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Abstract. The aim of the paper is to prove that T kM , the tangent
space of order k ≥ 1 of a manifold M , is diffeomorphic with T 1

k M , the
tangent space of k1–velocities, and also with

(
T 1

k

)∗
M , the cotangent space

of k1–covelocities, via suitable Lagrangians. One prove also that a
hyperregular Lagrangian of first order on M can give rise to such
diffeomorphisms.
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1 Introduction

Let M be a smooth manifold (all the objects considered in the paper are supposed
to be of class C∞). For every k ∈ N one can associate with M the differentiable
manifolds T kM , T k∗M , T 1

k M and
(
T 1

k

)∗
M , in a functorial manner.

First, T kM is the tangent space of order k, T 0M = M , T 1M = TM (see
[4, 7]). Then T kM can be considered as a locally trivial bundle T kM

πj→ T jM
for every j = 0, k − 1. The dual counterpart of T kM , as considered in [8, 12], is
T k∗M = T k−1M ×M T ∗M , the cotangent space of order k, where ×M denotes the
fibered products of bundles over the base M . For a Lagrangian of order k on M ,
L : T kM → R, the dual counterpart definition proposed in [12] is the affine Hamil-
tonian h : T kM† → T k∗M ; h is a section of the affine one-dimensional affine bundle
T kM† Π→ T k∗M , where T k†M → T k−1M is the affine dual of the affine bundle
T kM

πk−1→ T k−1M . Hyperregular Lagrangians and affine Hamiltonians are naturally
related by Legendre transformations.

The manifold T 1
k M comes from the Whitney sum T 1

k M = TM ⊕ · · · ⊕ TM
(k times); since T 1

k M can be identified with the manifold J1
0 (Rk,M) of the

k1-velocities of M , it is called the tangent space of k1-velocities of M (see [5, 9]).
The dual

(
T 1

k

)∗
M = T ∗M ⊕ · · · ⊕T ∗M (k times) is the space of k1-covelocities of M

(see also [5, 9]).
A class of Lagrangians of order k, called co-reducible Lagrangians of order k,

gives rise to a diffeomorphism of T kM and
(
T 1

k

)∗
M (Theorem 1). A co-reducible
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Lagrangian induces a Hamiltonian H̃ on
(
T 1

k

)∗
M . If H̃ is hyperregular one say that

L is co-hyperreducible.
An example is given by the lift of a hyperregular Lagrangian of first order L to a

Lagrangian L̃ of order k, constructed in Proposition 4, that is co-hyperreducible. The
Lagrangian L gives rise also to a diffeomorphism of T kM and T 1

k M (Proposition 2).
We use local coordinates as in [7], but in spite of their local forms, the main objects

are global ones.

2 The main results and constructions

A semispray of order k is a section S : T kM → T k+1M of the affine bundle
πk : T k+1M → T kM . Since T k+1M ⊂ TT kM (in fact T k+1M is an affine
subbundle of the tangent bundle of TT kM), then S can be regarded as well as a
vector field on T kM . The local form of S is

(xi, y(1)i, . . . , y(k)i) S→ (xi, y(1)i, . . . , y(k)i, Si(xi, y(1)i, . . . , y(k)i));

viewed as a vector field,

S = y(1)i ∂

∂xi
+ 2y(2)i ∂

∂y(1)i
+ · · ·+ ky(k)i ∂

∂y(k−1)i
+ (k + 1)Si ∂

∂y(k)i
.

Let us denote by T k−1,1M = T k−1M ×M TM ; more general, if 0 ≤ r ≤ k, then
T r,k−rM = T rM ×M T 1

k−rM , where T 0M = M = T 1
0 M .

Proposition 1. If S : T k−1M → T kM is a semispray of order k − 1, then there
is a diffeomorphism Φ : T kM → T k−1,1M ; more general, if 0 ≤ r ≤ k − 1 and
S(α) : Tα−1M → TαM , α = r + 1, k are semisprays (of order α − 1), then there
is a diffeomorphism Φ(r) : T kM → T r,k−rM . In the particular case r = 1, if
S(α) : Tα−1M → TαM , α = 2, k are semisprays, then there is a diffeomorphism
Φ(1) : T kM → T 1,k−1 = T 1

k M .

Proof. If S : T k−1M → T kM is a semispray having the local form

(xi, y(1)i, . . . , y(k−1)i) S→ (xi, y(1)i, . . . , y(k−1)i, S(k)i(xi, y(1)i, . . . , y(k−1)i)),

then the diffeomorphism Φ : T kM → T k−1,1M is given by

(xi, y(1)i, . . . , y(k)i) Φ→ (xi, y(1)i, . . . , y(k−1)i, y(k)i − S(k)i).

For 0 ≤ r ≤ k, then Φ(r) : T kM → T r,k−rM is given by

(xi, y(1)i, . . . , y(k)i) Φ(r)

→ (xi, y(1)i, . . . , y(r)i, y(r+1)i − S(r+1)i(xi, y(1)i, . . . , y(r)i), . . . ,

y(k)i − S(k)i(xi, y(1)i, . . . , y(k−1)i)).

In the particular case r = 1, the diffeomorphism Φ(1) : T kM → T 1
k M is given by (xi,

y(1)i, . . . , y(k)i) Φ(1)

→ (xi, y(1)i, y(2)i − S(2)i(xi, y(1)i), . . . , y(k)i − S(k)i). ¤
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We say that a diffeomorphism Φ : T kM → T 1
k M is a semi-spray type diffeomor-

phism if it has the form Φ = Φ(1) as above.
There is a semispray of order k ≥ 1 canonically associated with a k-order

Lagrangian L (see, for example, [7, 2]), given by a section S : T kM → T k+1M

that in local coordinates has the form (xi, y(1)j , . . . , y(k)j) S→ (xi, y(1)j , . . . , y(k)j ,
Si(xi, y(1)j , . . . , y(k)j)), where

(k + 1)Si =
1
2
gij

(
d
(k)
T

(
∂L

∂y(k)j

)
− ∂L

∂y(k−1)j

)

and
d
(k)
T = y(1)i ∂

∂xi
+ 2y(2)i ∂

∂y(1)i
+ · · ·+ (k + 1)y(k)i ∂

∂y(k−1)i

is the Tulczyjew local operator (it is not a global vector field, but called a vector
pseudofield in [12]).

Proposition 2. Let L : TM → R be a hyperregular Lagrangian (of first order). Then
there is a semi-spray type diffeomorphism Φ : T kM → T 1

k M canonically associated
with L.

Proof. Let us consider a regular Lagrangian of first order L : TM → R and its
canonical semispray S : TM → T 2M .

Using local coordinates, (xi, yi = y(1)i) → (xi, y(1)i, 2Si(xj , y(1)j)), where

Si(xj , y(1)j)) =
1
4
gij

(
y(1)p ∂2L

∂xp∂y(1)j
− ∂L

∂xj

)
=

1
4
gij

(
d
(1)
T

(
∂L

∂y(1)j

)
− ∂L

∂xj

)
.

Denoting by z(2)i = y(2)i − Si(xj , y(1)j), we have z(2)i′ =
∂xi′

∂xi
z(2)i.

It follows that the association (xi, y(1)i, y(2)i) → (xi, y(1)i, z(2)i) defines a global
diffeomorphism T 2M → TM ×M TM = T 1

2 M of T 2M with the tangent space of
21-velocities on M .

The above construction can be given for any higher order k ≥ 1. Finally one can
consider the k-Lagrangian L(k) : T kM → R having the local form

(2.1) L(k)(xi, y(1)i, y(2)i, . . . , y(k)i) = L(xi, y(1)i) + L(xi, z(2)i) + · · ·+ L(xi, z(k)i).

So, one construct inductively a semi-spray type diffeomorphism T kM → T 1
k M =

TM ×M · · · ×M TM (k times) of T kM with the tangent space of k1-velocities on M ,
k ≥ 1. Notice that this diffeomorphism has the local form

(xi, y(1)i, . . . , y(k)i) → (xi, y(1)i, z(2)i, . . . , z(k)i),

where z(α)i = y(α)i − S(α)i(xj , y(1)j , . . . , y(α−1)i), α = 2, k. ¤
Notice that in particular the Lagrangian L can be a Finslerian if it is 2–homogeneous,

or it is possible that L comes from a Riemannian metric if it is quadratic in velocities.
If ε1, . . . , εk are real numbers, εi 6= 0, i = 1, k, one can consider also a k-Lagrangian

L(k) : T kM → R having the local form

L(k)(xi, y(1)i, y(2)i, . . . , y(k)i) = ε1L(xi, y(1)i) + ε2L(xi, z(2)i) + · · ·+ εkL(xi, z(k)i);
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using the coordinates (xi, y(1)i, z(2)i, . . . , z(k)i) on T kM , it is easy to see that L(k) a
Lagrangian in the multisymplectic sense (see [4, 7]). More general, one can prove the
following result.

Proposition 3. Let {Lα}α=1,k, Lα : TM → R be hyperregular Lagrangians of order
k ∈ N∗. Then there is a semi-spray type diffeomorphism Φ : T kM → T 1

k M canonically
associated with {Lα}α=1,k.

Proof. The diffeomorphism Φ can be given using Proposition 1; one can construct
inductively the Lagrangians {L(α)}α=1,k by formula

L(α)(xi, y(1)i, y(2)i, . . . , y(α)i) = L1(xi, y(1)i) + L2(xi, z(2)i) + · · ·+ Lα(xi, z(α)i),

where z(α)i are constructed successively as in Proposition 2, using (2). ¤
According to [12], an affine Hamiltonian of order k on M is a differentiable map

h : T̃ k∗M → T̃ kM†, such that Π ◦ h = 1
T̃ k∗M

, where Π : T̃ kM† → T̃ k∗M . Thus h

has the local form

h(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, y(1)i, . . . , y(k−1)i, pi,−H0(xi, y(1)i, . . . , y(k−1)i, pi)).

The local functions H0 change according to the rules

H ′
0(x

i′ , y(1)i′ , . . . , y(k−1)i′ , pi′) = H0(xi, y(1)i, . . . , y(k−1)i, pi)+
1
k

Γ(k−1)
U (y(k−1)i′)

∂xi

∂xi′ pi.

It is easy to see that one has ∂H′
0

∂pi′
= ∂xi′

∂xi
∂H0
∂pi

+ 1
kΓ(k−1)

U (y(k−1)i′). Thus there is a map
H : T k∗M → T kM , given in local coordinates by

H(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, y(1)i, . . . , y(k−1)i,
∂H0

∂pi
(xi, y(1)i, . . . , y(k−1)i, pi)),

called the co-Legendre map of the affine Hamiltonian h. We say also that h is reg-
ular if H is a local diffeomorphism and h is hiperregular if H is a global diffeomor-
phism. Since ∂2H′

0
∂pi′∂pj′

= ∂xi′

∂xi
∂xj′

∂xj
∂2H0

∂pi∂pj
, it follows that hij = ∂2H0

∂pi∂pj
is a symmetric

2-contravariant d-tensor, which is non-degenerate iff h is regular. There exists a real
function H : T k∗M → R defined by the formula

H(xi, y(1)i, . . . , y(k−1)i, pi) = pi
∂H0

∂pi
−H0.

We call H the pseudo-energy of h.
Let L : T kM → R be a hyperregular k-Lagrangian. The Legendre map

L : T kM → T k∗M is a diffeomorphism and there is an affine Hamiltonian h
defined using L, as follows. Let

(xi, y(1)i, . . . , y(k−1)i, pi) → (xi, y(1)i, . . . , y(k−1)i,Hi(xi, y(1)i, . . . , y(k−1)i, pi))

be the local form of the inverse of L. Then the local function H0 on T k∗M , defined
by the formula

H0(xi, y(1)i, . . . , y(k−1)i, pi) = pjH
j − L(xi, y(1)i, . . . , y(k−1)i,Hi)
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gives a global affine Hamiltonian of order k on M . Let us consider the real function
on T k∗M : H̃

(k)
0 = ∂H0

∂pj
pj −H0.

We denote L = L(k) and we define L(k−1) : T k∗M → T (k−1)∗M ×M T ∗M using
the formula

L(k−1)(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, y(1)i, . . . , y(k−2)i,
∂H̃

(k)
0

∂y(k−1)i
, pi).

We denote pi = p(k)i and H0 = H
(k)
0 . We suppose that L(k−1) is a diffemor-

phism, then L−1
(k−1) has the local form (xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i)

L−1
(k−1)→

(xi, y(1)i, . . . , y(k−2)i, Hi(xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i), p(k)i). We consider
H

(k−1)
0 (xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i) = p(k−1)jH

i− H̃
(k)
0 (xi, y(1)i, . . . , y(k−2)i,Hi,

p(k)i), where Hi = Hi(xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i). Consider the real function

on T (k−1)∗M ×M T ∗M given by H̃
(k−2)
0 = ∂H

(k−1)
0

∂p(k−1)j
p(k−1)j −H

(k−1)
0 .

Following the above idea, we give a procedure that descends the degree of the
higher order Hamiltonians.

Inductively, let us suppose that the diffeomorphisms L(k),. . ., L(k−q) have been
constructed for 1 < q < k − 1. We have that

L(k−q) : T k−qM ×M (T ∗M)q → T (k−q)∗M ×M (T ∗M)q = T (k−q−1)M ×M (T ∗M)q+1,

where (T ∗M)q = T ∗M⊕· · ·⊕T ∗M , (q times) is a diffemorphism, given by the formula

L(k−q)(xi, y(1)i, . . . , y(k−q)i, p(k−q+1)i, . . . , p(k)i) = (xi, y(1)i, . . . , y(k−q−1)i,

∂H̃
(q)
0

∂y(k−q)i (xi, y(1)i, . . . , y(k−q)i, p(k−q+1)i, . . . , p(k)i), p(k−q+1)i, . . . , p(k)i).

Let L−1
(k−q) having the local form

(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i)
L−1

(k−q)→ (xi, y(1)i, . . . , y(k−q−1)i,

Hi(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i), p(k−q+1)i, . . . , p(k)i).

We consider

H
(k−q−1)
0 (xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i)

= p(k−q)jH
j(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i)

−H̃
(k−q+1)
0 (xi, y(1)i, . . . , y(k−q−1)i,Hi, p(k−q+1)i, . . . , p(k)i).

If k− q− 1 > 1, we consider the real function on T (k−q−1)∗M ×M (T ∗M)q+1 given by

H̃
(k−q−1)
0 = ∂H

(k−q−1)
0

∂p(k−q−1)j
p(k−q−1)j− H

(k−q−1)
0 and we define L(k−q−1) : T k−q−1M ×M

(T ∗M)q+1 → T (k−q−1)∗M ×M (T ∗M)q+1 = T (k−q−2)M ×M (T ∗M)q+2 using the
formula L(k−q−1)(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i) = (xi, y(1)i, . . . , y(k−q−2)i,
∂H̃

(k−q−1)
0

∂y(k−q−1)i (xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i), p(k−q)i, . . . , p(k)i). We suppose
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that L(k−q−1) is a diffeomorphism. If k − q − 1 = 1, we skip H̃
(1)
0 and we define

directly

L(1) : TM ×M (T ∗M)k−1 → T ∗M ×M (T ∗M)k−1 = (T ∗M)k

by the formula

L(1)(xi, y(1)i, p(2)i, . . . , p(k)i) = (xi,
∂H

(1)
0

∂y(1)i
(xi, y(1)i, p(2)i, . . . , p(k)i), p(2)i, . . . , p(k)i).

We suppose also that L(1) is a diffeomorphism and its inverse has the local form
L(1)(p(1)i, . . . , p(k)i) = (Hi(p(1)i, . . . , p(k)i), p(2)i, . . . , p(k)i). We define the multi-
Hamiltonian H̃(0) : (T ∗M)k → R using the formula

H̃(0)(p(1)i, . . . , p(k)i) = p(1)iH
i(p(1)i, . . . , p(k)i)−H

(1)
0 (Hi, p(2)i, . . . , p(k)i).

If we suppose that all the applications L(k), . . . ,L1 are diffeomorphisms, we say that
the Lagrangian L of order k is co-reducible. Let us denote Ψ = L(1) ◦ · · · ◦ L(k). The
above construction can be synthesized in the following main result.

Theorem 1. If the Lagrangian L of order k ≥ 1 is co-reducible, then there is a
diffeomorphism T kM

Ψ→ (
T 1

k

)∗
M = TM∗ ×M · · · ×M TM∗ (k times) such that

L = H̃(0) ◦Ψ.

We prove below that the lift (2.1) gives rise to a completely regular Lagrangian of
order k.

Proposition 4. Let L : TM → R be a hyperregular Lagrangian and L(k) : T kM → R
be the Lagrangian given by (2.1). Then L(k) is a co-reducible Lagrangian of order k.

Proof. The inverse of the Legendre map is given by

H(k)i(xi, y(1)i, . . . , y(k−1)i, pi) = Si(xi, y(1)i, . . . , y(k−1)i) + Hi(xj , pj),

i.e.,
∂L(k)

∂y(k)i
(xj , y(1)j , . . . , y(k−1)j ,H(k)j(xj , y(1)j , . . . , y(k−1)j , pj) = pi.

One has

H
(k)
0 (xi, y(1)i, . . . , y(k−1)i, pi)

= pi(Hi(xj , pj) + Si)− L(k)(xi, y(1)i, . . . , y(k−1)i,Hi + Si)

= pi(Hi(xj , pj) + Si)− L(xi, y(1)i)(xi,Hi)− · · · − L(xi, z(k−1)i)− L(xi,Hi),

and thus

∂H
(k)
0

∂pi
= Hi + Si + pj

∂Hj

∂pi
− ∂L

∂yj
(xi,Hi)

∂Hj

∂pi
= Hi + Si.

One also has

H
(k−1)
0 (xi, y(1)i, . . . , y(k−1)i, p(k)i) =

∂H
(k)
0

∂pi
pi − H̄

(k)
0

= L(xi, y(1)i) + L(xi, z(2)i) + · · ·+ L(xi, z(k−1)i) + L(xi,Hi(xj , p(k)j)).

Then H̃
(1)
0 (xi, p(1)i, . . . , p(k)i) = L(xi,Hi(xj , p(1)j)) + · · ·+ L(xi,Hi(xj , p(k)j)). ¤
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Notice that all the above constructions and properties can be adapted to the case
when the differentiable Lagrangian L : T kM → R is replaced by a differentiable
Lagrangian L : T̃ kM → R, where T̃ kM = T kM\{0} is T kM without the image of
the ,,null” section y(α)i = 0, α = 0, k.
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