMS ΣR, where Fe(x, y) = F i(x) ∂
∂yi , but Fi(x) 6= gradif(x), called

non-conservative systems.

Remarks.

1. A conservative system ΣR is called a Lagrangian system by J. Klein ([9]).

2. One should pay attention to not make confusion of this kind of mechanical
systems with the ”Lagrangian mechanical systems” ΣL = (M,L(x, y), Fe(x, y))
introduced by R. Miron ([15]), where L : TM → R is a regular Lagrangian.
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Starting from Definition 5.2, in a very similar manner as in the geometrical theory of
mechanical systems, one introduces
Postulate. The evolution equations of a SRSM ΣR are the Lagrange equations:

(5.1)
d

dt

∂T

∂yi
− ∂T

∂xi
= Fi(x, y), yi =

dxi

dt
.

This postulate will be geometrically justified by the existence of a semi-spray S on
TM whose integral curves are given by the equations (5.1). Therefore, the integral
curves of Lagrange equations will be called the evolution curves of the SRSM ΣR.
Remarks.

In classical Analytical Mechanics, the coordinates (xi) of a material point x ∈ M

are denoted by (qi), and the velocities yi =
dxi

dt
by q̇i =

dqi

dt
. However, we prefer to

use the notations (xi) and (yi) which are often used in the geometry of the tangent
manifold TM ([2], [16], [17], [20], [21]).

The external forces Fe(x, y) five rise to the one-form

(5.2) σ = Fi(x, y)dxi.

Since Fe is a (vertical vector field it follows that σ is semibasic one form. Con-
versely, if σ from (5.2) is semibasic one form, then Fe = F i(x, y) ∂

∂yi , with F i = gijFj ,
is a vertical vector field on the manifold TM . J Klein ([9]) introduced the the external
forces by means of a one-form σ, while R. Miron in [15] defined Fe as a vertical vector
field on TM .

The SRMS ΣR is a regular mechanical system because the Hessian matrix with

elements
∂2T

∂yi∂yj
= gij(x) is nonsingular.

We have the following important result.

Proposition 5.1. The system of evolution equations (5.1) are equivalent to the fol-
lowing second order differential equations:

(5.3)
d2xi

dt2
+ γi

jk(x)
dxj

dt

dxk

dt
= F i(x,

dx

dt
),

where γk
ij(x) are the Christoffel symbols of the metric tensor gij(x).

In general, for a SRMS ΣR, the system of differential equations (5.3) is not au-
toadjoint. Consequently, it can not be written as the Euler-Lagrange equations for a
certain Lagrangian.

In the case of conservative SRMS, with Fi(x) = −∂U(x)
∂xi , here U(x) a potential

function, the equations (5.1) can be written as Euler-Lagrange equations for the
Lagrangian T + U . They have T + U = constant as a prime integral.

This is the reason that the nonconservative SRMS ΣR, with Fe depending on

yi =
dxi

dt
cannot be studied by the methods of classical mechanics. A good geometrical

theory of the SRMS ΣR should be based on the geometry of the phase space TM .
From (5.3) we can see that in the canonical parametrization t = s (s being the arc

length in the Riemannian space Rn), we obtain the following result:
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Proposition 5.2. If the external forces are identically zero, then the evolution curves
of the system ΣR are the geodesics of the Riemannian space Rn.

In the following we will study how the evolution equations change when the space
Rn = (M, g) is replaced by another Riemannian space R̄n = (M, ḡ) such that:

1◦ Rn and R̄n have the same parallelism of directions;
2◦ Rn and R̄nhave same geodesics;
3◦ R̄n is conformal to Rn.

In each of these cases, the Levi-Civita connections of these two Riemmanian spaces
are transformed by the rule:

1◦ γ̄i
jk(x) = γi

jk(x) + δi
jαk(x);

2◦ γ̄i
jk(x) = γi

jk(x) + δi
jαk(x) + δi

kαj(x);
3◦ γ̄i

jk(x) = γi
jk(x) + δi

jαk(x) + δi
kαj(x)− gjk(x)αi(x),

where αk(x) is an arbitrary covector field on M , and αi(x) = gij(x)αj(x).
It follows that the evolution equations (5.3) change to the evolution equations of

the system ΣR̄ as follows:
1◦ In the first case we obtain

d2xi

dt2
+ γi

jk(x)
dxj

dt

dxk

dt
= −α

dxi

dt
+ F i(x,

dx

dt
); α = αk(x)

dxk

dt

Therefore, even though ΣR is a conservative system, the mechanical system ΣR̄ is
nonconservative system having the external forces

F̄e =
(−α(x, y)yi + F i(x, y)

) ∂

∂yi
, α = αk(x)

dxk

dt
.

2◦ In the second case we have

d2xi

dt2
+ γi

jk(x)
dxj

dt

dxk

dt
= −2α

dxi

dt
+ F i(x,

dx

dt
); α = αk(x)

dxk

dt

and

F̄e =
(−2α(x, y)yi + F i(x, y)

) ∂

∂yi
, α = αk(x)

dxk

dt
.

3◦ In the third case F̄e is

F̄e =
{
2(−αyi + Tαi) + F i

} ∂

∂yi
, α = αk(x)

dxk

dt
, αi(x) = gij(x)αj(x).

The previous properties lead to examples with very interesting properties.

6 Examples of scleronomic mechanical systems

Recall that in the case of classical conservative mechanical systems we have Fe =
grad U , where U(x) is a potential function. Therefore, the Lagrange equations are
given by

d

dt

∂

∂yi
(T + U)− ∂

∂xi
(T + U) = 0.
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We obtain from here a prime integral T + U = h(constant) which give us the energy
conservation law.

In the nonconservative case we have numerous examples suggested by 1◦, 2◦, 3◦

from the previous section, where we take F i(x, y) = 0.
Other examples of SRMS can be obtained as follows

1. Take Fe = −β(x, y)yi ∂

∂yi
, where β = βi(x)yi is determined by the electromag-

netic potentials βi(x), (i = 1, .., n).

2. Take Fe = 2(T − β)yi ∂

∂yi
, where β = βi(x)yi and T is the kinetic energy.

3. In the three-body problem, M. Barbosu and B. Elmabsout [4] applied the con-
formal transformation, [22], ds̄2 = (T +U)ds2 to the classic Lagrange equations
and had obtained a nonconservative mechanical system with external force field

Fe = 2(T + U)yi ∂

∂yi
.

4. The external forces Fe = F i(x)
∂

∂yi
lead to classical nonconservative Riemannian

mechanical systems. For instance, for Fi = −gradi U + Ri(x) where Ri(x) are
the resistance forces, and the configuration space M is R3.

5. If M = R3, T =
1
2
mδijy

iyj and Fe = F i(x)
∂

∂yi
, then the evolution equations

are m
d2xi

dt2
= F i(x), which is the Newton’s law.

6. The harmonic oscillator.

M = Rn, gij = δij , Fi = −ω2
i xi (the summation convention is not applied) and

ωi are positive numbers, (i = 1, .., n). The functions hi = (xi)2+ω2
i xi, and H =∑n

i=1 hi are prime integrals.

7. Suggested by the example 6, we consider a system ΣR with
Fe = −ω(x) IC, where ω(x) is a positive function and IC is the Liouville vec-
tor field.

The evolution equations, in the case M = Rn, are given by
d2xi

dt2
+ω(x)

dxi

dt
= 0.

Putting yi =
dxi

dt
, we can write

dyi

dt
+ ω(x)yi = 0, (i = 1, .., n). So, we

obtain yi = Cie−
∫

ω(x(t))dt and therefore xi = Ci
0 + Ci

∫
e−

∫
ω(x(t))dtdt.

8. We can consider the systems ΣR having Fe = ai
jk(x)yjyk ∂

∂yi
, where ai

jk(x) is

a symmetric tensor field on M. The external force field Fe has homogeneous
components of degree 2 with respect to yi.

9. Relativistic nonconservative mechanical systems can be obtained for a Minkowski
metric in the space-time R4.



88 R. Miron, H. Shimada, S. V. Sabau, M. Roman

10. A particular case of example 1 above is the case when the external force field
coefficients F i(x, y) are linear in yi, i.e. Fe = F i(x, y) ∂

∂yi = Y i
k (x)yk ∂

∂yi , where
Y : TM → TM is a fiber diffeomorphism called Lorentz force, namely for any
x ∈ M , we have Yx : TxM → TxM, Yx( ∂

∂xi ) = Y j
i (x) ∂

∂xj .

Let us remark that in this case, formally, we can write the Lagrange equations
of this SRMS in the form

∇γ̇ γ̇ = Y (γ̇),

where ∇ is the Levi-Civita connection of the Riemannian space (M, g) and γ̇ is
the tangent vector along the evolution curves γ : [a, b] → M .

This type of SRMS is important because of the global behavior of its evolution
curves.

Let us denote by S the evolutionary semispray, i.e. S is a vector field on TM
which is tangent to the canonical lift γ̂ = (γ, γ̇) of the evolution curves, [7], (see
the following section for a detailed discussion on the evolution semispray).

We will denote by T c the energy levels of the Riemannian metric g, i.e.

T c = {(x, y) ∈ TM : T (x, y) =
c2

2
},

where T is the kinetic energy of g, and c is a positive constant. One can easily
see that T c is the hypersurface in TM of constant Riemannian length vectors,
namely for any X = (x, y) ∈ T c, we must have |X|g = c, where |X|g is the
Riemannian length of the vector field X on M .

If we restrict ourselves for a moment to the two dimensional case, then it is
known that for sufficiently small values of c the restriction of the flow of the
semispray S to T c contains no less than two closed curves when M is the 2-
dimensional sphere, and at least three otherwise ([8]). These curves projected to
the base manifold M will give closed evolution curves for the given Riemannian
mechanical system.

A detailed study of Riemannian non-conservative mechanical systems will be
included in a forthcoming paper.

7 The evolution semispray of the mechanical sys-
tem ΣR

Let us assume that Fe is global defined on M , and consider the mechanical system
ΣR = (M, T, Fe). We have

Theorem 7.1. [9] The following properties hold good:
1◦ The quantity S defined by

(7.1) S = yi ∂

∂xi
− (2

◦
Gi −F i)

∂

∂yi
,

where 2
◦

Gi= γi
jkyjyk is a vector field on the phase space TM .
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2◦ S is a semispray, which depends on ΣR only.
3◦ The integral curves of the semispray S are the evolution curves of the system

ΣR.

Proof. 1◦ Writing S in the form
S =

◦
S +Fe,

where
◦
S is the canonical semispray with the coefficients

◦
Gi, we can see immediately

that S is a vector field on TM.

2◦ Since
◦
S is a semispray and Fe a vertical vector field, it follows S is a semispray.

From (7.1) we can see that S depends on Σ, only.
3◦ The integral curves of S are given by

dxi

dt
= yi;

dyi

dt
+ 2

◦
Gi (x, y) = F i(x, y).

Replacing yi in the second equation we obtain (5.1) ¤

S will be called the evolution or canonical semispray of the nonconservative Rie-
mannian mechanical system ΣR. In the terminology of J. Klein, S is the dynamical
system of ΣR.

Based on S we can develop the geometry of the mechanical system ΣR on TM.
Let us remark that S can also be written as follows:

S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

with the coefficients

2Gi = 2
◦

Gi −F i.

We point out that S is homogeneous of degree 2 if and only if F i(x, y) is 2-homogeneous

with respect to yi. This property is not satisfied in the case
∂F i

∂yj
≡ 0, and it is satisfied

for examples 1 and 8 from section 6. We have:

Theorem 7.2. The variation of the kinetic energy T of a mechanical system ΣR,

along the evolution curves (5.1), is given by:
dT

dt
= Fi

dxi

dt
.

Proof. A straightforward computation gives

dT

dt
=

∂T

∂xi

dxi

dt
+

∂T

∂yi

dyi

dt
=

(
d

dt

∂T

∂yi
− Fi

)
dxi

dt
+

∂T

∂yi

dyi

dt
=

=
d

dt

(
yi ∂T

∂yi

)
− Fi

dxi

dt
= 2

dT

dt
− Fi

dxi

dt
,

and therefore the relation holds good. ¤

Corollary 7.3. T = constant along the evolution curves if and only if the Liouville
vector IC and the external force Fe are orthogonal vectors along the evolution curves
of Σ.
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Corollary 7.4. If Fi = gradi U then ΣR is conservative and T + U = h (constant)
on the evolution curves of ΣR.

If the external forces Fe are dissipative, i.e. 〈IC, Fe〉 ≤ 0, then from the previous
theorem, it follows a result of Bucataru-Miron (see [2, 3]):

Corollary 7.5. The kinetic energy T decreases along the evolution curves if and only
if the external forces Fe are dissipative.

8 The nonlinear connection of ΣR
Let us consider the evolution semispray S of ΣR given by

S = yi ∂

∂xi
− (2

◦
G

i

−F i)
∂

∂yi

with the coefficients

2Gi = 2
◦

Gi −F i.

Consequently, the evolution nonlinear connection N of the mechanical system ΣR has
the coefficients:

(8.1) N i
j =

◦
N i

j − 1
2

∂F i

∂yj
= γi

jkyk − 1
2

∂F i

∂yj
.

If the external forces Fe does not depend by velocities yi =
dxi

dt
, then N =

◦
N .

Since the energy of S is T (the kinetic energy), the Theorem 7.2 holds good in
this case. The variation of T is given in Theorem 7.2 and hence we obtain that
T is conserved along the evolution curves of ΣR if and only if the vector field Fe

and the Liouville vector field IC are orthogonal. Recall that Fe is called dissipative if
〈Fe, IC〉 ≤ 0, or, equivalently, gij(x)yiF j(x) ≤ 0 ([2, p. 211]).

Let us consider the helicoidal vector field (see Bucataru-Miron, [2, 3])

(8.2) Pij =
1
2

(
∂Fi

∂yj
− ∂Fj

∂yi

)

and the symmetric part of tensor
∂Fi

∂yj
:

Qij =
1
2

(
∂Fi

∂yj
+

∂Fj

∂yi

)
.

On TM, P gives rise to the 2-form:

P = Pij dxi ∧ dxj

and Q is the symmetric vertical tensor:

Q = Qij dxi ⊗ dxj .

Denoting by ∇ the dynamical derivative with respect to the pair (S, N), one proves
the theorem of Bucataru-Miron [2]:
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Theorem 8.1. For a scleronomic Riemannian mechanical system
ΣR = (M,T, Fe) the evolution nonlinear connection is the unique nonlinear connec-

tion that satisfies the following conditions: ∇g = −1
2

Q, ωL(hX, hY ) =
1
2
P (X,Y ),

∀X,Y ∈ χ(TM), where

ωL = 2gij

◦
δ yj ∧ dxi

is the symplectic structure determined by the metric tensor gij and the nonlinear

connection
◦
N .

The adapted basis of the distributions N and V is given by
(

δ

δxi
,

∂

∂yi

)
, where

δ

δxi
=

∂

∂xi
−N j

i
∂

∂yj
=

◦
δ

δxi
+

1
2

∂F j

∂yi

∂

∂yj

and its dual basis (dxi, δyi) has the 1-forms δyi expressed by

δyi = dyi + N i
jdxj =

◦
δy

i − 1
2

∂F i

∂yj
dxj .

It follows that the curvature tensor Ri
jk of N (from (3.4)) is

Rk
ij =

δNk
i

δxj
− δNk

j

δxi
=

(
δ

δxj

∂

∂yi
− δ

δxi

∂

∂yj

)
(
◦

Gk −1
2
F k)

and the torsion tensor of N is:

tkij =
∂Nk

i

∂yj
− ∂Nk

j

∂yi
=

(
∂

∂yj

∂

∂yi
− ∂

∂yi

∂

∂yj

)
(
◦

Gk −1
2
F k) = 0.

These formulas have the following consequences.

1. The evolution nonlinear connection N of ΣR is integrable if and only if the
curvature tensor Ri

jk vanishes.

2. The nonlinear connection is torsion free, i.e. tkij = 0.

The autoparallel curves of the evolution nonlinear connection N are given by the
system of differential equations

d2xi

dt2
+ N i

j

(
x,

dx

dt

)
dxj

dt
= 0,

which is equivalent to

d2xi

dt2
+

◦
N i

j

(
x,

dx

dt

)
dxj

dt
=

1
2

∂F i

∂yj

dxj

dt
.

Under the initial conditions (x0, (dx
dt )0), locally this uniquely determines the autopar-

allel curves of N . If F i is 2-homogeneous with respect to yi, then the previous system
coincides with the Lagrange equations (5.3).

Therefore, we have:
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Theorem 8.2. If the external forces Fe are 2-homogeneous with respect

velocities yi =
dxi

dt
, then the evolution curves of ΣR coincide to the autoparallel

curves of the evolution nonlinear connection N of ΣR.

In order to proceed further, we need the exterior differential of 1-forms δyi.
One obtains (see [17, p. 29])

(8.3) d(δyi) = dN i
j ∧ dxj =

1
2
Ri

kjdxj ∧ dxk + Bi
kjδy

j ∧ dxk,

where Bi
kj = Bi

jk =
∂2Gi

∂yk∂yj
are the coefficients of the Berwald connection deter-

mined by the nonlinear connection N .

9 The canonical metrical connection CΓ(N)

The coefficients of the canonical metrical connection CΓ(N) =
(

F i
jk, Ci

jk

)
are

given by the generalized Christoffel symbols ([13]):




F i
jk =

1
2
gis

(
δgsk

δxj
+

δgjs

δxk
− δgjk

δxs

)
,

Ci
jk =

1
2
gis

(
∂gsk

∂yj
+

∂gjs

∂yk
− ∂gjk

∂ys

)
,

where gij(x) is the metric tensor of ΣR.

On the other hand, we have
δgjk

δxi
=

∂gjk

∂xi
and

∂gjk

∂yi
= 0, and therefore we obtain:

Theorem 9.1. The canonical metrical connection CΓ(N) of the mechanical system
ΣR has the coefficients

F i
jk(x, y) = γi

jk(x), Ci
jk(x, y) = 0.

Let ωi
j be the connection forms of CΓ(N):

ωi
j = F i

jkdxk + Ci
jkδyk = γi

jk(x)dxk.

Then, we have ([13]):

Theorem 9.2. The structure equation of CΓ(N) can be expressed by

(9.1)





d(dxi)− dxk ∧ ωi
k = − 1

Ω i,

d(δyi)− δyk ∧ ωi
k = − 2

Ω i,

dωi
j − ωk

j ∧ ωi
k = − Ω i

j ,
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where the 2-forms of torsion
1

Ω i,
2

Ω i are as follows
1

Ω i = Ci
jkdxj ∧ δyk = 0,

2

Ω i = Ri
jkdxj ∧ dxk + P i

jkdxj ∧ δyk.

Here Ri
jk is the curvature tensor of N and P i

jk = γi
jk − γi

kj = 0.

The curvature 2-form Ωi
j is given by

Ωi
j =

1
2
R i

j kh dxk ∧ dxh + P i
j kh dxk ∧ δyh +

1
2
S i

j kh δyk ∧ δyh,

where

R i
h jk =

δF i
hj

δxk
− δF i

hk

δxj
+ F s

hjF
i
sk − F s

hkF i
sj + Ci

hsR
s
jk =

=
∂γi

hj

∂xk
− ∂γi

hk

∂xj
+ γs

hjγ
i
sk − γs

hkγi
sj = r i

h jk

is the Riemannian tensor of curvature of the Levi-Civita connection γi
jk(x) and the

curvature tensors P i
j kh, S i

j kh vanish. Therefore, the tensors of torsion of CΓ(N) are

(9.2) Ri
jk, T i

jk = 0, Si
jk = 0, P i

jk = 0, Ci
jk = 0

and the curvature tensors of CΓ(N) are

(9.3) R i
j kh(x, y) = r i

j kh(x), P i
j kh(x, y) = 0, S i

j kh(x, y) = 0.

The Bianchi identities can be obtained directly from (9.1), taking into account the
conditions (9.2) and (9.3).

The h- and v-covariant derivatives of d-tensor fields with respect to
CΓ(N) = (γi

jk, 0) are expressed, for instance, by

∇ktij =
δtij
δxk

− γs
iktsj − γs

jktis, ∇̇ktij =
∂tij
∂yk

− Cs
iktsj − Cs

jktis =
∂tij
∂yk

.

Therefore, CΓ(N) being a metric connection with respect to gij(x), we have

∇k gij = ∇̇kgij = 0,

(
◦
∇ is the covariant derivative with respect to Levi-Civita connection of gij) and
∇̇k gij = 0.

The deflection tensors of CΓ(N) are Di
j = ∇jy

i =
δyi

δxj
+ ysγi

sj = −N i
j + ysγi

sj

and di
j = ∇̇j yi = δi

j .
The evolution nonlinear connection of a scleronomic Riemannian mechanical sys-

tem Σ given by (8.1) implies Di
j = − ◦

N
i

j + 1
2

∂F i

∂yj +ysγi
sj = 1

2
∂F i

∂yj , where we have used
◦
Dj yi =

◦
D

i

j= 0. It follows:

Proposition 9.3. For a scleronomic Riemannian mechanical system the deflection

tensors Di
j and di

j of the connection CΓ(N) are expressed by Di
j =

1
2

∂F i

∂yj
, di

j = δi
j .
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10 The electromagnetism in the theory of the scle-
ronomic Riemannian mechanical systems ΣR

In a scleronomic Riemannian mechanical system ΣR =
(

M, T, Fe

)
whose external

forces Fe depend on the point x and on the velocity yi =
dxi

dt
, the electromagnetic

phenomena appears because the deflection tensors Di
j and the deflection tensor di

j

are nonvanishing. Hence the d-tensors Dij = gihDh
j , dij = gihδh

j = gij determine the
h-electromagnetic tensor Fij and v-electromagnetic tensor fij by the formulas [15]:

Fij =
1
2
(Dij −Dji), fij =

1
2
(dij − dji).

From the formula of deflection tensors, we have

Proposition 10.1. The h- and v-tensor fields Fij and fij are given by

(10.1) Fij =
1
2
Pij , fij = 0.

where Pij is the helicoidal tensor (8.2) of ΣR.

Indeed, we have

Fij =
1
2
(Dij −Dji) =

1
4

(
∂F i

∂yj
− ∂F j

∂yi

)
=

1
2
Pij .

If we denote Rijk := gihRh
jk, then we can prove:

Theorem 10.2. The electromagnetic tensor Fij of the mechanical system ΣR =(
M, T, Fe

)
satisfies the following generalized Maxwell equations:

(10.2) ∇kFji +∇iFkj +∇jFik = −(Rkji + Rikj + Rjik),

(10.3) ∇̇kFji = 0.

Proof. Applying the Ricci identities to the Liouville vector field, we obtain

∇iD
k
j −∇jD

k
i = yhr k

h ij −Rk
ij , ∇id

k
j − ∇̇jD

k
i = 0

and this leads to

(10.4) ∇iDkj −∇jDki = yhrhkij −Rkij ,

(10.5) ∇̇jDki = 0.

By taking cyclic permutations of the indices i,k,j and adding in (10.4), using the
identity rhijk + rhjki + rhkij = 0 we deduce (10.2), and analogously (10.3). ¤
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From equations (10.1) and (10.5) we obtain as consequences:

Corollary 10.3. The electromagnetic tensor Fij of the mechanical system

ΣR = (M, T, Fe) does not depend on the velocities yi =
dxi

dt
.

Indeed, by means of (10.3) we have ∇̇jFik = ∂Fik

∂yj = 0. In other words, the helicoidal

tensor Pij of ΣR does not depend on the velocities yi =
dxi

dt
.

We end the present section with a remark. This theory has applications to the me-
chanical systems given by Example 1 in Section 6.

Remark. The theory of gravitation given by the gravitational potential gij(x),
(i, j = 1, .., n) can be studied in the same manner as in the book [16].

11 The almost Hermitian model of the SRMS ΣR
Let us consider a SRMS ΣR = (M, T (x, y), Fe(x, y)) endowed with the evolution

nonlinear connection with coefficients N i
j from (8.1) and with the canonical N -metrical

connection CΓ(N) = (γi
jk(x), 0). Thus, on the phase space T̃M = TM \ {0} we can

determine an almost Hermitian structure H2n = (T̃M, IG, IF) which depends on the
SRMS only.

Let ( δ
δxi ,

∂
∂yi ) be the adapted basis to the distributions N and V and its adapted

cobasis (dxi, δyi), where

δ

δxi
=

◦
δ

δxi
+

1
4

∂F s

∂yi

∂

∂ys
, δyi =

◦
δ yi − 1

4
∂F i

∂ys
dxs.

The lift of the fundamental tensor gij(x) of the Riemannian space Rn = (M, gij(x))
is defined by IG = gijdxi ⊗ dxj + gijδy

i ⊗ δyj , and the almost complex structure IF,

determined by the nonlinear connection N , is expressed by IF = − ∂

∂yi
⊗dxi+

δ

δxi
⊗δyi.

Thus, the following theorems hold good.

Theorem 11.1. We have:

1. The pair (T̃M, IG) is a pseudo-Riemannian space.

2. The tensor IG depends on ΣR only.

3. The distributions N and V are orthogonal with respect to IG.

Theorem 11.2. 1. The pair (T̃M, IF) is an almost complex space.

2. The almost complex structure IF depends on ΣR only.

3. IF is integrable on the manifold T̃M if and only if the d-tensor field Ri
jk(x, y)

vanishes.
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Theorem 11.3. We have

1. The triple H2n = (T̃M, IG, IF) is an almost Hermitian space.

2. The space H2n depends on ΣR only.

3. The almost symplectic structure of H2n is ω = gijδy
i ∧ dxj .

If the almost symplectic structure ω is a symplectic one (i.e. dω = 0), then the
space H2n is almost Kählerian. On the other hand, using the formula (8.3) one
obtains

dω =
1
3!

(Rijk + Rjki + Rkij)dxi ∧ dxj ∧ dxk +
1
2
(gisB

s
jk − gjsB

s
ik)δyk ∧ dxj ∧ dxi.

Therefore, we deduce

Theorem 11.4. The almost Hermitian space H2n is almost Kählerian if and only if
the following relations hold good Rijk + Rjki + Rkij = 0, gisB

s
jk − gjsB

s
ik = 0.

The space H2n = (T̃M, IG, IF) is called the almost Hermitian model of the SRMS ΣR.

One can use the almost Hermitian model H2n to study the geometrical theory of
the mechanical system ΣR. For instance the Einstein equations of the SRMS ΣR are
the Einstein equations of the pseudo-Riemannian space (T̃M, IG).
Remark. The previous theory can be applied without difficulties to the examples
1-8 in Section 6.
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