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1 Introduction

If M is a boundaryless smooth manifold and f : Mn −→ R is a smooth function, then
the critical set of f , denoted by C(f) in this note, is obviously closed since C(f) is
the preimage of zero through the continuous function M −→ R, x 7−→ ||(∇f)(x)||2,
where the norm is considered with respect to some arbitrary Riemannian metric on
M . Given a closed subset C of M , the inverse problem of deciding whether C is the
critical set of some smooth map f : M −→ R has been intensively studied over the
last decades, especially when M is either the two or the three dimensional Euclidean
space. In higher dimension the closedness necessary condition for criticality is far
from being sufficient, although for subsets of R it is also sufficient, as we will see in
the next section. Indeed, a circle in R2 is not the critical set of any smooth function
f : R2 −→ R, while the Antoine’s necklace is, according to Grayson and Pugh [2],
the critical set of a function f : R3 −→ R which is even proper. Recall that the
Antoine’s necklace is a wild Cantor set in R3. Consequently it is worthwhile to call
critical a closed subset of Mn which is the critical set of some smooth real valued
function on Mn. One can also consider the criticality problem for some subclasses of
C∞(Mn,R), some examples of closed sets which are not CS∞-critical are presented
in [4], [5] and [6]. On the other hand, we will call properly critical a closed subset
of Mn which is the critical set of some proper real valued function on Mn. Recall
that a function f : Mn −→ R is said to be proper if f−1(K) is compact for every
compact subset K of R and observe that a function f : Rn −→ R is proper if and
only if |f(x)| −→ ∞ as ||x|| −→ ∞. While the criticality and proper criticality are
obviously equivalent if M is compact, this nontrivial equivalence is proved in [3] for
compact subsets of R2, where a characterization of the (properly) critical compact

∗Balkan Journal of Geometry and Its Applications, Vol.15, No.1, 2010, pp. 120-130.
c© Balkan Society of Geometers, Geometry Balkan Press 2010.



Some properly critical subsets of Euclidean spaces 121

subsets of R2 is also provided. We also mention [10] for some (non)critical subsets of
certain compact surfaces.

As mentioned above, the closed subsets of R are all critical, but not all of them are
properly critical. In this paper we first provide a characterization of properly critical
subsets of the real line and use it to produce some properly critical subsets of higher
dimensional Euclidean spaces. We particularly get the proper criticality of Cn ⊆ Rn,
where C ⊆ [0, 1] is the middle third Cantor set.

We end this section by proving the closedness of the union of some closed subsets
in a metric space, which are away from each other in the sense specified by Definition
1.1. This type of sets appears several times in this paper, while their property is only
used twice and we could not find an explicit reference for it.

Definition 1.1. We say that the subsets {Ai}i∈I of a metric space (X, d) are away
from each other if there exists a constant c > 0 such that d(Ai, Aj) ≥ c for all
i, j ∈ I, i 6= j, where d(A,B), A,B ⊆ X, stands for inf{d(a, b) | a ∈ A, b ∈ B}. Such
a family of sets are obviously pairwise disjoint.

Lemma 1.2. 1. If {Ai}i∈I is a family of closed subsets of a metric space (X, d)
which are away from each other, then the following equality holds

⋃

i∈I

Ai =
⋃

i∈I

Āi.

2. If {Ci}i∈I is a family of closed subsets of a metric space (X, d) which are away
from each other, then their union

⋃

i∈I

Ci is also closed.

Proof. (1) We only need to show the inclusion
⋃

i∈I

Ai ⊆
⋃

i∈I

Āi, since the opposite

inclusion is obvious. In this respect we consider an element

a ∈
⋃

i∈I

Ai and a sequence (an) in
⋃

i∈I

Ai

such that an −→ a as n −→ ∞. If the terms of the sequence (an) are contained
in some set Ai0 , i0 ∈ I, for infinitely many indices n ≥ 1, then the sequence (an)
has a subsequence in that Ai0 . This shows that a, which is equally the limit of
that subsequence, is actually contained in Āi0 . Assume now that each Ai, i ∈ I
contains terms of the sequence (an) for only finitely many indices n ≥ 1. In this
case the sequence (an) has a subsequence, denoted in the same way, such that am

and ak, m 6= k are in contained in different sets Ar and As respectively. This shows
that d(am, ak) ≥ c for m 6= k, which makes the convergence of the sequence (an)
impossible, since convergent sequences are Cauchy sequences, namely their terms are
arbitrarily close to each other for sufficiently large indices.

(2) Combining the closedness of the sets {Ci}i∈I with (1) one gets:
⋃

i∈I

Ci =
⋃

i∈I

C̄i =
⋃

i∈I

Ci,

which shows that the union
⋃

i∈I

Ci is, indeed, closed. ¤
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Remark 1.3. A family {Ai}i∈I of subsets of the real line are away from each other
if and only if there exists a constant c > 0 such that for i 6= j, either Ai ≥ Aj + c or
Aj ≥ Ai + c, were the inequality A ≥ B, for two subsets A,B of R, is understood in
the sense that a ≥ b for all a ∈ A and all b ∈ B. Equivalently, inf(Ai) ≥ sup(Aj) + c
or inf(Aj) ≥ sup(Ai) + c.

2 Smooth functions on R with prescribed zero sets

As we have already mentioned few times before, the closedness necessary condition
for criticality of subsets in R is also sufficient, namely, each closed subset of R is the
critical set of a smooth function F : R −→ R. Indeed, a given closed subset C of R is
the critical set of the antiderivative

F : R −→ R, F (x) :=
∫ x

0

f(t)dt,

of a positive function f : R −→ R whose set of zeros is precisely C. The existence
of f is ensured by the well known Whitney theorem [7, Théorème 1, p. 17]. For
more details on the above mentioned construction we refere to [9] and the references
therein. Let us recall that the Whitney’s construction of f relies on the structure
representation theorem of open subsets in Euclidean spaces, as countable unions of
open balls. In the case of the real line, the representation of open sets as unions of
countably many open intervals satisfies an additional condition which we will exploit
in this section. Indeed, these intervals might be chosen to be pairwise disjoint.

Observe that, for a, b ∈ R, a < b, the smooth function

fa,b : R −→ R, fa,b(x) =
g(b− t)

g(b− t) + g(t− a)
,

where

g : R −→ R, g(t) =
{

e−
1
t if t > 0

0 if t ≤ 0
,

has the following properties:

1. 0 ≤ fa,b ≤ 1;

2. fa,b

∣∣
(−∞,a]

= 1;

3. fa,b

∣∣
[b,∞)

= 0.

Moreover, the bump function Fx,r : R −→ R, Fx,r(t) = fr,2r(|t−x|), has the following
properties:

1. 0 ≤ Fx,r ≤ 1; Equivalently
2. Fx,r

∣∣
(x−r,x+r)

= 1;
3. Fx,r

∣∣
(x−2r,x+2r)c = 0.

1. 0 ≤ mFx,r ≤ m;
2. mFx,r

∣∣
(x−r,x+r)

= m;
3. mFx,r

∣∣
(x−2r,x+2r)c = 0

, (∀)m > 0.

Theorem 2.1. Every open subset D of the real line can be represented as a countable
union of pairwise disjoint open intervals called the components of D.
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If I ⊆ R is an open interval, we consider the function FI : R −→ R defined by
FI = FxI ,l(I)/2 if I is bounded, where l(I) is the length of I and xI is its midpoint,
and FI = fsI−1,sI

, where sI = sup(I), if I is unbounded below but bounded above.
Finally, if I unbounded above but bounded below, then FI := F−I ◦ A, where A :
R −→ R, A(x) = −x. If D ⊆ R is an open subset with components (In), we next
define the functions

FD, GD : R −→ R by FD :=
∑

n

1
2ncn

FIn
and GD =

∑
n

m(In)FIn

respectively, where m(In) is chosen in such a way that

m(In) ≥ 1∫

Īn

FIn
(t)dt

, namely
∫

Īn

GD(t)dt ≥ 1

and cn = max
{
1, sup(FIn

), sup(FIn
), . . . , sup(F (n)

In
)
}
. If D has infinitely many com-

ponnets, the representations

∑
n

1
2ncn

FIn and
∑

n

m(In)FIn

for FD and GD respectively, relies on the basic fact that, for series with positive terms
their order plays no role. Finally, the values FD(x) and GD(x) are well defined, for
every x ∈ R, because at most one of the functions FIn does not vanish at x.

Lemma 2.2. Let D ⊆ R be an open subset with components (In).

1. FD is a smooth function.

2. If the components of D are away form each other, then and GD is smooth.

Proof. (1) Indeed, if k ≥ 1, then for n ≥ k one gets

( 1
2ncn

FIn

)(k)

=
1

2ncn
F

(k)
In

≤ 1
2n

.

This shows, by using the classical theory of series with differentiable terms, that FD

is indeed smooth.
(2) If the components of D are away from each other and I is such a component,

then obviously GD|(iI− c
2 ,sI+ c

2 ) = GI |(iI− c
2 ,sI+ c

2 ), where, as usual, iI := inf(I) and
sI := sup(I). This shows that GD is smooth on the union

⋃
n

(
iIn −

c

2
, sIn +

c

2

)
, since GI |(

iIn− c
2 ,sIn+ c

2

) is smooth on
(
iIn −

c

2
, sIn +

c

2

)
.

Therefore GD is smooth on a neighborhood of D̄, since, according to Lemma 1.2, the

equality D̄ =
⋃
n

In =
⋃
n

Īn holds. On R\D̄ ⊆ R\D, GD is obviously smooth because

GD|R\D = 0. ¤
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Remark 2.3.

1. The function FD, besides its smoothness, has the properties that FD ≥ 0 and
F−1

D (0) = R \D.

2. Although the function GD may not be continuous, yet GD ≥ 0 and G−1
D (0) =

R \D.

3 The properly critical subsets of the real line

If K ⊆ R is a properly critical closed set, then its complement Kc = R \ K is
unbounded both below and above. In order to justify this statement, consider a
differentiable function f : R −→ R such that C(f) = K. The boundedness below
of Kc shows that the interval (−∞, iKc), where iKc = inf(Kc), is contained in K,
namely f ′(x) = 0 for all x ∈ (−∞, iKc). Consequently f is constant on (−∞, iKc) and
(−∞, iKc) ⊆ f−1(y), where y is the value of f taken all along the interval (−∞, iKc),
which shows that f is not proper. One can similarly show that f is not proper under
the assumption Kc bounded above.

In this section we show that the above mentioned necessary condition for proper
criticality of closed subsets of the real line is also sufficient.

Theorem 3.1. A closed subset K of R is properly critical if and only if its complement
Kc = R \K is unbounded both below and above.

Proof. We only have to show that every closed subset of R, say K, whose comple-
ment is unbounded both below and above is properly critical. Since K is closed, its
complement Kc is open. From this point we divide the proof in two cases:

Case I. K is bounded. The required function is then

fK : R −→ R, fK(x) =
∫ x

0

FKc(t)dt.

Indeed, fK is differentiable since FKc is continuous, and f ′K = FKc , which shows that

C(fK) = (f ′K)−1(0) = (FKc)−1(0) = (Kc)c = K.

In order to prove the properness of fK we show that lim
x→±∞

fK(x) = ±∞. In this

respect we observe that the intervals (−∞, iK) and (sK ,+∞) are the unbounded
components of Kc, where iK = inf(K) and sK = sup(K). Thus, the value of fK at
some x ∈ (−∞, iK − 1) is

fK(x) =
∫ x

0

FKc(t)dt =
∫ iK−1

0

FKc(t)dt +
∫ x

iK−1

FKc(t)dt

=
∫ iK−1

0

FKc(t)dt +
∫ x

iK−1

dt = x− iK + 1 +
∫ iK−1

0

FKc(t)dt.
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This shows that lim
x→−∞

fK(x) = −∞. Similarly, for x ∈ (sK + 1, +∞) one has

fK(x) = x− sK − 1 +
∫ sK+1

0

FKc(t)dt

and implicitly lim
x→+∞

fK(x) = +∞. For a slightly different proof of Case I we refer to

[9].
Case II. K is unbounded. In this case Kc has infinitely many components since

both K and its complement Kc are unbounded. This case is divided in three subcases:
1. K is bounded below but unbounded above. In this situation the complement Kc

has a sequence of bounded components (In)n≥0 such that In+1 > In + 1 ≥ 1 for all
n ≥ 1 whose union

⋃

n≥1

In we denote by I. Thus, the components (In) are away from

each other, which shows, according to Lemma 2.2(2), that GI is smooth. We also
denote by J the union of the rest of components of Kc, namely those who are not
terms of the sequence (In)n≥1. For example, the unbounded component (−∞, iK) of
Kc, where iK = inf(K), is contained in J as well as in R \ I. A proper function
whose critical set is precisely K, in this situation, is

fK : R −→ R, fK(x) =
∫ x

0

(
FJ (t) + GI(t)

)
dt,

which is smooth since FJ (t) and GI are smooth. Further on, we have successively:

x ∈ (FJ + GI)−1(0) ⇐⇒ FJ (x) + GI(x) = 0
⇐⇒ FJ (x) = GI(x) = 0
⇐⇒ x ∈ (

FJ
)−1(0) and x ∈ (

GI
)−1(0)

⇐⇒ x ∈ R \ J and x ∈ R \ I
⇐⇒ x ∈ (

R \ J ) ∩ (
R \ I)

⇐⇒ x ∈ R \ (I ∪ J ) = K,

which shows that K = (FJ + GI)−1(0) = (f ′K)−1(0).

For the properness of fK we first observe that fK(x) = x−iK +1+
∫ iK−1

0

FJ (t)dt,

for all x ∈ (−∞, iK − 1), since FJ |(−∞,iK−1) = 1 and GI |(−∞,iK−1) = 0. This shows
that lim

x→−∞
fK(x) = −∞. In order to prove that

lim
x→+∞

fK(x) = +∞

it is enough to show that lim
n→∞

fK(sIn) = ∞, taking into account that f ′K = FJ +
GI ≥ 0, that is fK is increasing. This is actually the case because sIn is increasing,
sIn −→∞ as n −→∞ and

fK(sIn) =
∫ sIn

0

(
FJ (t) + GI(t)

)
dt ≥

∫

Ī1∪···∪Īn

(
FJ (t) + GI(t)

)
dt

=
∫

Ī1∪···∪Īn

GI(t)dt =
∫

Ī1

GI(t)dt + · · ·+
∫

Īn

GI(t)dt

≥ 1 + · · ·+ 1 = n.
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2. K is bounded above but unbounded below. The required function, in this sit-
uation, is f−K ◦ A, where f−K is the function constructed in the previous subcase,
which corresponds to the bounded below but unbounded above closed set −K.

3. K is unbounded both below and above. In this situation we may find a sequence
(In)n∈Z such that In−1 < In − 1 and In < 0 for all n < 0 while In+1 > In + 1 and
In > 0 for all n ≥ 0. Thus, the components of I =

⋃

n∈Z
In are away from each other,

i.e. GI is, according to Lemma 2.2, smooth.
A proper function whose critical set is precisely K, in this situation, is

fK : R −→ R, fK(x) =
∫ x

0

(
FJ (t) + GI(t)

)
dt,

where J is the union of those components who are not terms of the sequence (In)n∈Z.
The proof of the equality K = (f ′K)−1(0) can be done in the same way as it was
done in the first subcase. In order to prove the properness of fK we just prove that
lim

x→±∞
fK(x) = ±∞. In this respect we first observe that f ′K = FJ + GI ≥ 0, that is

fK is increasing and, just as above, fK(sIn) ≥ n for all n ≥ 1. On the other hand,
for n < 0 one gets successively

fK(iIn) =
∫ iIn

0

(
FJ (t) + GI(t)

)
dt ≤ −

∫

Ī−1∪···∪Īn

(
FJ (t) + GI(t)

)
dt

= −
∫

Ī−1∪···∪Īn

GI(t)dt = −
∫

Ī−1

GI(t)dt− · · · −
∫

Īn

GI(t)dt

≤ −1− · · · − 1 = n.

The inequalities fK(iIn) ≤ n for all n ≤ −1, combined with the increasing property of
fK and the fact that m < n < 0 =⇒ iIm < iIn as well as iIn −→ −∞ as n −→ −∞,
show that lim

x→−∞
fK(x) = −∞. ¤

Remark 3.2. 1. A closed subset K of the real line can be realized as the critical
set of a smooth, positive and proper function. Indeed, K is the critical set of
the function

fK : R −→ R, fK(t) =





∣∣∣∣
∫ x

x0

FKc(t)dt

∣∣∣∣ if K is bounded

∣∣∣∣
∫ x

x0

(FJ (t) + GI(t)) dt

∣∣∣∣ if K is unbounded,

which is obviously positive and proper. It is also smooth whenever x0 belongs
to K, as (FKc)(r) (x0) = (FJ + GI)

(r) (x0) = 0, for all r ≥ 0.

2. The function f : R −→ R associated to some closed subset of R, which comes
by means of Whitney’s theorem, as well as the functions FKc , FJ are bounded
while the function GI might be unbounded. By choosing m (In) such that
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m(In)2
∫

Īn

(FIn(t))2 dt ≥ 1, one can see that the function

gK : R −→ R, gK(x) =





∫ x

0

(FKc(t))2 dt if K is bounded

∫ x

0

(FJ (t) + GI(t))
2
dt if K is unbounded

is proper and C(gK) = K. Observe that gK(x) =
∫ x

0

(f ′K(t))2 dt.

4 Properly critical subsets of higher dimensional
Euclidean spaces

The concept of critical point can be extended to vector valued functions. Indeed, if
F : Rn → Rm is a smooth function, then p ∈ Rn is said to be a critical point of F if
rankpF < min{n,m}, where rankpF := rank(JF )p = dim(Im(dF )p) and (JF )p is
the Jacobian matrix of F . The set C(F ) of critical points of F is still closed, while
the set of its regular points R(F ) := Rn \ C(F ) is open.

Remark 4.1. 1. The critical set of a real-valued function g : Rn −→ R is the
same with the critical set of the vector-valued function G : Rn −→ Rn given by

G(x1, . . . , xn) :=
(
h(x1, . . . , xn), x2, . . . , xn

)
,

where
h(x1, . . . , xn) :=

∫ x1

0

||(∇g)(t, x2, . . . , x =n)||2dt.

Indeed, det(JG)x = ||(∇g)(x)||2, which vanishes if and only if x ∈ C(g). In
other words C(G) =

(||(∇g)||2)−1 (0) = C(g).

2. The role of the real valued function Rn −→ R, x 7−→ ||(∇g)(x)||2, in part (1),
might be played by every real valued function. Indeed, every fiber ϕ−1(c) of
a given smooth function ϕ : Rn −→ R is the critical set of the smooth vector
valued function Φc : Rn −→ Rn given by

Φc(x1, . . . , xn) =
(
− cx1 +

∫ x1

0

ϕ(t, x2, . . . , xn) = dt, x2, . . . , xn

)
,

i.e. C(Φc) = ϕ−1(c).

3. Every closed subset K of Rn is the critical set of a smooth vector-valued map
Φ : Rn −→ Rn. Indeed, according to Whitney’s theorem, there exists a smooth
function ϕ : Rn −→ R such that K = ϕ−1(0). Next we only need to apply part
(2) in order to justify the statement.

Remark 4.1 was inspired by [8, Theorem 2.1], where the case n = 2 is treated. The
question about the example presented within Remark 4.1(1) is whether the function



128 Cornel Pintea

G is proper or not. Let us mention that the concept of properness can be extended to
vector-valued maps. More precisely a vector-valued map f : Rn −→ Rm is said to be
proper if the preimage f−1(K) of every compact subset K of Rm is compact. In fact
this concept can be extended to maps acting between topological spaces. Observe
that a continuous map f : Rn −→ Rm is proper if and only if ||f(x)|| −→ ∞ as
||x|| −→ ∞.

Example 4.2. According to Remark 4.1(1), the critical set of the real-valued function
g : Rn −→ R is the critical set of the vector-valued map

G : Rn −→ Rn, G(x1, . . . , xn) :=
(∫ x1

0

||(∇g)(t, x2, . . . , xn)||2dt, x2, . . . , xn

)
,

but the properness of g does not ensures the properness of G. Indeed, the real-valued
function f : Rn −→ R, f(x) = ln(1+||x||2) is proper, since f(x) −→∞ as ||x|| −→ ∞,
while its associated vector-valued map

F : Rn −→ Rn, F (x1, . . . , xn) :=
( ∫ x1

0

||(∇f)(t, x2, . . . , xn)||2dt, x2, . . . , xn

)

is not proper. In order to justify that, let us observe that the first component of F ,
ϕ : R2 −→ R,

ϕ(x1, . . . , xn) =
∫ x1

0

||(∇f)(t, x2, . . . , xn)||2dt = 4
∫ x1

0

||(t, x2, . . . , xn)||2
(1 + ||(t, x2, . . . , xn)||2)2 dt

= 2 (2||x||2−2x2
1+1)

(||x||2−x2
1+1)3/2 arctan x1

(||x||2−x2
1+1)1/2 − 2x1

(||x||2−x2
1+1)(1+||x||2)

is bounded. Therefore the preimage through F of the compact subset [0,M ]× {0} ×
· · · × {0}, where M is an upper-bound of ϕ, contains R×{0}× · · · × {0}, which is an
unbounded subset of Rn. This shows that F is not proper.

However the properness of some real valued functions is transferred to their as-
sociated vector-valued functions, especially when the variables can be separated and
the critical sets are certain products of closed sets from the real line. More precisely
we have the following:

Theorem 4.3. If K1, . . . , Kn ⊆ R are closed subsets whose complements Kc
1, . . . , K

c
n

have unbounded components, both below and above, then the following statements hold:

1. K1 × · · · ×Kn ⊆ Rn is a properly critical subset of Rn.

2. K1×· · ·×Kn ⊆ Rn is the critical set of a proper vector-valued map F : Rn → Rn.

Proof. (1) Indeed, if Fi : R −→ R is a proper positive smooth function such that
C(Fi) = Ki, i = 1, . . . , n, then C(F ) = K1 × · · · × Kn (see Remark 3.2(1)), where
F : Rn −→ R, F (x1, . . . , xn) = F1(x1) + · · ·+ Fn(xn). Indeed one successively has:

(x1, . . . , xn) ∈ C(F )

⇔ ∂F

∂x1
(x1, . . . , xn) =

∂F

∂x2
(x1, . . . , xn) = · · · = ∂F

∂xn
(x1, . . . , xn) = 0

⇔ F ′1(x1) = F ′2(x2) = · · · = F ′n(xn) = 0

⇔ (x1, . . . , xn) ∈ C(F1)× C(F2)× · · · × C(Fn) = K1 ×K2 × · · · ×Kn.
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In order to show the properness of F it is enough to observe that |xi| −→ ∞ for at
least one i ∈ {1, 2, . . . , n} as ||x|| −→ ∞. This shows that F (x) −→∞ as ||x|| −→ ∞
simply because Fi(xi) −→∞ as |xi| −→ ∞.

(2) Consider the function f : Rn −→ R, f(x1, . . . , xn) = gK1(x1)+gK2(x2)+ · · ·+
gKn

(xn), i.e.

f(x1, . . . , xn) =
∫ x1

0

(
f ′K1

(t)
)2

dt +
∫ x2

0

(
f ′K2

(t)
)2

dt + · · ·+
∫ xn

0

(
f ′Kn

(t)
)2

dt.

Recall that C(gKi) = C(fKi) = Ki and gKi is proper i = 1, . . . , n (see Theorem 3.1
and Remark 3.2). The required function is F : Rn −→ Rn given by

F (x1, . . . , xn) =
( ∫ x1

0

||(∇f)(t, x2, . . . , xn)||2dt, x2, . . . , xn

)

=

(∫ x1

0

(
f ′K1

(t)
)2

dt + x1

n∑

i=2

(
f ′Ki

(xi)
)2

, x2, . . . , xn

)
,

which is proper since gK1 is proper and

||F (x1, . . . , xn)||2 =
(∫ x1

0

(
f ′K1

(t)
)2

dt

)2

+ 2x1

n∑

i=2

(
f ′Ki

(xi)
)2

∫ x1

0

(fK1(t))
2
dt

+x2
1

[(
f ′K2

(x2)
)2 + · · ·+ (

f ′Kn
(xn)

)2
]2

+ x2
2 + · · ·+ x2

n

≥
(∫ x1

0

(
f ′K1

(t)
)2

dt

)2

+
n∑

i=2

x2
i = (gK1(x1))

2 +
n∑

i=2

x2
i .

From the obvious equality det (JF ) (x) = ||(∇f)(x)||2, it follows that C(F ) = C(f),
which combined with the equalities C(f) = C(gK1)× · · · ×C(gKn) = K1 × · · · ×Kn,
ensured by the proof of part (1), shows that K1 × · · · ×Kn is the critical set of the
proper vector-valued map F. ¤

Corollary 4.4. If K1, . . . , Kn are compact subsets of R, then K1 × · · · × Kn is a
properly critical subset of Rn as well as the critical set of a proper vector-valued map
F : Rn −→ Rn. If C ⊆ Rn is the middle third Cantor set, then one particularly
gets that Cn is a properly critical subset of Rn as well as the critical set of a proper
vector-valued map F : Rn −→ Rn.

Recall that the middle third Cantor set C is constructed by removing the open
middle third interval I1 from the interval I0 := [0, 1], removing the middle third of
each of the two remaining intervals (I2), and continuing this procedure ad infinitum.
The choice of the initial interval (I0) to be [0, 1] is not really important and we can
actually construct in a similar way a set, say Ca,b, for every interval [a, b], a < b,
which has all properties of C = C0,1. In fact Ca,b is homeomorphic to C for all
a, b ∈ R, a < b. In particular Ca,b is compact for all a, b ∈ R, a < b, which shows, by
Lemma 1.2, that the union C :=

⋃

n∈Z
C2n,2n+1 is a closed subset of R. Its complement

Cc is obviously unbounded both below and above.

Corollary 4.5. Cn is a properly critical subset of Rn as well as the critical set of
some proper vector-valued map F : Rn −→ Rn.
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