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Abstract. In this paper, we deal with a generalization of the geometry
of parallelizable manifolds, or the absolute parallelism (AP-) geometry,
in the context of generalized Lagrange spaces. All geometric objects de-
fined in this geometry are not only functions of the positional argument x,
but also depend on the directional argument y. In other words, instead of
dealing with geometric objects defined on the manifold M , as in the case
of classical AP-geometry, we are dealing with geometric objects in the
pullback bundle π−1(TM) (the pullback of the tangent bundle TM by
π : TM −→ M). Many new geometric objects, which have no counterpart
in the classical AP-geometry, emerge in this more general context. We
refer to such a geometry as generalized AP-geometry (GAP-geometry).
In analogy to AP-geometry, we define a d-connection in π−1(TM) having
remarkable properties, which we call the canonical d-connection, in terms
of the unique torsion-free Riemannian d-connection. In addition to these
two d-connections, two more d-connections are defined, the dual and the
symmetric d-connections. Our space, therefore, admits twelve curvature
tensors (corresponding to the four defined d-connections), three of which
vanish identically. Simple formulae for the nine non-vanishing curvatures
tensors are obtained, in terms of the torsion tensors of the canonical d-
connection. The different W -tensors admitted by the space are also calcu-
lated. All contractions of the h- and v-curvature tensors and the W -tensors
are derived. Second rank symmetric and skew-symmetric tensors, which
prove useful in physical applications, are singled out.
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1 Introduction

The geometry of parallelizable manifolds or the absolute parallelism geometry (AP-
geometry) ([5], [10], [14], [15]) has many advantages in comparison to Riemannian
geometry. Unlike Riemannian geometry, which has ten degrees of freedom (corre-
sponding to the metric components for n = 4), AP-geometry has sixteen degrees of
freedom (corresponding to the number of components of the four vector fields defin-
ing the parallelization). This makes AP-geometry a potential candidate for describing
physical phenomena other than gravity. Moreover, as opposed to Riemannian geome-
try, which admits only one symmetric linear connection, AP-geometry admits at least
four natural (built-in) linear connections, two of which are non-symmetric and three
of which have non-vanishing curvature tensors. Last, but not least, associated with
an AP-space, there is a Riemannian structure defined in a natural way. Thus, AP-
geometry contains within its geometrical structure all the mathematical machinery
of Riemannian geometry. Accordingly, a comparison between the results obtained in
the context of AP-geometry and general relativity, which is based on Riemannian
geometry, can be carried out.

In this paper, we study AP-geometry in the wider context of a generalized La-
grange space ([7], [9], [11], [12]). All geometric objects defined in this space are not only
functions of the positional argument x, but also depend on the directional argument
y. In other words, instead of dealing with geometric objects defined on the manifold
M , as in the case of classical AP-space, we are dealing with geometric objects in the
pullback bundle π−1(TM) (the pullback of the tangent bundle TM by the projection
π : TM −→ M) [1]. Many new geometric objects, which have no counterpart in the
classical AP-space, emerge in this more general context. We refer to such a space as
a d-parallelizable manifold or a generalized absolute parallelism space (GAP-space).

The paper is organized in the following manner. In section 2, following the in-
troduction, we give a brief account of the basic concepts and definitions that will
be needed in the sequel, introducing the notion of a non-linear connection Nα

µ . In
section 3, we consider an n-dimensional d-parallelizable manifold M ([2], [11]) on
which we define a metric in terms of the n independent π-vector fields

i
λ defining the

parallelization on π−1(TM). Thus, our parallelizable manifold becomes a generalized
Lagrange space, which is a generalization of the classical AP-space. We then define
the canonical d-connection D, relative to which the h- and v-covariant derivatives of
the vector fields

i
λ vanish. We end this section with a comparison between the classical

AP-space and the GAP-space. In section 4, commutation formulae are recalled and
some identities obtained. We then introduce, in analogy to the AP-space, two other
d-connections: the dual d-connection and the symmetric d-connection. The nine non-
vanishing curvature tensors, corresponding to the dual, symmetric and Riemannian
d-connections are then calculated, expressed in terms of the torsion tensors of the
canonical d-connection. In section 5, a summary of the fundamental symmetric and
skew symmetric second rank tensors is given, together with the symmetric second
rank tensors of zero trace. In section 6, all possible contractions of the h- and v-
curvature tensors are obtained and the contracted curvature tensors are expressed in
terms of the fundamental tensors given in section 5. In section 7, we study the differ-
ent W -tensors corresponding to the different d-connections defined in the space, again
expressed in terms of the torsion tensors of the canonical d-connection. Contractions
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of the different W -tensors and the relations between them are then derived. Finally,
we end this paper by some concluding remarks.

2 Fundamental preliminaries

Let M be a differential manifold of dimension n of class C∞. Let π : TM → M be
its tangent bundle. If (U, xµ) is a local chart on M , then (π−1(U), (xµ, yµ)) is the
corresponding local chart on TM . The coordinate transformation law on TM is given
by:

xµ′ = xµ′(xν), yµ′ = pµ′
ν yν ,

where pµ′
ν = ∂xµ′

∂xν and det(pµ′
ν ) 6= 0.

Definition 2.1. A non-linear connection N on TM is a system of n2 functions
Nα

β (x, y) defined on every local chart π−1(U) of TM which have the transformation
law

(2.1) Nα′
β′ = pα′

α pβ
β′N

α
β + pα′

ε pε
β′σ′y

σ′ ,

where pε
β′σ′ =

∂pε
β′

∂xσ′ = ∂2xε

∂xβ′∂xσ′ .

The non-linear connection N leads to the direct sum decomposition

Tu(TM) = Hu(TM)⊕ Vu(TM), ∀ u ∈ TM = TM \ {0},

where Hu(TM) is the horizontal space at u associated with N supplementary to the
vertical space Vu(TM). If δµ := ∂µ−Nα

µ ∂̇α, where ∂µ := ∂
∂xµ , ∂̇µ := ∂

∂yµ , then (∂̇µ) is
the natural basis of Vu(TM) and (δµ) is the natural basis of Hu(TM) adapted to N .

Definition 2.2. A distinguished connection (d-connection) on M is a triplet D =
(Nα

µ ,Γα
µν , Cα

µν), where Nα
µ (x, y) is a non-linear connection on TM and Γα

µν(x, y) and
Cα

µν(x, y) transform according to the following laws:

(2.2) Γα′
µ′ν′ = pα′

α pµ
µ′p

ν
ν′Γ

α
µν + pα′

ε pε
µ′ν′ ,

(2.3) Cα′
µ′ν′ = pα′

α pµ
µ′p

ν
ν′C

α
µν .

In other words, Γα
µν transform as the coefficients of a linear connection, whereas Cα

µν

transform as the components of a tensor.

Definition 2.3. The horizontal (h-) and vertical (v-) covariant derivatives with re-
spect to the d-connection D (of a tensor field Aα

µ) are defined respectively by:

(2.4) Aα
µ|ν := δνAα

µ + Aε
µΓα

εν −Aα
ε Γε

µν ;

(2.5) Aα
µ||ν := ∂̇νAα

µ + Aε
µCα

εν −Aα
ε Cε

µν .
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Definition 2.4. A symmetric and non-degenerate tensor field gµν(x, y) of type (0, 2)
is called a generalized Lagrange metric on the manifold M . The pair (M, g) is called
a generalized Lagrange space.

Definition 2.5. Let (M, g) be a generalized Lagrange space equipped with a non-
linear connection Nα

µ . Then a d -connection D = (Nα
µ , Γα

µ,ν , Cα
µν) is said to be metrical

with respect to g if

(2.6) gµν|α = 0, gµν||α = 0.

The following remarkable result was proved by R. Miron [8]. It guarantees the
existence of a unique torsion-free metrical d-connection on any generalized Lagrange
space equipped with a non-linear connection. More precisely:

Theorem 2.6. Let (M, g) be a generalized Lagrange space. Let Nα
µ be a given non-

linear connection on TM . Then there exists a unique metrical d-connection
◦
D =

(Nα
µ ,

◦
Γα

µν ,
◦
Cα

µν) such that
◦
Λα

µν :=
◦
Γα

µν −
◦
Γα

νµ = 0 and
◦
Tα

µν :=
◦
Cα

µν −
◦
Cα

νµ = 0. This
d-connection is given by Nα

µ and the generalized Christoffel symbols:

(2.7)
◦
Γα

µν =
1
2
gαε(δµgνε + δνgµε − δεgµν),

(2.8)
◦
Cα

µν =
1
2
gαε(∂̇µgνε + ∂̇νgµε − ∂̇εgµν).

This connection will be referred to as the Riemannian d-connection.

3 d-Parallelizable manifolds (GAP-spaces)

The Riemannian d-connection mentioned in Theorem 2.6 plays the key role in our
generalization of the AP-space, which, as will be revealed, appears natural. However,
it is to be noted that the close resemblance of the two spaces is deceptive; as they are
similar in form. However, the extra degrees of freedom in the generalized AP-space
makes it richer in content and different in its geometric structure (see Remark 3.6).

We start with the concept of d-parallelizable manifolds.
Definition 3.1. An n-dimensional manifold M is called d-parallelizable, or general-
ized absolute parallelism space (GAP-space), if the pull-back bundle π−1(TM) admits
n global linearly independent sections (π-vector fields)

i
λ(x, y), i = 1, ..., n.

If
i
λ = (

i
λα), α = 1, ..., n, then

(3.1)
i
λα

i
λβ = δα

β ,
i
λα

j
λα = δij ,

where (
i
λ α) denotes the inverse of the matrix (

i
λα).

Einstein summation convention is applied on both Latin (mesh) indices and Greek
(world) indices, where all Latin indices are written in a lower position.

In the sequel, we will simply use the symbol λ (without a mesh index) to denote
any one of the vector fields

i
λ (i = 1, ..., n) and in most cases, when mesh indices

appear they will be in pairs, meaning summation.
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We shall often use the expression GAP-space (resp. GAP-geometry) instead of
d-parallelizable manifold (resp. geometry of d-parallelizable manifolds) for its typo-
graphical simplicity.

Theorem 3.2. A GAP-space is a generalized Lagrange space.

In fact, the covariant tensor field gµν(x, y) of order 2 given by

(3.2) gµν(x, y) :=
i
λµ

i
λν ,

defines a metric in the pull-back bundle π−1(TM) with inverse given by

(3.3) gµν(x, y) =
i
λµ

i
λν

Assume that M is a GAP-space equipped with a non-linear connection Nα
µ . By

Theorem 2.6, there exists on (M, g) a unique torsion-free metrical d-connection
◦
D =

(Nα
µ ,

◦
Γα

µν ,
◦
Cα

µν) (the Riemannian d-connection). We define another d-connection D =

(Nα
µ ,Γα

µν , Cα
µν) in terms of

◦
D by:

(3.4) Γα
µν :=

◦
Γα

µν +
i
λα

i
λµ o

| ν
,

(3.5) Cα
µν :=

◦
Cα

µν +
i
λα

i
λµ o

||ν
.

Here, “ o
| ” and “ o

|| ” denote the h- and v-covariant derivatives with respect to the

Riemannian d-connection
◦
D. If “ | ” and “ || ” denote the h- and v-covariant derivatives

with respect to the d-connection D, then

(3.6) λα|µ = 0, λα||µ = 0.

This can be shown as follows: λα|µ = δµλα + λεΓα
εµ = δµλα + λε(

◦
Γα

εµ +
j
λα

j
λε o

| µ
) =

(δµλα + λε
◦
Γα

εµ) −
j
λα

o
| µ

(
i
λε

j
λε) = 0. In exactly the same way, it can be shown that

λα||µ = 0. Hence, we obtain the following

Theorem 3.3. Let (M,
i
λ(x, y)) be a GAP-space equipped with a non-linear con-

nection Nα
µ . There exists a unique d-connection D = (Nα

µ ,Γα
µν , Cα

µν), such that
λα|µ = λα||µ = 0. This connection is given by Nα

β , (3.4) and (3.5). Consequently,
D is metrical: gµν|σgµν||σ = 0.

This connection will be referred to as the canonical d-connection.

It is to be noted that relations (3.6) are in accordance with the classical AP-
geometry in which the covariant derivative of the vector fields λ with respect to the
canonical connection Γα

µν =
i
λα(∂ν

i
λµ) vanishes [15].

Theorem 3.4. Let (M,
i
λ(x, y)) be a d-parallelizable manifold equipped with a non-

linear connection Nα
µ . The canonical d-connection D = (Nα

µ , Γα
µν , Cα

µν) is explicitly
expressed in terms of λ in the form

(3.7) Γα
µν =

i
λα(δν

i
λµ), Cα

µν =
i
λα(∂̇ν

i
λµ).
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Proof. Since λα|ν = 0, we have δνλα = −λε Γα
εν . Multiplying both sides by λµ, taking

into account the fact that
i
λα

i
λµ = δα

µ , we get Γα
µν = −

i
λµ(δν

i
λα) =

i
λα(δν

i
λµ). The

proof of the second relation is exactly similar and we omit it.

It is to be noted that the components of the canonical d-connection are similar
in form to the components of the canonical connection in the classical AP-context
[15], noting that ∂ν is replaced by δν (for the h-counterpart) and by ∂̇ν (for the
v-counterpart) respectively (See Table 1). The above expressions for the canonical
connection seem therefore like a natural generalization of the classical AP case.

By (3.4) and (3.5), in view of the above theorem, we have the following
Corollary 3.5. The Reimannian d-connection

◦
D = (Nα

µ ,
◦
Γα

µν ,
◦
Cα

µν) is explicitly
expressed in terms of

i
λ in the form

(3.8)
◦
Γα

µν =
i
λα(δν

i
λµ −

i
λµ o

| ν
),

◦
Cα

µν =
i
λα(∂̇ν

i
λµ −

i
λµ o

||ν
).

A◦. s a result of the dependence of λ on the velocity vector y, the n3 functions

i
λα(∂ν

i
λµ), as opposed to the classical AP-space, do not transform as the coefficients

of a linear connection, but transform according to the rule
(3.9)

i
λα′(∂ν′

i
λµ′) = pα′

α pµ
µ′p

ν
ν′

i
λα(∂ν

i
λµ) + pα′

ε pε
µ′ν′ + pα′

α pµ
µ′p

ν
ν′ε′y

ε′Cα
µν .

Similarly, it can be shown that, in general, tensors in the context of the classical
AP-space do not transform like tensors in the wider context of the GAP-space; their
dependence on the velocity vector y spoils their tensor character. In other words,
tensors in the classical AP-context do not necessarily behave like tensors when they
are regarded as functions of position x and velocity vector y. This means that though
the classical AP-space and the GAP-space appear similar in form, they differ radically
in their geometric structures. We now introduce some tensors that will prove useful
later on. Let
(3.10) γα

µν :=
i
λα

i
λµ o

| ν
= Γα

µν −
◦
Γα

µν , Gα
µν :=

i
λα

i
λµ o

||ν
= Cα

µν −
◦
Cα

µν .

In analogy to the AP-space, we refer to γα
µν and Gα

µν as the h- and v-contortion tensors
respectively.

Let

(3.11) Λα
µν := Γα

µν − Γα
νµ = γα

µν − γα
νµ.

be the torsion tensor of the canonical connection Γα
µν and

(3.12) Ωα
µν := γα

µν + γα
νµ.

Similarly, let
(3.13) Tα

µν := Cα
µν − Cα

νµ = Gα
µν −Gα

νµ

be what we may call the torsion tensor of Cα
µν and

(3.14) Dα
µν := Gα

µν + Gα
νµ.

Now, if γσµν := gεσγε
µν and Gσµν := gεσGε

µν , then γσµν and Gσµν are skew symmetric
in the first pair of indices. This, in turn, implies that
(3.15) γε

εν = Gε
εν = 0.

Hence, if
βµ := γε

µε, Bµ := Gε
µε,

then
(3.16) Λε

µε = γε
µε = βµ, T ε

µε = Gε
µε = Bµ.
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Table 1. Comparison between the classical AP-geometry
and the GAP-geometry

Classical AP-geometry GAP-geometry

Building blocks λα(x) λα(x, y)

Metric gµν (x) =
i

λµ(x)
i

λν (x) gµν (x, y) =
i

λµ(x, y)
i

λν (x, y)

Riemannian connection

◦
Γα

µν = 1
2
gαε{∂µgνε + ∂νgµε + ∂εgµν}

◦
Γα

µν = 1
2
gαε{δµgνε + δνgµε + δεgµν}

◦
Cα

µν = 1
2
gαε{∂̇µgνε + ∂̇νgµε + ∂̇εgµν}

Canonical connection Γα
µν =

i
λα(∂ν

i
λµ) Γα

µν =
i

λα(δν
i

λµ) (h-counterpart)

Cα
µν =

i
λα(∂̇ν

i
λµ) (v-counterpart)

AP-condition λα|µ = 0 λα|µ = 0 (h-covariant derivative)

λα||µ = 0 (v-covariant derivative)

Torsion Λα
µν = Γα

µν − Γα
νµ Λα

µν = Γα
µν − Γα

νµ (h-counterpart)

T α
µν = Cα

µν − Cα
νµ (v-counterpart)

Contorsion γα
µν = Γα

µν −
◦

Γα
µν γα

µν = Γα
µν −

◦
Γα

νµ (h-counterpart)

Gα
µν = Cα

µν −
◦

Cα
µν (v-counterpart)

Basic vector βµ = Λα
µα = γα

µα βµ = Λα
µα = γα

µα (h-counterpart)

Bµ = T α
µα = Gα

µα (v-counterpart)

Finally, it can be shown, in analogy to the classical AP-space [3], that the contor-
tion tensors γµνσ and Gµνσ can be expressed in terms of the torsion tensors in the
form

(3.17) γµνσ =
1
2
(Λµνσ + Λσνµ + Λνσµ)

(3.18) Gµνσ =
1
2
(Tµνσ + Tσνµ + Tνσµ),

where Λµνσ := gεµΛε
νσ and Tµνσ := gεµT ε

νσ. It is clear by (3.11), (3.13), (3.17) and
(3.18) that the torsion tensors vanish if and only if the contortion tensors vanish.

Table 1 gives a comparison between the fundamental geometric objects in the
classical AP-geometry and the GAP-geometry. Similar objects of the two spaces will
be denoted by the same symbol. As previously mentioned, “h” stands for “horizontal”
whereas “v” stands for “vertical”.

4 Curvature tensors in Generalized AP-space

Owing to the existence of two types of covariant derivatives with respect to the canon-
ical connection D, we have essentially three commutation formulae and consequently
three curvature tensors.
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Lemma 4.1. Let [δσ, δµ] := δσδµ − δµδσ and let [δσ, ∂̇µ] be similarly defined. Then

(4.1) [δσ, δµ] = Rε
σµ ∂̇ε, [δσ, ∂̇µ] = (∂̇µN ε

σ) ∂̇ε,

where Rα
σµ := δµNα

σ − δσNα
µ is the curvature tensor of the non-linear connection Nα

µ .

Theorem 4.2. The three commutation formulae of
i
λα corresponding to the canonical

connection D = (Nα
µ , Γα

µν , Cα
µν) are given by

(a) λα|µσ − λα|σµ = λε Rα
εµσ + λα|ε Λε

σµ + λα||ε Rε
σµ

(b) λα||µσ − λα||σµ = λεSα
εµσ + λα||ε T ε

σµ

(c) λα||µ|σ − λα|σ||µ = λεPα
εµσ + λα|ε Cε

σµ + λα||ε P ε
σµ,

where
Rα

νµσ : = (δσΓα
νµ − δµΓα

νσ) + (Γε
νµΓα

εσ − Γε
νσΓα

εµ) + Lα
νµσ, (h-curvature)

Sα
νµσ : = ∂̇σCα

νµ − ∂̇µCα
νσ + Cε

νµCα
εσ − Cε

νσCα
εµ, (v-curvature)

Pα
νµσ : = Cα

νµ|σ − ∂̇µΓα
νσ − P ε

σµCα
νε, (hv-curvature)

given that Lα
νµσ := Cα

νε Rε
µσ and P ν

σµ := ∂̇µNν
σ − Γν

µσ.

A direct consequence of the above commutation formulae, together with the fact
that λα|µ = λα||µ = 0, is the following

Corollary 4.3. The three curvature tensors Rα
νµσ, Sα

νµσ and Pα
νµσ of the canonical

connection D = (Nα
µ , Γα

µν , Cα
µν) vanish identically.

It is to be noted that the above result is a natural generalization of the corre-
sponding result of the classical AP-geometry [15].

The Bianchi identities [4] for the canonical d-connection (Nα
µ , Γα

µν , Cα
µν) gives

Proposition 4.4. The following identities hold

(a) Sν,µ,σΛα
νµ|σ = Sν,µ,σ(Λα

µεΛ
ε
νσ + Lα

µνσ)

(b) Sν,µ,σTα
νµ||σ = Sν,µ,σ(Tα

µεT
ε
νσ),

where Sν,µ,σ denotes a cyclic permutation on ν, µ, σ.

Corollary 4.5. The following identities hold:

(a) Λε
µν|ε = βµ|ν − βν|µ + βεΛε

µν + Sε,ν,µLε
ενµ.

(b) T ε
µν||ε = Bµ||ν −Bν||µ + BεT

ε
µν ,

Proof. Both identities follow by contracting the indices α and σ in the identities
(a) and (b) of Proposition 4.4, taking into account that βµ = Λε

µε, Bµ = T ε
µε and

Lα
µνσ = −Lα

µσν .
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In addition to the Riemannian and the canonical d-connections, our space admits
at least two other natural d-connections. In analogy to the classical AP-space, we
define the dual d-connection D̃ = (Nα

µ , Γ̃α
µν , C̃α

µν) by

(4.2) Γ̃α
µν := Γα

νµ, C̃α
µν := Cα

νµ

and the symmetric d−connection D̂ = (Nα
µ , Γ̂α

µν , Ĉα
µν) by

(4.3) Γ̂α
µν :=

1
2
(Γα

µν + Γα
νµ), Ĉα

µν :=
1
2
(Cα

µν + Cα
νµ).

Covariant differentiation with respect to Γ̃α
µν and Γ̂α

µν will be denoted by “ |̃ ” and “ |̂ ”
respectively.

Now, corresonding to each of the four d-connections there are three curvature ten-
sors. Therefore, we have a total of twelve curvature tensors three of which, as already
mentioned, vanish identically. The vanishing of the curvature tensors of the canoni-
cal d-connection allows us to express, in a relatively compact form, six of the other
curvature tensors (the h- and v-curvature tensors) corresponding to the Riemannian,
symmetric and the dual d-connections. These curvature tensors are expressed in terms
of the torsion tensors Λα

µν , Tα
µν and their covariant derivatives with respect to the

canonical d-connection, together with the curvature Rα
µν of the non-linear connection

Nα
µ . The other three hv-curvature tensors are calculated, though their expressions are

more complicated. This is to be expected since the expression obtained for the hv-
curvature tensor of the canonical d-connection lacks the symmetry properties enjoyed
by the h- and v-curvature tensors.

Theorem 4.6. The h-, v- and hv-curvature tensors of the dual d-connection D̃ =
(Nα

µ , Γ̃α
µν , C̃α

µν) can be expressed in the form:

(a) R̃α
µσν = Λα

σν|µ + Cα
εµRε

σν + Lα
σνµ + Lα

νµσ.

(b) S̃α
µσν = Tα

σν||µ.

(c) P̃α
νµσ = Tα

µν|σ − Λα
σν||µ + T ε

µνΛα
σε − Tα

µεΛ
ε
σν − Λα

ενCε
σµ − P ε

σµTα
εν .

The corresponding curvature tensors of the symmetric d-connection D̂ = (Nα
µ , Γ̂α

µν , Ĉα
µν)

can be expressed in the form:

(d) R̂α
µσν = 1

2 (Λα
µν|σ − Λα

µσ|ν) + 1
4 (Λε

µνΛα
σε − Λε

µσΛα
νε) + 1

2 (Λε
σνΛα

εµ) + 1
2 (Tα

εµRε
σν).

(e) Ŝα
µσν = 1

2 (Tα
µν||σ − Tα

µσ||ν) + 1
4 (T ε

µνTα
σε − T ε

µσTα
νε) + 1

2 (T ε
σνTα

εµ).

(f) P̂α
νµσ = 1

2 (Λα
µν|σ−Λα

σν||µ)+ 1
4 Λε

σµTα
εν − 1

2 Λα
ενCε

σµ + 1
4 Sµ,ν,σΛε

µνΛα
σε− 1

2 P ε
σµTα

εν .

The corresponding curvature tensors of the Riemannian d-connection
◦
D = (Nα

µ ,
◦
Γα

µν ,
◦
Cα

µν)
can be expressed in the form

(g)
◦
Rα

µσν = γα
µν|σ − γα

µσ|ν + γε
µσγα

εν − γε
µνγα

εσ + γα
µεΛε

νσ + Gα
µεR

ε
νσ.
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(h)
◦
Sα

µσν = Gα
µν||σ −Gα

µσ||ν + Gε
µσGα

εν −Gε
µνGα

εσ + Gα
µεT

ε
νσ.

(i)
◦
Pα

νµσ = ∂̇uγα
νσ −Gα

νµ|σ + (Gε
νµ − Cε

νµ)γα
εσ − (Gα

εµ − Cα
εµ)γε

νσ + P ε
σµGα

νε.

Proof. We prove (a) and (c) only. The proof of the other parts is similar.

(a) We have

R̃α
µσν = δν Γ̃α

µσ − δσΓ̃α
µν + Γ̃ε

µσΓ̃α
εν − Γ̃ε

µν Γ̃α
εσ + C̃α

µεR
ε
σν

= δνΓα
σµ − δσΓα

νµ + Γε
σµΓα

νε − Γε
νµΓα

σε + Cα
εµRε

σν

= {δνΓα
σµ + Γε

σµ(Λα
νε + Γα

εν)} − {δσΓα
νµ + Γε

νµ(Λα
σε + Γα

εσ)}
+ Cα

εµRε
σν

= (δνΓα
σµ + Γε

σµΓα
εν)− (δσΓα

νµ + Γε
νµΓα

εσ)− (Γε
σµΛα

εν + Γε
νµΛα

σε)
+ Cα

εµRε
σν

= (Rα
σµν − Cα

σεR
ε
µν + δµΓα

σν + Γε
σνΓα

εµ)− (Rα
νµσ − Cα

νεR
ε
µσ

+ δµΓα
νσ + Γε

νσΓα
εµ)− (Γε

σµΛα
εν + Γε

νµΛα
σε) + Cα

εµRε
σν .

= δµΛα
σν + Γα

εµΛε
σν − Γε

σµΛα
εν − Γε

νµΛα
σε + Cα

εµRε
σν + Cα

σεR
ε
νµ + Cα

νεR
ε
µσ

= Λα
σν|µ + Cα

εµRε
σν + Lα

σνµ + Lα
νµσ.

(c) We have

P̃α
νµσ = Cα

µν̃|σ − ∂̇µΓα
σν − (∂̇µN ε

σ − Γε
σµ)Cα

εν

= Cα
νµ|σ + (Cα

µν̃|σ − Cα
νµ|σ)− ∂̇µΛα

σν − ∂̇µΓα
νσ − ∂̇µN ε

σ(Tα
εν + Cα

νε)

+ (Λε
σµ + Γε

µσ)(Tα
εν + Cα

νε)

= Pα
νµσ − (∂̇µN ε

σ − Γε
µσ)Tα

εν − ∂̇µΛα
σν + Λε

σµCα
εν + (Cα

µν̃|σ − Cα
νµ|σ)

= (Cα

µν̃|σ − Cα
νµ|σ) + Λε

σµCα
εν − ∂̇µΛα

σν − P ε
σµTα

εν

= Tα
µν|σ + Cε

µνΛα
σε − Cα

µεΛ
ε
σν − ∂̇µΛα

σν − P ε
σµTα

εν

= Tα
µν|σ − ∂̇µΛα

σν + (T ε
µν + Cε

νµ)Λα
σε − (Tα

µε + Cα
εµ)Λε

σν − P ε
σµTα

εν

= Tα
µν|σ − Λα

σν||µ + T ε
µνΛα

σε − Tα
µεΛ

ε
σν − Λα

ενCε
σµ − P ε

σµTα
εν .

which are the required formulae.

5 Fundamental second rank tensors

Due to the importance of second order symmetric and skew-symmetric tensors in
physical applications, we here list such tensors in Table 2 below. We regard these
tensors as fundamental since their counterparts in the classical AP-context play a
key role in physical applications. Moreover, in the AP-geometry, most second rank
tensors which have physical significance can be expressed as a linear combination
of these fundamental tensors. The Table is constructed as similar as possible to that
given by Mikhail (cf. [5], Table 2), to facilitate comparison with the case of the classical
AP-geometry which has many physical applications [14]. Corresponding “horizontal”
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and “vertical” tensors are denoted by the same symbol with the “vertical” tensors
barred. It is to be noted that all “vertical ” tensors have no counterpart in the classical
AP-context.

Table 2. Summary of the fundamental symmetric
and skew-symmetric second rank tensors

Horizontal Vertical

Skew-Symmetric Symmetric Skew-Symmetric Symmetric

ξµν := γµν
α|α ξµν := Gµν

α|α

γµν := βαγµν
α γµν := BαGµν

α

ηµν := βε Λε
µν φµν := βε Ωε

µν ηµν := Bε T ε
µν φµν := Bε Dε

µν

χµν := Λα
µν|α ψµν := Ωε

µν|ε χµν := T α
µν||α ψµν := Dα

µν||α

εµν := 1
2 (βµ|ν − βν|µ) θµν := 1

2 (βµ|ν + βν|µ) εµν := 1
2 (Bµ||ν − Bν||µ) θµν := 1

2 (Bµ||ν + Bν||µ)

kµν := hµν := kµν := hµν :=

γε
αµγα

νε − γε
µαγα

εν γε
αµγα

νε + γε
µαγα

εν Gε
αµGα

νε −Gε
µαGα

εν Gε
αµGα

νε + Gε
µαGα

εν

σµν := γε
αµγα

εν σµν := Gε
αµGα

εν

ωµν := γε
µαγα

νε ωµν := Gε
µαGα

νε

αµν := βµβν αµν := BµBν

Due to the metricity condition in Theorem 3.3, one can use the metric tensor gµν

and its inverse gµν to perform the operations of lowering and raising tensor indices
under the h- and v- covariant derivatives relative to the canonical d-connection.

Thus, contraction with the metric tensor of the above fundamental tensors gives
the following table of scalars:

Table 3. Summary of the fundamental scalars

Horizontal α := βµβµ θ := βµ|µ φ := βε Ωεµ
µ ψ := Ωαµ

µ|α

ω := γεµ
α γα

µε σ := γε
α

µ γα
εµ h := 2γαµ

ε γε
αµ

Vertical α := BµBµ θ := Bµ|µ φ := Bε Dεµ
µ ψ := Dαµ

µ|α

ω := Gεµ
α Gα

µε σ := Gε
α
µ Gα

εµ h := 2Gαµ
ε Gε

αµ

In physical applications, second order symmetric tensors of zero trace have special
importance. For example, in the case of electromagnetism, the tensor characterizing
the electro-magnetic energy is a second order symmetric tensor having zero trace. So
it is of interest to search for such tensors. The Table below gives some of the second
rank tensors of zero trace.
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Table 4. Summary of the fundamental tensors of zero trace

Horizontal Vertical

φµν + 2αµν φµν + 2ᾱµν

ψµν + 2θµν ψµν + 2θµν

hµν + 2ωµν hµν + 2ωµν

1
2
(φµν − ψµν) + θµν − αµν − 1

2
gµνβα

|̃α
1
2
(φµν − ψµν) + θµν − αµν − 1

2
gµνBα

|̃|α

We now consider some useful second rank tensors which are not expressible in
terms of the fundamental tensors appearing in Table 2. Unlike the tensors of Table 2,
some of the tensors to be defined below have no horizontal and vertical counterparts.
To this end, let

Lµν := Lα
αµν = Cα

αεR
ε
µν , Mµν := Lα

µαν = Cα
µε Rε

αν , Nµν := Cα
εµ Rε

αν , Fµν :=
◦
Cα

εµ Rε
αν .

Then, clearly

Tµν := Mµν−Nµν = Tα
µε Rε

αν , Gµν := Mµν−Fµν = Gα
µε Rε

αν , Gµν−Tµν = Gα
εµ Rε

αν .

Finally, let T := gµνTµν and G := gµνGµν . By the above, we have the following:
Symmetric second rank tensors: M(µν), N(µν), F(µν).
Skew-symmetric second rank tensors: M[µν], N[µν], F[µν], Lµν .

6 Contracted curvatures and curvature scalars

It may be convenient, for physical reasons, to consider second rank tensors derived
from the curvature tensors by contractions. It is also of interest to reduce the number
of these tensors to a minimum which is fundamental (cf. Propositions 6.1 and 6.2).

Contracting the indices α and µ in the expressions obtained for the h- and v-
curvature tensors in Theorem 4.6, taking into account Corollary 4.5, we obtain

Proposition 6.1. Let R̃σν := R̃α
ασν , R̂σν := R̂α

ασν and
◦
Rσν :=

◦
Rα

ασν with similar

expressions for S̃σν , Ŝσν and
◦
Sσν . Then, we have

(a) R̃σν = βσ|ν − βν|σ + βεΛε
σν + BεR

ε
σν ,

(b) S̃σν = Bσ||ν −Bν||σ + BεT
ε
σν ,

(c) R̂σν = 1
2R̃σν ,

(d) Ŝσν = 1
2 S̃σν ,
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(e)
◦
Rσν =

◦
Sσν = 0.

Proposition 6.2. Let R̃µσ := R̃α
µσα, R̂µσ := R̂α

µσα and
◦
Rµσ :=

◦
Rα

µσα with similar

expressions for S̃µσ, Ŝµσ and
◦
Sµσ. Then, we have

(a) R̃µσ = βσ|µ + Cα
εµRε

σα + Lα
σαµ + Lα

αµσ,

(b) S̃µσ = Bσ||µ,

(c) R̂µσ = 1
2 R̃µσ + 1

4{βεΛε
σµ + Λε

ασΛα
µε},

(d) Ŝµσ = 1
2 S̃µσ + 1

4{BεT
ε
σµ + T ε

ασTα
µε},

(e)
◦
Rµσ = βµ|σ − γα

µσ|α + βεγ
ε
µσ − γα

µεγ
ε
σα + Gα

µεR
ε
ασ,

(f)
◦
Sµσ :=

◦
Sα

µσα = Bµ||σ −Gα
µσ||α + BεG

ε
µσ −Gα

µεG
ε
σα.

Proposition 6.3. The following holds.

(a) R̃[µσ] = 1
2{βσ|µ − βµ|σ}+ Cε

εαRα
µσ + Cε

(ασ)R
α
εµ − Cε

(αµ)R
α
εσ,

(b) R̃(µσ) = 1
2{βσ|µ + βµ|σ + T ε

αµRα
σε + T ε

ασRα
µε},

(c) S̃[µσ] = 1
2{Bσ||µ −Bµ||σ},

(d) S̃(µσ) = 1
2{Bσ||µ + Bµ||σ},

(e) R̂[µσ] = 1
2 R̃[µσ] + 1

4βε Λε
σµ,

(f) R̂(µσ) = 1
2 R̃(µσ) + 1

4Λε
ασ Λα

µε,

(g) Ŝ[µσ] = 1
2 S̃[µσ] + 1

4Bε T ε
σµ,

(h) Ŝ(µσ) = 1
2 S̃(µσ) + 1

4T ε
ασ Tα

µε,

(i)
◦
R[µσ] = 1

2{Lα
αµσ +

◦
Cα

σε Rε
αµ −

◦
Cα

µε Rε
ασ},

(j)
◦
R(µσ) = 1

2{(βµ|σ + βσ|µ)− Ωα
µσ|α + βε Ωε

µσ} − γα
µε γε

σα + 1
2{Gα

µε Rε
ασ + Gα

σε Rε
αµ},

(k)
◦
S[µσ] = 0,

(l)
◦
S(µσ) = 1

2{(Bµ||σ + Bσ||µ)−Dα
µσ||α + Bε Dε

µσ} −Gα
µε Gε

σα.

Corollary 6.4. The following holds:

(a) R̃σ
σ := gµσR̃µσ = βσ |σ + T εσ

α Rα
εσ,

(b) S̃σ
σ := gµσS̃µσ = Bσ||σ,
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(c) R̂σ
σ := gµσR̂µσ = 1

2{βσ |σ + T εσ
α Rα

εσ}+ 1
4Λεσ

α Λα
εσ,

(d) Ŝσ
σ := gµσŜµσ = 1

2Bσ ||σ + 1
4T εσ

α Tα
εσ,

(e)
◦
Rσ

σ := gµσ
◦
Rµσ = βσ|σ − 1

2Ωασ
σ|α + 1

2βα Ωασ
σ − γασ

ε γε
σα + Gασ

ε Rε
ασ,

(f)
◦
Sσ

σ := gµσ
◦
Sµσ = Bσ||σ − 1

2Dασ
σ||α + 1

2Bα Dασ
σ −Gασ

ε Gε
σα.

We now apply a different method for calculating both
◦
Rµσ and

◦
Sµσ, now expressed

in terms of the covariant derivative of the contorsion tensors with respect to the
Riemannian d-connection. Then we obtain

Proposition 6.5. The “Ricci” tensors
◦
Rµσ and

◦
Sµσ can be expressed in the form

(a)
◦
Rµσ = βµ o

| σ
− γα

µσ o
| α
− βεγ

ε
µσ + γε

µαγα
εσ + Gα

µεR
ε
ασ.

(b)
◦
Sµσ = Bµ o

||σ
−Gα

µσ o
||α
−BεG

ε
µσ + Gε

µαGα
εσ.

Proof. We prove (a) only; the proof of (b) is similar.
We have

0 = Rα
µσα = (δαΓα

µσ − δσΓα
µα) + (Γε

µσΓα
εα − Γε

µαΓα
εσ) + Rε

σαCα
µε

= δα(
◦
Γα

µσ + γα
µσ)− δσ(

◦
Γα

µα + γα
µα) + (

◦
Γε

µσ + γε
µσ)(

◦
Γα

εα + γα
εα)

− (
◦
Γε

µα + γε
µα)(

◦
Γα

εσ + γα
εσ) + Rε

σαCα
µε

=
◦
Rµσ − (δσγα

µα − γα
εα

◦
Γε

µσ) + (δαγα
µσ + γε

µσ

◦
Γα

εα − γα
εσ

◦
Γε

µα

− γα
µε

◦
Γε

σα) + Rε
σα(Cα

µε −
◦
Cα

µε) + γε
µσγα

εα − γε
µαγα

εσ.

Consequently,

◦
Rµσ = βµ o

| σ
− γα

µσ o
| α
− βεγ

ε
µσ + γε

µαγα
εσ + Gα

µεR
ε
ασ,

which is the required formula.

In view of Proposition 6.2 (e) and (f) and Proposition 6.5, we obtain

Corollary 6.6. The following identities holds:

(a) (βµ|σ − βµ o
| σ

)− (γα
µσ|α − γα

µσ o
| α

) = (γε
µαΩα

σε − 2βεγ
ε
µσ)

(b) (Bµ||σ −Bµ o
||σ

)− (Gα
µσ||α −Gα

µσ o
||α

) = (Gε
µαDα

σε − 2BεG
ε
µσ).

The next two tables summarize the results obtained in this section, where the
contracted curvatures are expressed in terms of the fundamental tensors.
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Table 5 (a). Second rank curvature tensors

Skew-symmetric Symmetric

Dual R̃[µσ] = εσµ − Lσµ + M[σµ] + N[σµ] R̃(µσ) = θµσ + M(µσ) −N(µσ)

S̃[µσ] = εσµ S̃(µσ) = θµσ

Symmetric R̂[µσ] = 1
2
R̃[µσ] + 1

4
ησµ R̂(µσ) = 1

2
R̃(µσ) + 1

4
{hµσ − ωµσ − σµσ}

Ŝ[µσ] = 1
2
S̃[µσ] + 1

4
ησµ Ŝ(µσ) = 1

2
S̃(µσ) + 1

4
{hµσ − ωµσ − σµσ}

Riemannian

◦
R[µσ] = 1

2
Lµσ − F[µσ]

◦
R(µσ) = θµσ − 1

2
(ψµσ − φµσ)

−ωµσ + M(µσ) − F(µσ)

◦
S[µσ] = 0

◦
S(µσ) = θµσ − 1

2
(ψµσ − φµσ)− ωµσ

Table 5 (b). h- and v-scalar curvature tensors

h-scalar curvature v-scalar curvature

Dual R̃σ
σ = θ + T S̃σ

σ = θ

Symmetric R̂σ
σ = 1

2 (θ + T )− 1
4 (3ω + σ) Ŝσ

σ = 1
2θ − 1

4 (3ω + σ)

Riemannian
◦
Rσ

σ = θ − 1
2 (ψ − φ)− ω + G

◦
Sσ

σ = θ − 1
2 (ψ − φ)− ω

7 The W -tensors

The W -tensor was first defined by M. Wanas in 1975 [13] and has been used by
F. Mikhail and M. Wanas [6] to construct a geometric theory unifying gravity and
electromagnetism. Recently, two of the authors of this paper studied some of the
properties of this tensor in the context of the classical AP-space [15].

Definition 7.1. Let (M,λ) be a generalized AP-space. For a given d-connection
D = (Nα

β ,Γα
µν , Cα

µν), the horizontal W -tensor (hW -tensor) Hα
µνσ is defined by the

formula
λµ|νσ − λµ|σν = λεH

ε
µνσ,

whereas the vertical W -tensor (vW -tensor) V α
µνσ is defined by the formula

λµ||νσ − λµ||σν = λεV
ε
µνσ,

where “ |” and “ ||” are the horizontal and the vertical covariant derivatives with
respect to the connection D.
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We now carry out the task of calculating the different W -tensors. As opposed to the
classical AP-space, which admits essentially one W -tensor corresponding to the dual
connection, we here have 4 distinct W -tensors: the horizontal and vertical W -tensors
corresponding to the dual d-connection, the horizontal W -tensor corresponding to the
symmetric d-connection and, finally, the horizontal W -tensor corresponding to the
Riemannian d-connection. The remaining W -tensors coincide with the corresponding
curvature tensors.

It is to be noted that some of the expressions obtained for the W -tensors are
relatively more compact than those obtained for the corresponding curvature tensors.

Theorem 7.2. The hW-tensor H̃α
µνσ, the vW-tensor Ṽ α

µνσ, the hW-tensor Ĥα
µνσ and

the hW-tensor
◦
Hα

µνσ corresponding to the dual, symmetric and the Riemannian d-
connections respectively can be expressed in the form:

(a) H̃α
µνσ = Λα

σν|µ + Λε
νσΛα

µε + Sµ,ν,σLα
µσν .

(b) Ṽ α
µνσ = Tα

σν||µ + T ε
νσTα

µε.

(c) Ĥα
µνσ = 1

2 (Λα
µν|σ − Λα

µσ|ν) + 1
4 (Λε

µνΛα
σε − Λε

µσΛα
νε) + 1

2 (Λε
σνΛα

εµ).

(d)
◦
Hα

µνσ = γα
µν|σ − γα

µσ|ν + γε
µσγα

εν − γε
µνγα

εσ + Λε
νσγα

µε.

Proof. We prove (a) only. The proof of the other parts is similar. We have

λεH̃
ε
µνσ = λεR̃

ε
µσν + λ

µ̃|εΛ̃
ε
σν + λ

µ|̃|εR
ε
σν .

Hence, taking into account Theorem 4.6 (a), we obtain

H̃α
µνσ = R̃α

µσν +
i
λα(δε

i
λµ −

i
λβΓβ

εµ)Λ̃ε
σν +

i
λα(∂̇ε

i
λµ −

i
λβCβ

εµ)Rε
σν

= R̃α
µσν + Λε

νσ(Γα
µε − Γα

εµ) + Rε
σν(Cα

µε − Cα
εµ)

= Λα
σν|µ + Cα

εµRε
σν + Lα

σνµ + Lα
νµσ + Λε

νσΛα
µε + Tα

µεR
ε
σν

= Λα
σν|µ + Tα

εµRε
σν + Cα

µεR
ε
σν + Lα

σνµ + Lα
νµσ + Λε

νσΛα
µε + Tα

µεR
ε
σν

= Λα
σν|µ + Λε

νσΛα
µε + Sµ,ν,σLα

µσν .

Proposition 7.3. Let H̃νσ := H̃α
ανσ, Ĥνσ := Ĥα

ανσ and
◦
Hνσ :=

◦
Hα

ανσ with similar
expression for Ṽνσ. Then, we have

(a) H̃νσ = βσ|ν − βν|σ + 2βεΛε
σν ,

(b) Ṽνσ = Bσ||ν −Bν||σ + 2BεT
ε
σν ,

(c) Ĥνσ = 1
2{H̃νσ + βεΛε

νσ},

(d)
◦
Hνσ = 0.
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Proposition 7.4. Let H̃µσ := H̃α
µασ, Ĥµσ := Ĥα

µασ and
◦
Hµσ :=

◦
Hα

µασ with similar
expressions for Ṽµσ. Then, we have

(a) H̃µσ = βσ|µ + Λε
ασΛα

µε + Sα,µ,σLα
αµσ,

(b) Ṽµσ = Bσ||µ + T ε
ασTα

µε,

(c) Ĥµσ = 1
2H̃µσ + 1

4 (βεΛε
σµ + Λε

σαΛα
µε),

(d)
◦
Hµσ = βµ|σ − γα

µσ|α + βεγ
ε
µσ − γε

σαγα
µε.

Proposition 7.5. The following holds:

(a) H̃[µσ] = 1
2{βσ|µ − βµ|σ}+ Sα,µ,σLα

αµσ,

(b) H̃(µσ) = 1
2{βσ|µ + βµ|σ}+ Λε

ασΛα
µε,

(c) Ṽ[µσ] = 1
2{Bσ||µ −Bµ||σ},

(d) Ṽ(µσ) = 1
2{Bσ||µ + Bµ||σ}+ T ε

ασTα
µε,

(e) Ĥ[µσ] = 1
2H̃[µσ] + 1

4βεΛε
σµ,

(f) Ĥ(µσ) = 1
2H̃(µσ) + 1

4Λε
σαΛα

µε,

(g)
◦
H [µσ] = 1

2SαµσLα
αµσ,

(h)
◦
H(µσ) = 1

2{(βµ|σ + βσ|µ)− Ωα
µσ|α + βεΩε

µσ} − γα
µεγ

ε
σα.

Corollary 7.6. the following holds:

(a) H̃α
α = βα|α + Λεµ

αΛα
εµ,

(b) Ṽ α
α = Bα||α + T εµ

αTα
εµ,

(c) Ĥα
α = 1

2βα|α + 1
4Λεµ

αΛα
εµ,

(d)
◦
Hσ

σ = βσ|σ − 1
2Ωασ

σ|α + 1
2βαΩασ

σ − γασ
εγ

ε
σα.

Taking into account Proposition 4.4, Theorem 7.2 and the Bianchi identity [4] for
the Riemannian d-connection, we get the following

Proposition 7.7. The hW-tensors H̃α
µνσ, Ĥα

µνσ,
◦
Hα

µνσ and the vW-tensors Ṽ α
µνσ

satisfy the following identities:

(a) Sµ,ν,σ H̃α
µνσ = 2Sµ,ν,σ(Λα

µε Λε
νσ + Lα

µσν).

(b) Sµ,ν,σ Ṽ α
µνσ = 2Sµ,ν,σ(Tα

µε T ε
νσ).

(c) Sµ,ν,σ Ĥα
µνσ = Sµ,ν,σ Lα

µσν .
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(d) Sµ,ν,σ

◦
Hα

µνσ = Sµ,ν,σ Lα
µσν .

We collect the results obtained in this section in the following tables, where the
contracted W -tensors are expressed in terms of the fundamental tensors.

Table 6 (a). Second rank W-tensors

Skew-symmetric Symmetric

Dual H̃[µσ] = εσµ − Lσµ + 2M[σµ] H̃(µσ) = θµσ − (ωµσ + σµσ − hµσ)

Ṽ[µσ] = ε̄σµ Ṽ(µσ) = θ̄µσ − (ω̄µσ + σ̄µσ − h̄µσ)

Symmetric Ĥ[µσ] = 1
2
H̃[µσ] + 1

4
ησµ Ĥ(µσ) = 1

2
H̃(µσ) + 1

4
{ωµσ + σµσ − hµσ}

Riemannian
◦

H[µσ] = 1
2
Lµσ −M[µσ]

◦
H(µσ) = θµσ − 1

2
(ψµσ − φµσ)− ωµσ

Table 6 (b). Scalar W-tensors

h-scalar W-tensors v-scalar W-tensors

Dual H̃σ
σ = θ − (3ω + σ) Ṽ σ

σ = θ̄ − (3ω̄ + σ̄)

Symmetric Ĥσ
σ = 1

2θ − 1
4 (3ω + σ)

Riemannian
◦
Hσ

σ = θ − 1
2 (ψ − φ)− ω

Concluding remarks

In the present article, we have developed a parallelizable structure in the context of
a generalized Lagrange space. Four distinguished connections, depending on one non-
linear connection, are used to explore the properties of this space. Different curvature
tensors characterizing this structure are calculated. The contracted curvature tensors
necessary for physical applications are given and compared (Tables 5(a)). The traces
of these tensors are derived and compared (Table 5(b)). Finally, the different W -
tensors with their contractions and traces are also derived (Tables 6(a) and 6(b)).
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On the present work, we have the following comments and remarks:

1. Existing theories of gravity suffer from some problems connected to recent ob-
served astrophysical phenomena, especially those admitting anisotropic be-
havior of the system concerned (e.g. the flatness of the rotation curves of spiral
galaxies). So, theories in which the gravitational potential depends on both po-
sition and direction are needed. Such theories are to be constructed in spaces
admitting this dependence. This is one of the aims motivating the present work.

2. Among the advantages of the AP-geometry are the ease in calculations and the
diverse and its thorough applications. In this work, we have kept as close as
possible to the classical AP-case. However, the extra degrees of freedom in our
GAP-geometry have created an abundance of geometric objects which have no
counterpart in the classical AP-geometry. Since the physical meaning of most of
the geometric objects of the classical AP-structure is clear, we hope to attribute
physical meaning to the new geometric objects appearing in the present work,
especially the vertical quantities.

3. Due to the wealth of the GAP-geometry, one is faced with the problem of
choosing geometric objects that represent true physical quantities. As a first step
to solve this problem, we have written all second order tensors in terms of the
fundamental tensors defined in section 5. This is done to facilitate comparison
between these tensors and to be able to choose the most appropriate for physical
application. The same procedure has been used for scalars.

4. The paper is not intended to be an end in itself. In it, we try to construct a
geometric framework capable of dealing with and describing physical phenom-
ena. The success of the classical AP-geometry in physical applications made us
choose this geometry as a guide line.

The physical interpretation of the geometric objects existing in the GAP-
geometry and not in the AP-geometry will be further investigated in a forth-
coming paper.

This paper is not an end in itself, but rather the beginning of a research direction.
The physical interpretation of the geometric objects in the GAP-space that have
no counterpart in the classical AP-space will be further investigated in forthcoming
papers.
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