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Abstract. Having in mind the well known model of Euclidean convex
hypersurfaces [4], [5] and the ideas in [1], many authors defined and in-
vestigated the convex hypersurfaces of a Riemannian manifold. As it was
proved by the first author in [7], there follows the interdependence between
convexity and Gauss curvature of the hypersurface. This paper defines
and studies the H-convexity of a Riemannian submanifold of arbitrary
codimension, replacing the normal versor of a hypersurface with the mean
curvature vector of the submanifold. The main results include: some prop-
erties of H-convex submanifolds, a characterization of the Chen definition
of strictly H-convexity for submanifolds in real space forms [2], [3] and
examples.
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1 Convex hypersurfaces in Riemannian manifolds

Let (N, g) be a complete finite-dimensional Riemannian manifold and M be an ori-
ented hypersurface whose induced Riemannian metric is also denoted by g. We denote
by ω the 1-form associated to the unit normal vector field ξ on the hypersurface M .

Let x be a point in M ⊂ N and V a neighborhood of x in N such that expx :
TxN → V is a diffeomorphism. The real-valued function defined on V by

F (y) = ωx(exp−1
x (y))

has the property that the set

TGHx = {y ∈ V | F (y) = 0}

is a totally geodesic hypersurface at x, tangent to M at x. This hypersurface is the
common boundary of the sets

TGH−
x = {y ∈ V | F (y) ≤ 0}, TGH+

x = {y ∈ V | F (y) ≥ 0}.
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Definition. The hypersurface M is called convex at x ∈ M if there exists an open
set U ⊂ V ⊂ N containing x such that M ∩ U is contained either in TGH−

x or in
TGH+

x .
A hypersurface M convex at x is said to be strictly convex at x if

M ∩ U ∩ TGHx = {x}.
In [7] it was obtained a necessary condition for a hypersurface of a Riemannian

manifold to be convex at a given point.

Theorem 1.1 If M is an oriented hypersurface in N , convex at x ∈ M, then the
bilinear form

Ωx : TxM × TxM → R, Ωx(X,Y ) = g(h(X, Y ), ξ),

where ξ is the normal versor at x, and h is the second fundamental form of M, is
semidefinite.

The converse of Theorem 1.1 is not true. To show this, we consider the surface
M : x3 = (x1)2 + (x2)3 in R3. One observes that 0 ∈ M , ξ(0) = (0, 0, 1) and TGH0 :
x3 = 0 is the plane tangent to M at the origin. On the other hand, if

c : I → M, c(t) = (x1(t), x2(t), x3(t))

is a C2 curve such that 0 ∈ I and c(0) = 0, then (x3)′′(0) = 2((x1)′(0))2 and hence
the function

f : I → R, f(t) = 〈c(t)− 0, ξ(0)〉
satisfies the relations f(t) = x3(t) and f ′′(0) = (x3)′′(0) = 2((x1)′(0))2.

Since Ω0(
.
c (0),

.
c (0)) = f ′′(0), and c is an C2 arbitrary curve, one gets that Ω0

is positive semidefinite. However M is not convex at the origin because the tangent
plane TGH0 : x3 = 0 cuts the surface along the semicubic parabola

x3 = 0, (x1)2 + (x2)3 = 0

and consequently in any neighborhood of the origin there exist points of the surface
placed both below the tangent plane and above the tangent plane.

If the bilinear form Ω is definite at the point x ∈ M , then the hypersurface M is
strictly convex at x.

The next results [7] establish a connection between the Riemannian manifolds
admitting a function whose Hessian is positive definite and their convex hypersurfaces.

Theorem 1.2 Suppose that the Riemannian manifold (N, g) supports a function
f : N → R with positive definite Hessian. On each compact oriented hypersurface M
in N there exists a point x ∈ M such that the bilinear form Ω(x) is definite.

Theorem 1.3 If the Riemannian manifold (N, g) supports a function f : N → R
with positive definite Hessian, then

1) there is no compact minimal hypersurface in N ;
2) if the hypersurface M is connected and compact and its Gauss curvature is

nowhere zero, then M is strictly convex.

Theorem 1.4 Let (N, g) be a connected and complete Riemannian manifold and
f : N → R a function with positive definite Hessian. If x0 is a critical point of f and
a0 = f(x0), then for any real number a ∈ Im f\{a0}, the hypersurface Ma = f−1{a}
is strictly convex.
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2 H-convex Riemannian submanifolds

Having in mind the model of convex hypersurfaces in Riemannian manifolds, we define
the H-convexity of a Riemannian submanifold of arbitrary codimension, replacing the
normal versor of a hypersurface with the mean curvature vector of the submanifold.

Let (N, g) be a complete finite-dimensional Riemannian manifold and M be a
submanifold in N of dimension n whose induced Riemannian metric is also denoted
by g. Let x be a point in M ⊂ N , with Hx 6= 0 and V a neighborhood of x in N such
that expx : TxN → V is a diffeomorphism. We denote by ω the 1-form associated to
the mean curvature vector H of M .

The real-valued function defined on V by

F (y) = ωx(exp−1
x (y))

has the property that the set

TGHx = {y ∈ V | F (y) = 0}
is a totally geodesic hypersurface at x, tangent to Mat x. This hypersurface is the
common boundary of the sets

TGH−
x = {y ∈ V | F (y) ≤ 0}, TGH+

x = {y ∈ V | F (y) ≥ 0}.
Definition. The submanifold M is called H-convex at x ∈ M if there exists an

open set U ⊂ V ⊂ N containing x such that M ∩ U is contained either in TGH−
x or

in TGH+
x .

A submanifold M , which is H-convex at x, is called strictly H-convex at x if

M ∩ U ∩ TGHx = {x}.
The next result is a necessary condition for a submanifold of a Riemannian man-

ifold to be H-convex at a given point.

Theorem 2.1 If M is a submanifold in N, H-convex at x ∈ M, then the bilinear
form

Ωx : TxM × TxM → R, Ωx(X, Y ) = g(h(X,Y ),H),

where h is the second fundamental form of M, is positive semidefinite.
Proof. We suppose that there is a open set U ⊂ V ⊂ N which contains the point

x such that M ∩ U ⊂ TGH+
x .

For an arbitrary vector X ∈ TxM, let c : I → M ∩ U be a C2 curve, where I is a
real interval such that 0 ∈ I and c(0) = x,

.
c (0) = X. As c(I) ⊂ M ∩U ⊂ TGH+

x the
function f = F ◦ c : I → R satisfies

(2.1) f(t) ≥ 0, ∀t ∈ I.

It follows that 0 is a global minimum point for f , and hence

(2.2) 0 = f
′
(0) = ωx(d exp−1

x (c(0)))(
.
c (0)) = ωx(X),

(2.3) 0 ≤ f
′′
(0) = ωx(d2 exp−1

x (c(0)))(
.
c (0),

.
c (0))
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+ωx(d exp−1
x (c(0)))(

..
c (0)) = ωx(

..
c (0)) = Ωx(X,X).

Since X ∈ TxM is an arbitrary vector, we obtain that Ωx is positive semidefinite.

Remark. We consider {e1, e2, ..., en} an orthonormal frame in TxM . Since

Trace(Ωx) = g(
n∑

i=1

h(ei, ei),Hx) = ng(Hx,Hx) > 0,

the quadratic form Ωx cannot be negative semidefinite, therefore M ∩ U cannot be
contained in TGH−

x . So, if the submanifold M is H-convex at the point x, then there
exists an open set U ⊂ V ⊂ N containing x such that M ∩U is contained in TGH+

x .
In the sequel, we prove that if the bilinear form Ωx is positive definite, then the

submanifold M is strictly H-convex at the point x. For this purpose we introduce a
function similar to the height function used in the study of the hypersurfaces of an
Euclidean space.

We fix x ∈ M ⊂ N and a neighborhood V of x for which expx : TxN → V is a
diffeomorphism. The function

Fωx : V → R, Fωx(y) = ωx(exp−1
x (y)

has the property that it is affine on geodesics radiating from x.
We consider an arbitrary vector X ∈ TxM and a curve c : I → V such that 0 ∈ I,

c(0) = x,
.
c (0) = X. The function f = Fωx ◦ c : I → R satisfies

f ′(0) = ωx(d exp−1
x (c(0))(

.
c (0)) = ωx(

.
c (0)) = ωx(X) = g(H, X) = 0

and hence x ∈ M is a critical point of Fωx .

Theorem 2.2 Let M be a submanifold in N . If the bilinear form Ωx is positive
definite, then M is strictly H-convex at the point x.

Proof. The point x ∈ M is a critical point of Fωx and Fωx(x) = 0. On the other
hand one observes that

HessNFωx = HessMFωx − dFωx(ΩH).

As Fωx is affine on each geodesic radiating from x, it follows HessNFωx = 0. It remains
that

HessMFωx(x) = Ωx

and hence HessMFωx is positive definite at the point x. In this way x is a strict local
minimum point for Fωx in M ∩ V , i.e., the submanifold M is strictly H-convex at x.

Remark. 1) The bilinear form Ωx is positive (semi)definite if and only if the
Weingarten operator AH is positive (semi)definite.

2) If M is an hypersurface in N , x is a point in M with Hx 6= 0, then M is
H-convex at x if and only if M is convex at x.

A class of strictly H-convex submanifolds into a Riemannian manifold is made
from the curves which have the mean curvature nonzero.

Theorem 2.3 Let (N, g) be a Riemannian manifold and c : I → N a regular
curve which have the mean curvature nonzero, where I is an real interval. Then c is
a strictly H-convex submanifold of N .
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Proof. We fix t ∈ I. As Tc(t)c =Sp{ .
c (t)}, we obtain

Hc(t) =
h(

.
c (t),

.
c (t))∥∥ .

c (t)
∥∥2 .

Since Ω(
.
c (t),

.
c (t)) = g(h(

.
c (t),

.
c (t)),Hc(t)) =

∥∥ .
c (t)

∥∥2 ∥∥Hc(t)

∥∥2
> 0, the quadratic

form Ω is positive definite. It follows that the curve c is a strictly H-convex subman-
ifold of N .

3 H-convex Riemannian submanifolds
in real space forms

Let us consider (M, g) a Riemannian manifold of dimension n. We fix x ∈ M and
k ∈ 2, n. Let L be a vector subspace of dimension k in TxM . If X ∈ L is a unit vector,
and {e′1, e′2, ..., e′k} is an orthonormal frame in L, with e′1 = X, we denote

RicL(X) =
k∑

j=2

k(e′1 ∧ e′j),

where k(e′1 ∧ e′j) is the sectional curvature given by Sp{e′1, e′j}. We define the Ricci
curvature of k-order at the point x ∈ M ,

θk(x) =
1

k − 1
min

L, dimL = k,
X ∈ L, ‖X‖ = 1

RicL(X).

B. Y. Chen showed [2], [3] that the eigenvalues of the Weingarten operator of a
submanifold in a real space form and the Ricci curvature of k-order satisfies the next
inequality.

Theorem 3.1 Let (M̃(c), g̃) be a real space form of dimension m and M ⊂ M̃(c)
a submanifold of dimension n, and k ∈ 2, n. Then

(i) AH ≥ n−1
n (θk(x)− c)In.

(ii) If θk(x) 6= c, then the previous inequality is strict.

Corollary 3.2 If M is a submanifold of dimension n in the real space form M̃(c)
of dimension m, x ∈ M and there is a natural number k ∈ 2, n such that θk(x) > c,
then M is strictly H-convex at the point x.

The converse of previous corollary is also true in the case of hypersurfaces in a
real space form.

Theorem 3.3 If M is a hypersurface of dimension n of a real space form M̃(c)
and M is strictly H-convex at a point x, then

θk(x) > c, ∀ k ∈ 2, n.

Proof. Let x be a point in M, let H be the mean curvature of M and π a 2-plane
in TxM . We consider {X, Y } an orthonormal frame in π and ξ = Hx

‖Hx‖ . The second
fundamental form of the submanifold M satisfies the relation
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(3.1) h(U, V ) =
Ωx(U, V )
‖Hx‖ ξ, ∀U, V ∈ TxM.

On the other hand, the Gauss equation can be written

(3.2) R̃(X, Y, X, Y ) = R(X,Y,X, Y )− g̃(h(X,X), h(Y, Y )) + g̃(h(X,Y ), h(X, Y )).

Using the relation (3.1) and the fact that M̃(c) has the sectional curvature c, we
obtain

(3.3) R(X, Y,X, Y ) = c +
1

‖Hx‖2
(Ωx(X,X)Ωx(Y, Y )− Ωx(X,Y )2).

On the other hand, Ωx is positive definite because M is strictly H-convex at
the point x. From the Cauchy inequality, using the fact that X and Y are linear
independent vectors, it follows

(3.4) Ωx(X,X)Ωx(Y, Y )− Ω(X, Y )2 > 0.

From (3.3) and (3.4) we find

(3.5) R(X, Y, X, Y ) > c,

which means that the sectional curvature of M at the point x is strictly greater than
c. Using the definition of Ricci curvatures, it follows that

θk(x) > c, ∀ k ∈ 2, n.

Let M be a submanifold of dimension n in the m dimensional sphere Sm ⊂ Rm+1.
We denote with 〈 , 〉 the metrics induced on Sm and M by the standard metric of
Rm+1, with ∇, ∇′ and ∇̃ the Levi-Civita connections on M , Sm and Rm+1 and with
h the second fundamental form of M in Rm+1, with h

′
the second fundamental form

of M in Smand with h̃ the second fundamental form of Sm in Rm+1.
Let X,Y be two vector fields tangents to M. The Gauss formula gives

(3.6) ∇′
XY = ∇XY + h

′
(X, Y )

and

(3.7) ∇̃XY = ∇′
XY + h̃(X, Y ) = ∇XY + h

′
(X, Y ) + h̃(X, Y ).

Therefore

(3.8) h(X, Y ) = h
′
(X, Y ) + h̃(X, Y ).

We fix a point x ∈ M and an orthonormal frame {e1, e2, ..., en} in TxM. From the
relation (3.8), one gets

(3.9) h(ei, ei) = h
′
(ei, ei) + h̃(ei, ei),∀i ∈ 1, n

and hence



118 Constantin Udrişte and Teodor Oprea

(3.10) H = H
′
+

1
n

n∑

i=1

h̃(ei, ei),

where H is the mean curvature vector field of M ⊂ Rm+1 and H
′

is the mean
curvature vector field of Sm ⊂ Rm+1. We introduce the quadratic forms

Ω, Ω
′
: TxM × TxM → R,

Ω(X,Y ) = 〈h(X,Y ),H〉, Ω
′
(X,Y ) = 〈h′(X,Y ),H

′〉.
From (3.8) and (3.10), we obtain

(3.11) Ω(X, Y ) = 〈h(X, Y ),H〉 = 〈h′(X, Y ) + h̃(X, Y ),H
′
+

1
n

n∑

i=1

h̃(ei, ei)〉.

Using the fact that h
′
(X, Y ) and H

′
are tangent vectors at Sm, and h̃(X,Y ) and∑n

i=1 h̃(ei, ei) are normal vectors at Sm, one gets

(3.12) Ω(X, Y ) = 〈h′(X, Y ), H
′〉+ 〈h̃(X,Y ),

1
n

n∑

i=1

h̃(ei, ei)〉

= Ω
′
(X,Y ) + 〈h̃(X, Y ),

1
n

n∑

i=1

h̃(ei, ei)〉.

Based on these considerations, we formulate the next

Theorem 3.4 We consider a point x ∈ M.
(i) If M is a submanifold in Sm, H-convex at x, then M is strictly H-convex at

x, as submanifold in Rm+1.
(ii) If the Weingarten operator AH of M ⊂ Rm+1 satisfies the inequality AH > In,

then M is a submanifold in Sm, strictly H-convex at x.
Proof. We denote with X̃ the position vector field of Sm. The second fundamental

form of Sm ⊂ Rm+1 is given by

(3.13) h̃(X,Y ) = 〈h̃(X,Y ), X̃〉X̃ = 〈∇̃XY, X̃〉X̃

= −〈Y, ∇̃XX̃〉X̃ = −〈X, Y 〉X̃, ∀X, Y ∈ X (M).

Using (3.13), we find

(3.14)
1
n

n∑

i=1

h̃(ei, ei) = − 1
n

n∑

i=1

〈ei, ei〉X̃ = −X̃.

From (3.12), (3.13), (3.14) and ∀X,Y ∈ TxM , one gets

(3.15) Ω(X,Y ) = Ω
′
(X, Y ) + 〈〈X, Y 〉X̃, X̃〉 = Ω

′
(X, Y ) + 〈X,Y 〉

We read (3.15) in two ways: (i) If M is a submanifold in Sm, H-convex at x, then
Ω
′
(x) is positive semidefinite. Using the fact that 〈, 〉 is positive definite, it follows
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that Ω(x) is positive definite, therefore M is a strictly H-convex submanifold in Rm+1

at x. (ii) If AH > In, then 〈AHX, X〉 > ‖X‖2 , ∀ X ∈ TxM. Therefore

Ω′(X, X) = Ω(X, X)− ‖X‖2 = 〈h(X, X),H〉 − ‖X‖2

= 〈AHX,X〉 − ‖X‖2 > 0,∀X ∈ TxM.

Consequently M is a submanifold in Sm, strictly H-convex at x.

Corollary 3.5 If M is a minimal submanifold in Sm, then M is strictly H-convex
at x as submanifold in Rm+1.

Proof. Using the fact that M is minimal in Sm, one gets Ω′ = 0, therefore
Ω(X, Y ) =〈X, Y 〉, ∀ X,Y ∈ X (M). Consequently Ω is positive definite.
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85-87.
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