
Lie algebra generated by logarithm of

differentiation and logarithm

Akira Asada

Abstract. Let log
(

d
dx

)
be the generator of the1-parameter group

{ da

dxa |a ∈ R} of fractional order differentiations acting on the space of
operators of Mikusinski ([5]). The Lie algebra glog generated by log

(
d
dx

)
and log x is a deformation and can be regarded as the logarithm of Heisen-
berg Lie algebra. We show glog is isomorphic to the Lie algebra generated
by d

ds log(Γ(1 + s)) and d
ds . Hence as a module, glog is isomorphic to

the module generated by d
ds and polygamma functions. Structure of the

group generated by 1-parameter groups { da

dxa |a ∈ R} and {xa|a ∈ R}, is
also determined.
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1 Introduction

Schrödinger representation of Heisenberg Lie algebra is generated by d
dx and x. Re-

placing d
dx by F ( d

dx ),

F (X) =
∑

n

cnXn, F

(
d

dx

)
=

∑
n

cn
dn

dxn
,

we obtain a deformation of Heisenberg Lie algebra. This algebra is isomorphic to the
Lie algebra generated by d

dx and F (x). It is nilpotent if F (x) is a polynomial and
generalized nilpotent if F (x) is an infinite series..

An example of such deformation is the algebra generated by logarithm of differ-
entiation log

(
d
dx

)
and log x.

If we consider fractional order differentiation da

dxa acts on the space of Operators
of Mikusinski ([5]), we can define log

(
d
dx

)
by lima→0

d
da

da

dxa |a=0. Explicitly, we have

log
(

d

dx

)
f(x) = −

(
γf(x) +

∫ x

0

log(x− t)
df+

dt
dt

)
,
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where γ is the Euler constant and df+
dt = df

dt + f(0)δ, δ is the Dirac function ([4, §2
Prop.1.], [6]). By using logarithm of differentiation and the formula

(1.1)
da

dxa
xc =

Γ(1 + c)
Γ(1 + c− a)

xc−a,

where c and c− a are both not negative integers, we obtain the following arguments
on fractional calculus:

Let R be an integral transformation from functions on R to functions on positive
real axis defined by

(1.2) R[f(s)](x) =
∫ ∞

−∞
xs f(s)

Γ(1 + s)
ds.

Then we have

da

dxa
R[f(s)](x) = R[τaf(s)](x), τaf(s) = f(s + a),(1.3)

log
(

d

dx

)
R[f(s)](x) = R

[
df(s)
ds

]
(x)(1.4)

(§3, Theorem 3.1 and its Corollary). Our study on the structures of glog and the
group generated by exponential image of glog are based on these equalities.
By the variable change x = et, we have xs = ets. Hence we have

R[f(s)](x) = L
[

f(s)
Γ(1 + s)

]
(t), L[g(s)](t) =

∫ ∞

−∞
estg(s)ds.

Therefore we obtain

da

dxa

∣∣∣∣
x=et

L[f(s)](t) = L
[
τa

(
Γ(1 + s)

Γ(1 + s− a)
f(s)

)]
(t),(1.5)

log
(

d

dx

)∣∣∣∣
x=et

L[f(s)](t) = L
[(

d

ds
+

Γ′(1 + s)
Γ(1 + s)

)
f(s)

]
(t).(1.6)

By (1.6), glog is isomorphic to the Lie algebra generated by d
dt and Γ′(1+s)

Γ(1+s) (§4.Theorem
4.2). As a module, this algebra is generated by d

dt and ψ(m)(1 + s), m = 0, 1, 2, . . ..
Here ψ(m)(s) is the m-th polygamma function dm

dtm ψ(s), ψ(s) = ψ(0)(s) = Γ′(s)
Γ(s) ([1,

§6.4]).
Since ea log( d

dx ) = da

dxa and eat = xa, and eat acts as the translation operator τa

in the images of Laplace transformation, the group Glog generated by 1-parameter
groups { da

dxa |a ∈ R} and {xa|a ∈ R} is the crossed product Glog
∼= R n GΓ, where

GΓ is the group generated by {Γ(1+s+a)
Γ(1+s) |a ∈ R} by multiplication ([3, §5. Prop.2.]).

Definition of GΓ in [3] is different. But it gives same group).
Glog is the essential part of the group GΨ generated by exponential images of the

elements of glog. Precise structures of GΨ and generalization of this construction to
the Heisenberg Lie algebra generated by x1, . . . , xn and ∂

∂x1
, . . . , ∂

∂xn
are also studied

(§5.Theorem 5.1 and §6).
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In Appendix, we give an alternative proof of Theorem 3.1, which derives the
integral transformation R naturally.

Note. Results in §4 and §5 are improvements of our previous results given in [4] and
[3], while results in §3 and §6 are new.

2 Review on fractional calculus and logarithm of
differentiation

Let f(x) be a function on positive real axis, and let a > 0. Then a-th order indefinite
integral of f from the origin is given by the Riemann-Liouville integral

(2.1) Iaf(x) =
1

Γ(a)

∫ x

0

(x− t)a−1f(t)dt.

Hence we may define (n− a)-th order differentiation dn−a

dxn−a of f by dn

dxn Iaf (Riemann-
Liouville) or Ia(dnf

dxn ) (Caputo). They are different if we consider in the category of
functions. But if we use the space of operators of Mikusinski ([5]), they coincide
and { da

dxa |a ∈ R} { da

dxa |a ∈ R} becomes a 1-parameter group. As a price, we can
not investigate fractional order functions. The constant function 1 is replaced by the
Heaviside function Y . Its derivative is the Dirac function δ.

Proposition 2.1. The generating operator log
(

d
dx

)
= d

da
da

dxa |a=0 of the 1-parameter
group { da

dxa |a ∈ R} is given by

log
(

d

dx

)
= −

(
γf(x) +

∫ x

0

log(x− t)
df+

dt
dt

)
,(2.2)

= −(log x + γ)f(x)−
∫ x

0

log
(

1− t

x

)
df+

dt
dt.(2.3)

Here γ is the Euler constant and df+
dx means df

dx + f(0)δ ([4, 6]).

Note. If we assume f(0) = 0, or replace f(x) be f(x)− f(0), then we can avoid
the use of distribution (cf.[2]).

By definition, we have

(2.4) ea log( d
dx ) =

da

dxa
.

We also have

log
(

d

dx
+ g(x)

)
= G(x)−1 log

(
d

dx

)
·G(x), G(x) = e

∫ x
0 g(t)dt.

Because we have d
dx + g(x) = G(x)−1 d

dx · G(x), where G(x) is regarded as a linear
operator acting by multiplication.
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Example. By (2.2), we have

log
(

d

dx

)
xc = −

(
log x +

(
γ −

∞∑
n=1

c

n(n + c)

))
xc,

log
(

d

dx

)
xn = −

(
log x + γ −

(
1 +

1
2

+ · · ·+ 1
n

))
xn.

We also have

log
(

d

dx

)
(log x)n = −(log x + γ)(log x)n+

+
n−1∑

k=0

(−1)n−k−1n!ζ(n− k + 1)
k

! (log x)k.

Here ζ(k) is the value of Riemann’s ζ-function at k. Introducing an infinite order
differential operator dlog by

(2.5) dlog,X =
d

dt
log(Γ(1 + t))

∣∣∣∣
t= d

dX

=

(
−γ +

∞∑
n=1

(−1)n−1ζ(n + 1)
dn

dXn

)
,

we have log(d/dx)(log x)n = (−X + dlog,X)Xn|X=log x.

3 Hidden hierarchy of calculus involved in fractional
calculus

We introduce an integral transformation R by

(3.1) R[f(s)](x) =
∫ ∞

−∞
xs f(s)

Γ(1 + s)
ds, x > 0.

To define R[f ], f needs to satisfy some estimate. For example, if f(s) satisfies

(3.2) |f(s)| = O(eMs), s →∞, |f(s)| = O(e−|s|
α

), s → −∞, α > 1,

then R[f ] is defined. But appropriate domain and range of R are not known.

Note. In this paper, we consider R[f ](x) to be a function on positive real axis.But
it is better to consider R[f ](x) to be a (many valued) function on C× = C \ {0}.
Then R[f ](eit) is defined as a function on R. Here we need to consider R[f ](eit) and
R[f ](ei(t+2π)) take different values.. Then by Fourier inversion formula, we have the
following inversion formula

(3.3) f(s) =
Γ(1 + s)

2π

∫ ∞

−∞
e−itsR[f ](eit)dt.

This shows if R[f ](x) is a periodic function on the unit circle of C×, then f is not a
function, but a distribution. Studies in this direction will be a future problem.
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Theorem 3.1. If f is sufficiently mild, e, g, if f satisfies (3.1), then

(3.4)
da

dxa
R[f(s)](x) = R[τaf(s)](x).

Proof. If f is sufficiently mild, then

da

dxa
R[f(s)](x) =

∫ ∞

−∞

da

dxa
xs f(s)

Γ(1 + s)
ds =

∫ ∞

−∞
xs−a Γ(1 + s)

Γ(1 + s− a)
f(s)

Γ(1 + s)
ds,

whence the variable change t = s− a yields

da

dxa
R[f ](x) =

∫ ∞

−∞
xt f(t + a)

Γ(1 + t)
dt, = R[τaf ](x).

¤

Hence we have

Corollary 3.2. Under same assumption on f , we have

(3.5) log
(

d

dx

)
R[f(s)](x) = R

[
df(s)
ds

]
(x).

Proof. By (3.2), we infer

d

da

da

dxa
R[f(s)](x) = R

[
d

da
τaf(s)

]
(x).

Since d
daτaf(s)|a=0 = df(s)

ds , we obtain the claimed result. ¤

Note.
df(s)
ds

in (3.4) is taken in the sense of distribution.. For example, if f(s) is

continuous on s ≥ c, differentiable on s > c, and f(s) = 0, s < c, then

log
(

d

dx

)
R[f(s)](x) = R[f ′(s)](x) +

xc

Γ(1 + c)
f(c),

where f ′(s) means
df(s)
ds

, s > c.

Theorem 3.1 and its Corollary show the simplest 1-parameter group (or dynamical
system) {τa|a ∈ R} and its generating operator d

ds are changed to the 1-parameter
group of fractional order differentiations { da

dxa |a ∈ R} and its generating operator
log

(
d
dx

)
via the transformation R. Hence they suggest there may exist hierarchy of

calculus involved in fractional calculus.

For the convenience, we use L[f(s)](t) =
∫∞
−∞ estf(s)ds as the Laplace transfor-

mation in this paper. Since L is the bilateral Laplace transformation, we have

eatL[fx(s)](t) = L[τ−af(s)](t).
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By definitions, we have

R[f(s)](et) = L
[

f(s)
Γ(1 + s)

]
(t).

Since τa(fg) = (τaf)τag, we have

(3.6)
da

dxa

∣∣∣∣
x=et

L[f(s)](t) = L
[
τa

(
Γ(1 + s)

Γ(1 + s− a)
f(s)

)]
(t).

Similarly, we infer

(3.7) log
(

d

dx

)∣∣∣∣
x=et

L[f(s)](t) = L
[(

d

ds
+

Γ′(1 + s)
Γ(1 + s)

)
f(s)

]
(t).

Since d
dtL[f(s)](t) = L[sf(s)](t), we obtain

da

dxa

∣∣∣∣
x=et

= e−atda, da =
(

Γ(1 + X)
Γ(1 + X − a)

)
|X= d

dt
,

We also have

log
(

d

dx

)∣∣∣∣
x=et

= −t + dlog, dlog =
(

Γ′(1 + X)
Γ(1 + X)

)
|X= d

dt
,

which was already shown as (2.4).

4 Structure of glog

Let glog be the Lie algebra generated by log
(

d
dx

)
and log x. We take

Hlog =

{ ∞∑
n=0

cn(log x)n

∣∣∣∣∣
∞∑

n=0

|cn|2 < ∞
}

,

or similar space with the Sobolev type metric as the Hilbert space on which glog acts.
By the variable change x = et and Laplace transformation, multiplication by log x

is changed to d
ds and log

(
d
dx

)
is changed to d

ds + Γ′(1+s)
Γ(1+s) . Hence we have

Lemma 4.1. Let gΨ be the Lie algebra generated by d
ds and Ψ(0)(1+s); let Ψ(0)(s) =

d

ds
log(Γ(s)) =

Γ′(s)
Γ(s)

. Then gΨ is isomorphic to glog.

Note. Since we use variable change log x = t, we must regard gΨ acts on Hilbert
space spanned by polynomials. By the variable change log x = t, Hlog is unitary
equivalent to W 1/2[0, 1], the Sobolev 1

2 -space on [0,1]. Hence it is natural to consider
gΨ acts on W 1/2[0, 1]. But we do not use such argument in this paper.

Since [ d
ds , F (s)] = F ′(s), gΨ is generated by d

ds and dm

dsm Ψ(0)(1+s), m = 0, 1, . . . as
a module. dm

dsm Ψ(0)(s) is known as m-th polygamma function and denoted by Ψ(m)(s).



Lie algebra generated by logarithm of differentiation and logarithm 7

Therefore we can say gΨ is generated by d
ds and polygamma functions Ψ(m)(1 + s),

m = 0, 1, . . .. Since
[

d

ds
,Ψ(m)(s)

]
= Ψ(m+1)(s), [Ψ(m)(s),Ψ(n)(s)] = 0,

denoting I(m)
Ψ the subspace of gΨ spanned by Ψ(m)(s), Ψ(m+1)(s), . . ., I(m)

Ψ is an abelian
ideal of gΨ, m = 0, 1, . . .. By definition, we have

I(m)
Ψ ⊃ I(m+1)

Ψ ,

∞⋂
m=0

I(m)
Ψ = {0}.

We also have [
d

ds
, I(m)

Ψ

]
= I(m+1)

Ψ .

Hence we have
dim(I(m)

Ψ /I(m+1)
Ψ ) = 1.

Therefore we obtain
dim(gΨ/I(m)

Ψ ) = m + 1.

gΨ/I(1)Ψ is an abelian Lie algebra and the class of Ψ(1) in gΨ/I(2)Ψ is the basis of the
center. Hence gΨ/I(2)Ψ is isomorphic to Heisenberg Lie algebra.

Let ιΨlog : g|log
∼= gΨ be the isomorphism defined by

ιΨlog(log x) =
d

ds
, ιΨlog(log

(
d

dx

)
) =

d

ds
+ Ψ(0)(1 + s),

and let ιlogΨ = (ιΨlog)
−1. We set I(m)

log = ιlogΨ (I(m)
Ψ . Then we obtain

Theorem 4.2. glog has a descending chain of abelian ideals I(0)log ⊃ I(1)log ⊃ · · · such
that

(4.1)
[
log x, I(m)

log

]
= I(m+1)

log ,

∞⋂
m−0

I(m)
log = {0}.

We have dim(glog/I(m)
log ) = m + 1, m = 0, 1, . . .. glog/I(m)

log is abelian Lie algebras if
m = 0 and 1. If m = 2, it is isomorphic to Heisenberg Lie algebra.

glog can be regarded as a kind of logarithm of Heisenberg Lie algebra. log x is a
(deformed) creation operator if we consider glog acts on Hlog. But log

(
d
dx

)
is not a

(deformed) annihilation operator. To get (deformed) annihilation operator, we need
to replace log

(
d
dx

)
by dlog = log

(
d
dx

)
+ log x + γ. The Lie algebra gdlog generated by

log x and dlog is isomorphic to glog. glog and gdlog are different. But we have

glog ⊕ RId = gdlog ⊕ RId. RId = {xId|x ∈ R}.
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If we do not demand generators of Heisenberg Lie algebra to be creation and an-
nihilation operators, Heisenberg Lie algebra has generators such as d

dx + x, d
dx − x.

Since

log
(

d

dx
± x

)
= e∓

x2
2 · d

dx
· e± x2

2 ,

the Lie algebra generated by e−x2/2 · d
dx ·ex2/2 and ex2/2 · d

dx ·e−x2/2 is another candidate
of logarithm of Heisenberg Lie algebra. It is not yet known whether this algebra is
isomorphic to glog or not.

If ξ ∈ gΨ, then ξ is uniquely written as c0
d
ds +

∑
m≥0 cnΨ(m)(1 + s), and we have

[
a0

d

ds
+

∑
m

amΨ(m) , b0
d

ds
+

∑
m

bmΨ (m)

]
=

∑
m

(a0bm − amb0)Ψ(m+1).

Hence (semi) norm completions of gΨ (and glog) become Lie algebras. For example,
`2-completion gΨ,`2 of gΨ defined by

gΨ,`2 =

{
c0

d

ds
+

∞∑
m=0

cmΨ(m)

∣∣∣∣∣ |c0|2 +
∞∑

m=0

|cm|2 < ∞
}

,

is a Lie algebra having the structure of Hilbert space. Study in this direction is a
future problem.

5 Structure of the group generated by exponential
image of glog

Since ea d
x = da

dxa and ea log x = xa, first we study the group Glog generated by 1-
parameter groups { da

dxa |a ∈ R} and {xa|a ∈ R}.
By the variable change x = et and Laplace transformation, the operators xa acting

by multiplication, and da

dxa are changed to τa : τaf(s) = f(s + a) and τa

(
Γ(1+s)

Γ(1+s−a)

)
.

We set GΓ the group generated by { Γ(1+s)
Γ(1+s−a) |a ∈ R} by multiplication. a ∈ R acts

on GΓ by a · f = τa(f).

Proposition 1. We have

(5.1) Glog
∼= RnGΓ.

Since GΓ is an abelian group Glog is a solvable group of derived length 1. By the map

ιΣ(f(s)) = τ0f(s),

GΣ is embedded isomorphically in Glog. ιΣ(GΣ) is a normal subgroup of Glog and we
have

Glog/ιΣ(GΣ) ∼= R.

While there are no canonical isomorphic embedding of R in Glog.
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GΓ is an abelian group. But its structure seems complicated. For example, since

Γ(1 + s)
Γ(1 + s− b)

(
Γ(1 + s)

Γ(1 + s− a)

)−1

=
Γ(1 + s− a)
Γ(1 + s− b)

,

real coefficients rational function having only real roots and poles belong to GΓ. This
equality also shows definition of GΓ in this paper coincides our previous definition
of GΓ in [2], where GΓ is defined as the group generated by {Γ(1+s−a)

Γ(1+s−b) |a, b ∈ R} by
multiplication.
Note. In this paper, we work in real category. If we work in complex category, then
GΓ should be the group generated by Γ(1+s)

Γ(1+s−a) |a ∈ C by multiplication. In this case,
GΓ contains all non zero rational functions.

To study the group generated by exponential image of glog, it is convenient to
use gΨ instead of glog. We set GΨ(m) the group generated by eaΨ(m)

; a ∈ R by
multiplication and actions of τa, a ∈ R. By using GΨ(m) , we define an abelian group
GΨ∞ by

GΨ∞ =
∏

m≥0

GΨ(m) .

Then GΨ∞ is an abelian group. a ∈ R acts as the translation operator τa on GΨ∞ .
The group GΨ generated by exponential image of gΨ is written as follows:

(5.2) GΨ
∼= RnGΨ∞ .

By (5.1), we have

Theorem 5.1. The group generated by exponential image of glog is isomorphic to
GΨ. Hence it is a solvable group of derived length 1.

Similar to GΓ, we can regard GΨ∞ to be a normal subgroup of GΨ. It is an abelian
group, but seems to have complicated structure. Since it is an infinite product of
abelian groups, we must consider its topology. Then (together with the topology of
gΨ (or glog)), it may be possible to investigate gΨ as the Lie algebra of GΨ. This will
be a next problem.

6 Remarks on higher dimensional case

If we take x1, . . . , xn and ∂
∂x1

, . . . , ∂
∂xn

as generator of Heisenberg Lie algebra hn, the
Lie algebra generated by log x1, . . . , log xn and

log( ∂
∂x1

), . . . , log( ∂
∂xn

) is isomorphic to
n︷ ︸︸ ︷

glog ⊗ · · · ⊗ glog. But if the matrix (aij) is
regular,∑

j a1jxj , . . . ,
∑

j an,jxj and
∑

j a1,j
∂

∂xj
, . . . ,

∑
j an,j

∂
∂xj

are alternative generators of
hn. They are also alternative creation and annihilation operators. In this case, we
need to compute log(

∑
j aij

∂
∂xj

). Computation of this kind of operators are done as
follows. We take ∂

∂x + ∂
∂y as the example. We rewrite

∂

∂x
+

∂

∂y
= e−x ∂

∂y

(
∂

∂x

)
ex ∂

∂y .
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Since

ex ∂
∂y f(x, y) =

∞∑
n=0

xn

n!
∂n

∂yn
f(x, y) = f(x, y + x),

if f is sufficiently regular, we infer ex ∂
∂y = τy;x and τy;af(x, y) = f(x, y + a).

Hence we have

(6.1) log
(

∂

∂x
+

∂

∂y

)
= τy;−x log

(
∂

∂y

)
· τy;x.

Similarly, we obtain

(6.2)
(

∂

∂x
+

∂

∂y

)a

= τy;−x
∂a

∂xa
· τy;x.

If a = 1, we have τy;−x
∂
∂x · τy;x = ∂

∂x + ∂
∂y . Because we have

∂

∂x
f(x, y + x) =

(
∂

∂x
f(x, Y ) +

∂

∂Y
f(x, Y )

)∣∣∣∣
Y =x+y

.

By the repeating use of this equality, we obtain

(6.3) τy;−x
∂n

∂xn
· τy;x =

n∑

k=0

n!

k!(n− k)!

∂n

∂xk∂yn−k
=

(
∂

∂x
+

∂

∂y

)n

.

Otherwise, it seems τy;−x
∂a

∂xa ·τy;x and τy;−x log( ∂
∂x )·τy;x have no simpler expressions.

Since ∂
∂x and ∂

∂y commute, rewriting

(
∂

∂x
+

∂

∂y

)a

=
∂a

∂xa

(
1 +

(
∂

∂x

)−1
∂

∂y

)a

,

and use Taylor expansion, we obtain another expression of ( ∂
∂x + ∂

∂y )a. Similar
expression of log( ∂

∂x + ∂
∂y ) is also possible. But these expressions seem much more

complicated than (5.2) and (6.1).

Appendix. Alternative proof of Theorem 3.1

In this Appendix, we sketch an alternative proof of Theorem 3.1. In this proof, the
integral transformation R appears naturally.
First we note that, since

Γ(1 + X)
Γ(1 + X − a)

∣∣∣∣
X= d

dt

ect =
Γ(1 + c)

Γ(1 + c− a)
ect,

we have (xa da

dxa |x=et)ect = Γ(1+X)
Γ(1+X−a) |X= d

dt
ect by (1.1). Therefore, if f(x) is a power

series converges rapidly, or f(x) =
∫

xsg(s)ds, x = et, then

(6.4)
(

xa da

dxa
f(x)

)∣∣∣∣
x=et

=
Γ(1 + X)

Γ(1 + X − a)

∣∣∣∣
X= d

dt

f(et).
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Since d
da (xa da

dxa )|a=0 = log x + log
(

d
dx

)
and

d

da

(
Γ(1 + X)

Γ(1 + X − a)

)∣∣∣∣
a=0

=
Γ′(1 + X)
Γ(1 + X)

,

we obtain
(

log x + log
(

d

dx

))
f(x)

∣∣∣∣
x=et

=
Γ′(1 + X)
Γ(1 + X)

∣∣∣∣
X= d

dt

f(et),

which recovers (2.4). Hence we obtain alternative proof of formulae of da and dlog

given in §3. Therefore by using Laplace transformation L[f(s)](t) =
∫∞
−∞ estf(s)ds,

we obtain (3.5) and (3.6).
Since τa

(
Γ(1+s)

Γ(1+s−a)f(s)
)

= 1
Γ(1+s)τa(Γ(1 + s)f(s)), we obtain

da

dxa

∣∣∣∣
x=et

L
[

f(s)
Γ(1 + s)

]
(t) = L

[
τaf(s)

Γ(1 + s)

]
(t).

Hence we have Theorem 3.1 by the variable change x = et.
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