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Abstract. We establish a multitime maximum principle for a multiple
integral functional constrained by nonhomogeneous linear PDEs. Apply-
ing this result to the linear-quadratic electromagnetic regulator problem
based on electromagnetic energy (multiple integral functional), the elec-
tric field as control and Maxwell PDE as constraints, we rediscover the
Stokes representations of the electric field and of the magnetic field.
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Introduction

The optimization problems where the objective is a multiple integral functional and
the constraints are PDEs model many natural phenomenons. That is the reason why
diverse optimal control problem, with PDE constraints, appear in aerodynamics [13],
finance [2], medicine [6], environmental engineering [7], etc. Generally, the complexity
and infinite dimensional nature of optimal control problems with PDE constraints
stimulated the scientific researchers in the last time [1]-[21].

Several conferences and work-shops all around the world with the main topic mul-
tivariable optimization constrained by PDEs took place in Europe, America, Asia, etc.
Recent scientific papers[13]-[21], proved that the Pontryaguin single-time maximum
principle has as correspondent a multitime maximum principle.

Section 1 formulates and proves multitime maximum principle for a multiple inte-
gral functional and nonhomogeneous linear PDE constraints, similar to the multitime
maximum principle for a multiple cost integral functional constrained by an m-flow
PDE [13]-[21].

Section 2 presents Maxwell PDE as closeness conditions of the electromagnetic
2-form and as extremals of a multiple functional, the Lagrangian function being the
modified electromagnetic energy (see also, [15],[5]).

In Section 3 and 4, we consider the multitime optimal control problem of electro-
magnetic energy, with electric field as control vector and magnetic field as state vector,
subject to Maxwell simplified PDE, respectively Maxwell PDE. Using the maximum
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principle proved in Section 1, the optimal conditions give the Stokes representations
of the electric and the magnetic field.

Section 5 analyzes the optimal control of electromagnetic energy through the elec-
tric field subject to a PDE relating the partial derivatives of the electric field E and
of the magnetic field H.

1 Multitime maximum principle for a multiple integral func-
tional and nonhomogenenous linear PDE constraints

Let us consider the following multitime optimal control problem with a cost functional
described by a multiple integral and linear PDE constraints:

(1.1) max
u(·)

I(u(·)) =
∫

Ωt0,tf

X(t, x(t), u(t))dt,

with the constraints

(1.2)

arα
i

∂xi

∂tα
(t) + brα

a

∂ua

∂tα
(t) = F r(t),

u(t) ∈ U(t), ∀t ∈ Ωt0,tf
, x(t0) = x0, x(tf ) = xf ,

i = 1, n, a = 1, q, r = 1, N, α = 1,m

where t = (tα)α=1,m ∈ Rm is the multitime variable, dt = dt1dt2 . . . dtm is the
volume element, Ωt0,tf

is the parallelipiped fixed by the opposite diagonal points t0 =
(t10, t

2
0, . . . , t

m
0 ) and tf = (t1f , t2f , . . . , tmf ), (arα

i )i,r,α and (brα
a )a,r,α are real constants

matrices, (F r(t))r=1,N are C1 functions with respect to the multitime variable t,
x(t) = (xi(t))i=1,n is an C2 state vector, u(t) = (ua(t))a=1,q is a C1 control vector
and the scalar function X(t, x(t), u(t)) represents the current cost.

We apply the theory from [13]-[21] for the new Lagrangian

L(t, x(t), u(t), p(t)) = X(t, x(t), u(t)) + pr(t)
(

arα
i

∂xi

∂tα
(t) + brα

a

∂ua

∂tα
(t)− F r(t)

)
,

where p(t) = (pr(t))r=1,N is C1 co-state vector (Lagrange multipliers).
Thus, the initial multitime optimal control problem is transformed into a new

optimal control problem

max
u(·)

∫

Ωt0,tf

L(t, x(t), u(t), p(t))dt,

u(t) ∈ U(t), p(t) ∈ P (t), ∀t ∈ Ωt0,tf
, x(t0) = x0, x(tf ) = xf ,

where the set of suitable co-state variables P (t) will be defined later.
Let us consider there exists an interior optimal C1 control vector u∗(t) ∈ Int(U(t)).

Because u∗(t) is continuous on a compact set, for any arbitrary continuous vector
function h(t), it exists θh > 0 so that u(t, θ) = u∗(t) + θh(t) ∈ Int (u(t)), ∀|θ| < θh.
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On the domain |θ| < θh, we define the integral function

I(θ) =
∫

Ωt0,tf

L(t, x(t, θ), u(t, θ), p(t))dt,

where x(t, θ) is the state variable corresponding to the variation u(t, θ) of the control
function.

We suppose that the integral function I(θ) admits a maximum point θ = 0. Using
the total derivative, the integral function I(θ) takes the form

I(θ) =
∫

Ωt0,tf

(
X(t, x(t, θ), u(t, θ))− arα

i

∂pr

∂tα
(t)xi(t, θ)−

− brα
a

∂pr

∂tα
(t)ua(t, θ) + prF

r(t)
)

dt+

+
∫

Ωt0,tf

∂

∂tα
(
arα

i pr(t)xi(t, θ) + brα
a pr(t)ua(t, θ)

)
dt.

Integral divergence formula applied to the integral

∫

Ωt0,tf

∂

∂tα
(
arα

i pr(t)xi(t, θ) + brα
a pr(t)ua(t, θ)

)
dt,

allows a new form of integral function I(θ),

I(θ) =
∫

Ωt0,tf

(
X(t, x(t, θ), u(t, θ))− arα

i

∂pr

∂tα
(t)xi(t, θ)−

− brα
a

∂pr

∂tα
(t)ua(t, θ) + prF

r(t)
)

dt+

+
∫

∂Ωt0,tf

δα,β

(
arα

i pr(t)xi(t, θ) + brα
a pr(t)ua(t, θ)

)
nβ(t)dt,

where n(t) = (nα(t))α=1,m is the normal unit vector of the boundary ∂Ωt0,tf
.

Deriving with respect to the variable θ, it follows

I ′(θ) =
∫

Ωt0,tf

[
∂X

∂xi
(t, x(t, θ), u(t, θ))

∂xi

∂θ
(t, θ) +

+
∂X

∂ua
(t, x(t, θ), u(t, θ))ha(t)−

− arα
i

∂pr

∂tα
(t)

∂xi

∂θ
(t, θ)− brα

a

∂pr

∂tα
(t)ha(t)

]
dt+

+
∫

∂Ωt0,tf

δαβ

(
arα

i pr(t)
∂xi

∂θ
(t, θ) + brα

a pr(t)ha(t)
)

nβ(t)dσ.
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Consequently,

I ′(0) =
∫

Ωt0,tf

[
∂X

∂xi
(t, x(t, 0), u(t, 0))

∂xi

∂θ
(t, 0) +

+
∂X

∂ua
(t, x(t, 0), u(t, 0))ha(t)−

− arα
i

∂pr

∂tα
(t, 0)

∂xi

∂θ
(t, 0)− brα

a

∂pr

∂tα
(t)ha(t)

]
dt+

+
∫

∂Ωt0,tf

δαβ

(
arα

i pr(t)
∂xi

∂θ
(t, 0) + brα

a pr(t)ha(t)
)

nβ(t)dσ,

or

I ′(0) =
∫

Ωt0,tf

[
∂

∂xi
X(t, x(t, 0), u(t, 0))− arα

i

∂pr

∂tα
(t)

]
∂xi

∂θ
(t, 0)dt+

+
∫

Ωt0,tf

[
∂

∂ua
X(t, x(t, 0), u(t, 0))− brα

a

∂pr

∂tα
(t)

]
ha(t)dt+

+
∫

∂Ωt0,tf

δαβ

(
arα

i pr(t)
∂xi

∂θ
(t, 0)

)
nβ(t)dσ+

+
∫

∂Ωt0,tf

δαβ (brα
a pr(t)ha(t))nβ(t)dσ.

The condition I ′(0) = 0 is necessary to be accomplished for any arbitrary vector

function h(t). To eliminate the functions
∂xi

∂θ
(t, 0) that depend on h(t) we define the

set of admissible co-states P (t) as the set of solutions for the boundary value problem

(1.3)
∂X

∂xi
(t, x∗(t), u∗(t))− arα

i

∂pr

∂tα
(t) = 0, ∀t ∈ Ωt0,tf

, i = 1, n, (adjoint PDEs)

(1.4) δαβbrα
a pr(t)nβ(t)|∂Ωt0,tf

= 0, (orthogonality condition), i = 1, n.

It follows that

(1.5)
∂X

∂ua
(t, x∗(t), u∗(t))− brα

a

∂pr

∂tα
(t) = 0, ∀t ∈ Ωt0,tf

, a = 1, q,

(critical point or adjoint PDE)

(1.6) δαβbrα
a pr(t)nβ(t)|∂Ωt0,tf

= 0, (orthogonality condition), a = 1, q.

We are able now to formulate the multitime maximum principle.

Theorem 1. If the multitime optimal control problem (1.1), with nonhomogeneous
linear PDE (1.2) constraints, admits an interior optimal control u∗(t) and x∗(t) is the
corresponding state variable, then there exists a C1 co-state p(t) so that the relations
(1.2),(1.3),(1.4),(1.5),(1.6) to be true.
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2 Maxwell PDEs as closeness conditions and as Euler-Lagrange
PDEs

Here we recall that two of the Maxwell PDEs represent the closeness conditions of the
electromagnetic 2-form and the other are Euler-Lagrange PDEs. Let E be the electric
field strength, H be the magnetic field strength, J be the electric current density, ρ be
the density of charge, B be the magnetic induction, D be the electric displacement, ε
be the permitivity (electric constant) and µ be the permeability (magnetic constant).

In a linear homogeneous isotropic media, Maxwell PDE reflects the relations be-
tween magnetic field component and electric field component of the electromagnetic
field, and are described by

(2.1) div D = ρ, (Gauss law for electric field),

(2.2) div B = 0, (Gauss law for magnetic field),

(2.3) curl H = J + ∂tD, (Ampere law with Maxwell correction),

(2.4) curl E = −∂tB, (Faraday induction law),

with the constitutive equations B = µH, D = εE. The Maxwell PDE system (2.1)-
(2.4) contains six dependent variables, namely, the components of the electric field
E = (E1, E2, E3) and the magnetic field H = (H1,H2,H3) and eight PDEs, i.e.,
it is over determined. This system cannot have a Lagrangian since the number of
Euler-Lagrangian PDEs must be equal to the number of dependent variables [21].

The electromagnetic energy is the quadratic form

(2.5) H =
1
2
(µ||H||2 + ε||E||2).

The electromagnetic field is generated by a real 1-form Φ = AIdxI , xI = (xi, t)i=1,3,
where A = (Ai)i=1,3 represents the magnetic potential co-vector. The field strength
of Φ is defined as F = dΦ = FIJdxI ∧ dxJ . The electric field E and the magnetic
field B can be extracted from the field strength writting

F =

(
3∑

i=1

δijE
idxj

)
∧ dt + Bc(dx1 ∧ dx2 ∧ dx3),

where c is the inner product with the vector field B = Bi ∂

∂xi
.

The closeness of the electromagnetic field 2-form F is equivalent to two of Maxwell
equations

curl E = −∂tB, div B = 0.

Because B = curl A, it exists a scalar vector V so that the electric field strength
is E = −grad V − ∂tA. Considering the constitutive equations, it follows that H =
1
µ

curl (A). The electromagnetic energy (2.5) takes the form

H =
1
2

(
1
µ
||curl A||2 + ε||(grad V + ∂tA)||2

)
.
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Let Ω be a domain in R4 and the modified electromagnetic energy functional

I(A, V ) =
∫

Ω

(H−AJ + ρV ) dx1dx2dx3dt,

where (x1, x2, x3, t) ∈ Ω.
The Euler-Lagrange PDEs produced by the Lagragian function

L

(
A, V,

∂Aj

∂xi
,
∂Aj

∂t
,
∂V

∂xi

)
=

1
2

(
1
µ
||curl A||2 + ε||(grad V + ∂tA)||2

)
−AJ + ρV,

are

(2.6)
∂L

∂Aj
−

3∑

i=1

∂

∂xi




∂L

∂

(
∂Aj

∂xi

)


− ∂

∂t




∂L

∂

(
∂Aj

∂t

)


 = 0, j = 1, 3,

(2.7)
∂L

∂V
−

3∑

i=1

∂

∂xi




∂L

∂

(
∂V

∂xi

)


 = 0.

The PDEs (2.6) is equivalent to Ampere law with Maxwell correction, curl H =
J + ∂tD, and PDE (2.7) gives Gauss law for electric field, div D = ρ.

3 Stokes representation for the solutions of simplified Maxwell
PDE

We consider that the electromagnetic field does not depend on the time variable,
obtaining in this way a simplified form for Maxwell PDE

(3.1) div E(x) =
1
ε
ρ(x), div H(x) = 0, curl (H(x)) = J(x), curl (E(x)) = 0,

where x = (xi)i=1,3.

Theorem 2. The solutions of Maxwell simplified PDE (3.1) admit the Stokes
representation

(3.2) E(x) =
1
ε
(curl q(x)− grad β(x)), (adjoint PDEs)

(3.3) H(x) =
1
µ

(curl p(x)− grad α(x)), (adjoint PDEs)

with the boundary conditions

(3.4) q(x)× n(x) + β(x)n(x)|∂Ωx0,xf
= 0,
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(3.5) p(x)× n(x) + α(x)n(x)|∂Ωx0,xf
= 0,

where q(x), p(x), β(x) are Stokes potentials, Ωx0,xf
is the parallelipiped fixed by two

diagonal points x0, xf and n(x) is the unit normal vector of the boundary ∂Ωx0,xf
.

Proof. We apply the result of Section 1, i.e., we look for optimal control problem

(3.6) max
E(·)

I(E(·) = −1
2

∫

Ωx0,xf

(
µ||H(x)||2 + ε||E(x)||2) dx1dx2dx3,

subject to Maxwell simplified PDE

div E(x) =
1
ε
ρ(x), div H(x) = 0, curl (H(x)) = J(x), curl (E(x)) = 0,

H(x0) = H0, H(xf ) = Hf ,

where H(x) = (Hi(x))i=1,3 is the magnetic state vector and E(x) = (Ei(x))i=1,3 is
the C1 electric control vector.

Let p(x) = (pi(x))i=1,3 ∈ P (x), q(x) = (qi(x))i=1,3 ∈ Q(x), α(x) ∈ R(x) and
β(x) ∈ S(x) be C1 functions, considered as co-state variables (Lagrange multipliers),
and the Lagrange function

L1(x,H(x), E(x), p(x), q(x), α(x), β(x)) = −1
2

(
ε||E(x)||2 + µ||H(x)||2) +

+〈p(x), curl (H(x))− J(x)〉+ 〈q(x), curl (E(x))〉+

+α(x)div H(x) + β(x)
(

div E(x)− 1
ε
ρ(x)

)
.

Necessary conditions for the optimal multitime problem (3.6), with simplified Maxwell
PDE (3.1) as constraints, are obtained from Theorem 1.

Relations (1.3),(1.4),(1.5),(1.6) are equivalent with Stokes representations for sim-
plified Maxwell PDE solution

E(x) =
1
ε
(curl q(x)− grad β(x)), q(x)× n(x) + β(x)n(x)|∂Ωx0,xf

= 0,

H(x) =
1
µ

(curl p(x)− grad α(x)), p(x)× n(x) + α(x)n(x)|∂Ωx0,xf
= 0.

4 Extended Stokes representation for the solutions of Maxwell
PDE

Let us consider the general case of Maxwell PDE (2.1),(2.2),(2.3),(2.4).

Theorem 3. The solutions of Maxwell PDE admit the extended Stokes represen-
tation

(4.1) E(x, t) =
1
ε

(
curl q(x, t)− grad α(x, t) + ε

∂p

∂t

)
, (adjoint PDEs)
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(4.2) H(x, t) =
1
µ

(
curl p(x, t)− grad β(x, t)− µ

∂q

∂t

)
, (adjoint PDEs)

with boundary conditions

(4.3) β(x, t)N(x, t) + p(x, t)×N(x, t) + µq(x, t)n4(x, t)|∂Ω(x0,t0),(xf ,tf ) = 0,

(4.4) α(x, t)N(x, t) + q(x, t)×N(x, t)− εp(x, t)n4(x, t)|∂Ω(x0,t0),(xf ,tf ) = 0,

where p(x, t), q(x, t), α(x, t), β(x, t) are Stokes potentials, n(x, t) = (ni(x, t))i=1,4 is
the unit normal vector of the boundary ∂Ω(x0,t0),(xf ,tf ) and N(x, t) = (ni(x, t))i=1,3.

Proof. We apply the results proved in Section 1, i.e., we refer to the multitime
maximum control problem

(4.5) max
E(·,·)

I(E(·, ·)) =
−1
2

∫

Ω(x0,t0),(xf ,tf )

(
µ||H(x, t)||2 + ε||E(x, t)||2) dx1dx2dx3dt,

subject to Maxwell PDE

div (E(x, t)) =
1
ε
ρ(x, t), curl (E(x, t)) = −µ

∂H

∂t
(x, t),

div (H(x, t)) = 0, curl (H(x, t)) = J(x, t) + ε
∂E

∂t
(x, t),

E(x, t) ∈ U(x, t), ∀(x, t) ∈ Ω(x0,t0),(xf ,tf ), H(x0, t0) = H0, H(xf , tf ) = Hf .

Considering the C1 co-state variables p(x, t) = (pi(x, t))i=1,3 ∈ P (x, t), α(x, t) ∈
R(x, t), q(x, t) = (qi(x, t))i=1,3 ∈ Q(x, t), β(x, t) ∈ S(x, t) (Lagrangian multipliers)
and the Lagrange function

L2(x, t,H(x, t), E(x, t), p(x, t), q(x, t), α(x, t), β(x, t)) =

= −1
2
(ε||E(x, t)||2 + µ||H(x, t)||2)+

+〈p(x), curl
(

H(x, t)− J(x, t)− ε
∂E

∂t
(x, t)

)
〉+

+〈q(x, t), curl
(

E(x, t) + µ
∂H

∂t
(x, t)

)
〉+

+α(x, t)div H(x, t) + β(x, t)
(

div E(x, t)− 1
ε
ρ(x, t)

)
,

the optimal control problem (4.5), with Maxwell PDE as constraints, is transformed
into a new multitime optimal problem

max
E(·,·)

∫

Ω(x0,t0),(xf ,tf )

L2((x, t),H(x, t), E(x, t), p(x, t), q(x, t), α(x, t), β(x, t))·

·dx1dx2dx3dt,
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p(x, t) ∈ P (x, t), q(x, t) ∈ Q(x, t), α(x, t) ∈ R(x, t), β(x, t) ∈ S(x, t),

E(x, t) ∈ U(x, t), ∀(x, t) ∈ Ω(x0,t0),(xf ,tf ), H(x0, t0) = H0, H(xf , tf ) = Hf .

Optimality conditions given by Theorem 1 are the extended Stokes representations
for the solutions of Maxwell PDEs

E(x, t) =
1
ε

(
curl q(x, t)− grad α(x, t) + ε

∂p

∂t

)
, (dual PDEs)

H(x, t) =
1
µ

(
curl p(x, t)− grad β(x, t)− µ

∂p

∂t

)
,

β(x, t)N(x, t) + p(x, t)×N(x, t) + µq(x, t)n4(x, t)|∂Ω(x0,t0),(xf ,tf ) = 0,

α(x, t)N(x, t) + q(x, t)×N(x, t)− εp(x, t)n4(x, t)|∂Ω(x0,t0),(xf ,tf ) = 0.

5 Multitime optimal control of electromagnetic energy
subject to a PDE relating the partial derivatives of
electric field E and magnetic field H

We consider the multitime optimal control problem

(5.1) max
E(·,·)

I(E(·, ·)) =
−1
2

∫

Ω(x0,t0),(xf ,tf )

(µ||H(x, t)||2 + ε||E(x, t)||2)dx1dx2dx3dt,

with linear PDE constraint (inspired from Maxwell PDEs)

(5.2) Ai
j

∂Hj

∂xi
+ aj

∂Hj

∂t
+ Bi

j

∂Ej

∂xi
+ bj

∂Ej

∂t
= 0,

E(x, t) ∈ U(x, t), ∀(x, t) ∈ Ω(x0,t0),(xf ,tf ), H(x0, t0) = H0, H(xf , tf ) = Hf ,

i, j = 1, 3, where x = (xi)i=1,3, the magnetic field H(x, t) = (Hj(x, t))j=1,3 is the state
vector, the electric field E(x, t) = (Ej(x, t))j=1,3 is the control vector, (Ai

j)i,j=1,3,
(Bi

j)i,j=1,3, (aj)j=1,3, (bj)j=1,3 are real matrices.

Theorem 4. If the optimal control problem (5.1) with constraints (5.2) admits
an interior optimal electric control, then the adjoint PDEs are

−µHj(x, t)−Ai
j

∂p

∂xi
(x, t)− aj

∂p

∂t
= 0, j = 1, 3,

with boundary conditions

p(x, t)
(
δikAi

jn
k(x, t) + ajn

4(x, t)
) |∂Ω(x0,t0),(xf ,tf ) = 0, j = 1, 3

and optimality conditions

−εEj(x, t)−Bi
j

∂p

∂xi
(x, t)− bj

∂p

∂t
= 0, j = 1, 3,
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together with boundary conditions

p(x, t)
(
δikBi

jn
k(x, t) + bjn

4(x, t)
) |∂Ω(x0,t0),(xf ,tf ) = 0, j = 1, 3

where n(x, t) = (ni(x, t))i=1,4 is the unit normal vector of the boundary ∂Ω(x0,t0),(xf ,tf )

and p(x, t) is a C1 co-state variable.

Proof. The proof is a consequence of theorem 1, section 1, where the current cost is
−1
2

(
µ||H(x, t)||2 + ε||E(x, t)||2) and nonhomogeneous linear PDE (1.2) are replaced

with linear PDE (5.2). ¤
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