Constantin Udrişte and Teodor Oprea

Abstract. Having in mind the well known model of Euclidean convex hypersurfaces [4], [5] and the ideas in [1], many authors defined and investigated the convex hypersurfaces of a Riemannian manifold. As it was proved by the first author in [7], there follows the interdependence between convexity and Gauss curvature of the hypersurface. This paper defines and studies the H-convexity of a Riemannian submanifold of arbitrary codimension, replacing the normal versor of a hypersurface with the mean curvature vector of the submanifold. The main results include: some properties of H-convexity for submanifolds in real space forms [2], [3] and examples.

M.S.C. 2000: 53C40, 53C45, 52A20. Key words: global submanifolds, convexity, mean curvature.

1 Convex hypersurfaces in Riemannian manifolds

Let (N, g) be a complete finite-dimensional Riemannian manifold and M be an oriented hypersurface whose induced Riemannian metric is also denoted by g. We denote by ω the 1-form associated to the unit normal vector field ξ on the hypersurface M.

Let x be a point in $M \subset N$ and V a neighborhood of x in N such that $\exp_x : T_x N \to V$ is a diffeomorphism. The real-valued function defined on V by

$$F(y) = \omega_x(\exp_x^{-1}(y))$$

has the property that the set

$$TGH_x = \{ y \in V \mid F(y) = 0 \}$$

is a *totally geodesic hypersurface at* x, tangent to M at x. This hypersurface is the common boundary of the sets

$$TGH_x^- = \{ y \in V \mid F(y) \le 0 \}, \ TGH_x^+ = \{ y \in V \mid F(y) \ge 0 \}.$$

Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 112-119. © Balkan Society of Geometers, Geometry Balkan Press 2008.

Definition. The hypersurface M is called *convex* at $x \in M$ if there exists an open set $U \subset V \subset N$ containing x such that $M \cap U$ is contained either in TGH_x^- or in TGH_x^+ .

A hypersurface M convex at x is said to be *strictly convex* at x if

$$M \cap U \cap TGH_x = \{x\}.$$

In [7] it was obtained a necessary condition for a hypersurface of a Riemannian manifold to be convex at a given point.

Theorem 1.1 If M is an oriented hypersurface in N, convex at $x \in M$, then the bilinear form

$$\Omega_x: T_x M \times T_x M \to R, \ \Omega_x(X,Y) = g(h(X,Y),\xi),$$

where ξ is the normal versor at x, and h is the second fundamental form of M, is semidefinite.

The converse of Theorem 1.1 is not true. To show this, we consider the surface $M: x^3 = (x^1)^2 + (x^2)^3$ in \mathbb{R}^3 . One observes that $0 \in M$, $\xi(0) = (0, 0, 1)$ and $TGH_0: x^3 = 0$ is the plane tangent to M at the origin. On the other hand, if

$$c: I \to M, \ c(t) = (x^1(t), x^2(t), x^3(t))$$

is a C^2 curve such that $0 \in I$ and c(0) = 0, then $(x^3)''(0) = 2((x^1)'(0))^2$ and hence the function

 $f: I \to R, \ f(t) = \langle c(t) - 0, \xi(0) \rangle$

satisfies the relations $f(t) = x^3(t)$ and $f''(0) = (x^3)''(0) = 2((x^1)'(0))^2$.

Since $\Omega_0(\dot{c}(0), \dot{c}(0)) = f''(0)$, and c is an C^2 arbitrary curve, one gets that Ω_0 is positive semidefinite. However M is not convex at the origin because the tangent plane $TGH_0: x^3 = 0$ cuts the surface along the semicubic parabola

$$x^{3} = 0, (x^{1})^{2} + (x^{2})^{3} = 0$$

and consequently in any neighborhood of the origin there exist points of the surface placed both below the tangent plane and above the tangent plane.

If the bilinear form Ω is definite at the point $x \in M$, then the hypersurface M is strictly convex at x.

The next results [7] establish a connection between the Riemannian manifolds admitting a function whose Hessian is positive definite and their convex hypersurfaces.

Theorem 1.2 Suppose that the Riemannian manifold (N, g) supports a function $f: N \to R$ with positive definite Hessian. On each compact oriented hypersurface M in N there exists a point $x \in M$ such that the bilinear form $\Omega(x)$ is definite.

Theorem 1.3 If the Riemannian manifold (N, g) supports a function $f : N \to R$ with positive definite Hessian, then

1) there is no compact minimal hypersurface in N;

2) if the hypersurface M is connected and compact and its Gauss curvature is nowhere zero, then M is strictly convex.

Theorem 1.4 Let (N, g) be a connected and complete Riemannian manifold and $f: N \to R$ a function with positive definite Hessian. If x_0 is a critical point of f and $a_0 = f(x_0)$, then for any real number $a \in Im f \setminus \{a_0\}$, the hypersurface $M_a = f^{-1}\{a\}$ is strictly convex.

Having in mind the model of convex hypersurfaces in Riemannian manifolds, we define the *H*-convexity of a Riemannian submanifold of arbitrary codimension, replacing the normal versor of a hypersurface with the mean curvature vector of the submanifold.

Let (N, g) be a complete finite-dimensional Riemannian manifold and M be a submanifold in N of dimension n whose induced Riemannian metric is also denoted by g. Let x be a point in $M \subset N$, with $H_x \neq 0$ and V a neighborhood of x in N such that $\exp_x : T_x N \to V$ is a diffeomorphism. We denote by ω the 1-form associated to the mean curvature vector H of M.

The real-valued function defined on V by

$$F(y) = \omega_x(\exp_x^{-1}(y))$$

has the property that the set

$$TGH_x = \{ y \in V \mid F(y) = 0 \}$$

is a totally geodesic hypersurface at x, tangent to M at x. This hypersurface is the common boundary of the sets

$$TGH_x^- = \{ y \in V \mid F(y) \le 0 \}, \ TGH_x^+ = \{ y \in V \mid F(y) \ge 0 \}.$$

Definition. The submanifold M is called H-convex at $x \in M$ if there exists an open set $U \subset V \subset N$ containing x such that $M \cap U$ is contained either in TGH_x^- or in TGH_x^+ .

A submanifold M, which is H-convex at x, is called *strictly* H-convex at x if

$$M \cap U \cap TGH_x = \{x\}.$$

The next result is a necessary condition for a submanifold of a Riemannian manifold to be H-convex at a given point.

Theorem 2.1 If M is a submanifold in N, H-convex at $x \in M$, then the bilinear form

$$\Omega_x: T_x M \times T_x M \to R, \ \Omega_x(X,Y) = g(h(X,Y),H),$$

where h is the second fundamental form of M, is positive semidefinite.

Proof. We suppose that there is a open set $U \subset V \subset N$ which contains the point x such that $M \cap U \subset TGH_x^+$.

For an arbitrary vector $X \in T_x M$, let $c: I \to M \cap U$ be a C^2 curve, where I is a real interval such that $0 \in I$ and c(0) = x, $\dot{c}(0) = X$. As $c(I) \subset M \cap U \subset TGH_x^+$ the function $f = F \circ c: I \to R$ satisfies

(2.1)
$$f(t) \ge 0, \ \forall t \in I.$$

It follows that 0 is a global minimum point for f, and hence

(2.2)
$$0 = f'(0) = \omega_x (d \exp_x^{-1}(c(0)))(\dot{c}(0)) = \omega_x(X),$$

(2.3)
$$0 \le f''(0) = \omega_x (d^2 \exp_x^{-1}(c(0)))(\dot{c}(0), \dot{c}(0))$$

 $+\omega_x(d\exp_x^{-1}(c(0)))(\ddot{c}(0)) = \omega_x(\ddot{c}(0)) = \Omega_x(X,X).$

Since $X \in T_x M$ is an arbitrary vector, we obtain that Ω_x is positive semidefinite.

Remark. We consider $\{e_1, e_2, ..., e_n\}$ an orthonormal frame in $T_x M$. Since

Trace
$$(\Omega_x) = g(\sum_{i=1}^n h(e_i, e_i), H_x) = ng(H_x, H_x) > 0,$$

the quadratic form Ω_x cannot be negative semidefinite, therefore $M \cap U$ cannot be contained in TGH_x^- . So, if the submanifold M is H-convex at the point x, then there exists an open set $U \subset V \subset N$ containing x such that $M \cap U$ is contained in TGH_x^+ .

In the sequel, we prove that if the bilinear form Ω_x is positive definite, then the submanifold M is strictly H-convex at the point x. For this purpose we introduce a function similar to the height function used in the study of the hypersurfaces of an Euclidean space.

We fix $x \in M \subset N$ and a neighborhood V of x for which $\exp_x : T_x N \to V$ is a diffeomorphism. The function

$$F_{\omega_x}: V \to R, \ F_{\omega_x}(y) = \omega_x(\exp_x^{-1}(y))$$

has the property that it is affine on geodesics radiating from x.

We consider an arbitrary vector $X \in T_x M$ and a curve $c: I \to V$ such that $0 \in I$, $c(0) = x, \dot{c}(0) = X$. The function $f = F_{\omega_x} \circ c: I \to R$ satisfies

$$f'(0) = \omega_x(d \exp_x^{-1}(c(0))(\dot{c}(0))) = \omega_x(\dot{c}(0)) = \omega_x(X) = g(H, X) = 0$$

and hence $x \in M$ is a critical point of F_{ω_x} .

Theorem 2.2 Let M be a submanifold in N. If the bilinear form Ω_x is positive definite, then M is strictly H-convex at the point x.

Proof. The point $x \in M$ is a critical point of F_{ω_x} and $F_{\omega_x}(x) = 0$. On the other hand one observes that

$$\operatorname{Hess}^{N} F_{\omega_{x}} = \operatorname{Hess}^{M} F_{\omega_{x}} - \mathrm{d} F_{\omega_{x}}(\Omega H).$$

As F_{ω_x} is affine on each geodesic radiating from x, it follows $\text{Hess}^N F_{\omega_x} = 0$. It remains that

$$\operatorname{Hess}^{M} F_{\omega_{x}}(x) = \Omega_{x}$$

and hence $\operatorname{Hess}^M F_{\omega_x}$ is positive definite at the point x. In this way x is a strict local minimum point for F_{ω_x} in $M \cap V$, i.e., the submanifold M is strictly H-convex at x.

Remark. 1) The bilinear form Ω_x is positive (semi)definite if and only if the Weingarten operator A_H is positive (semi)definite.

2) If M is an hypersurface in N, x is a point in M with $H_x \neq 0$, then M is H-convex at x if and only if M is convex at x.

A class of strictly *H*-convex submanifolds into a Riemannian manifold is made from the curves which have the mean curvature nonzero.

Theorem 2.3 Let (N,g) be a Riemannian manifold and $c : I \to N$ a regular curve which have the mean curvature nonzero, where I is an real interval. Then c is a strictly H-convex submanifold of N.

Proof. We fix $t \in I$. As $T_{c(t)}c = \text{Sp}\{\dot{c}(t)\}\)$, we obtain

$$H_{c(t)} = \frac{h(\dot{c}(t), \dot{c}(t))}{\|\dot{c}(t)\|^2}$$

Since $\Omega(\dot{c}(t), \dot{c}(t)) = g(h(\dot{c}(t), \dot{c}(t)), H_{c(t)}) = \|\dot{c}(t)\|^2 \|H_{c(t)}\|^2 > 0$, the quadratic form Ω is positive definite. It follows that the curve c is a strictly H-convex submanifold of N.

3 H-convex Riemannian submanifolds in real space forms

Let us consider (M, g) a Riemannian manifold of dimension n. We fix $x \in M$ and $k \in \overline{2, n}$. Let L be a vector subspace of dimension k in $T_x M$. If $X \in L$ is a unit vector, and $\{e'_1, e'_2, \dots, e'_k\}$ is an orthonormal frame in L, with $e'_1 = X$, we denote

$$\operatorname{Ric}_{L}(X) = \sum_{j=2}^{k} k(e'_{1} \wedge e'_{j}),$$

where $k(e'_1 \wedge e'_j)$ is the sectional curvature given by $\operatorname{Sp}\{e'_1, e'_j\}$. We define the Ricci curvature of k-order at the point $x \in M$,

$$\theta_k(x) = \frac{1}{k-1} \min_{\substack{L, \dim L = k, \\ X \in L, ||X|| = 1}} Ric_L(X).$$

B. Y. Chen showed [2], [3] that the eigenvalues of the Weingarten operator of a submanifold in a real space form and the Ricci curvature of k-order satisfies the next inequality.

Theorem 3.1 Let $(\widetilde{M}(c), \widetilde{g})$ be a real space form of dimension m and $M \subset \widetilde{M}(c)$ a submanifold of dimension n, and $k \in \overline{2, n}$. Then

(i)
$$A_H \ge \frac{n-1}{n} (\theta_k(x) - c) I_n$$
.

(ii) If $\theta_k(x) \neq c$, then the previous inequality is strict.

Corollary 3.2 If M is a submanifold of dimension n in the real space form M(c) of dimension $m, x \in M$ and there is a natural number $k \in \overline{2, n}$ such that $\theta_k(x) > c$, then M is strictly H-convex at the point x.

The converse of previous corollary is also true in the case of hypersurfaces in a real space form.

Theorem 3.3 If M is a hypersurface of dimension n of a real space form $\overline{M}(c)$ and M is strictly H-convex at a point x, then

$$\theta_k(x) > c, \ \forall \ k \in \overline{2, n}$$

Proof. Let x be a point in M, let H be the mean curvature of M and π a 2-plane in $T_x M$. We consider $\{X, Y\}$ an orthonormal frame in π and $\xi = \frac{H_x}{\|H_x\|}$. The second fundamental form of the submanifold M satisfies the relation

(3.1)
$$h(U,V) = \frac{\Omega_x(U,V)}{\|H_x\|} \xi, \ \forall U, V \in T_x M$$

On the other hand, the Gauss equation can be written

$$(3.2) \quad \widetilde{R}(X,Y,X,Y) = R(X,Y,X,Y) - \widetilde{g}(h(X,X),h(Y,Y)) + \widetilde{g}(h(X,Y),h(X,Y)).$$

Using the relation (3.1) and the fact that $\widetilde{M}(c)$ has the sectional curvature c, we obtain

(3.3)
$$R(X,Y,X,Y) = c + \frac{1}{\|H_x\|^2} (\Omega_x(X,X)\Omega_x(Y,Y) - \Omega_x(X,Y)^2).$$

On the other hand, Ω_x is positive definite because M is strictly H-convex at the point x. From the Cauchy inequality, using the fact that X and Y are linear independent vectors, it follows

(3.4)
$$\Omega_x(X,X)\Omega_x(Y,Y) - \Omega(X,Y)^2 > 0.$$

From (3.3) and (3.4) we find

$$(3.5) R(X,Y,X,Y) > c,$$

which means that the sectional curvature of M at the point x is strictly greater than c. Using the definition of Ricci curvatures, it follows that

$$\theta_k(x) > c, \ \forall \ k \in \overline{2, n}.$$

Let M be a submanifold of dimension n in the m dimensional sphere $S^m \subset \mathbb{R}^{m+1}$. We denote with $\langle \ , \ \rangle$ the metrics induced on S^m and M by the standard metric of \mathbb{R}^{m+1} , with ∇ , ∇' and $\widetilde{\nabla}$ the Levi-Civita connections on M, S^m and \mathbb{R}^{m+1} and with h the second fundamental form of M in \mathbb{R}^{m+1} , with h' the second fundamental form of M in \mathbb{R}^{m+1} .

Let X, Y be two vector fields tangents to M. The Gauss formula gives

(3.6)
$$\nabla'_{X}Y = \nabla_{X}Y + h'(X,Y)$$

and

(3.7)
$$\widetilde{\nabla}_X Y = \nabla'_X Y + \widetilde{h}(X,Y) = \nabla_X Y + h'(X,Y) + \widetilde{h}(X,Y).$$

Therefore

(3.8)
$$h(X,Y) = h'(X,Y) + \tilde{h}(X,Y).$$

We fix a point $x \in M$ and an orthonormal frame $\{e_1, e_2, ..., e_n\}$ in $T_x M$. From the relation (3.8), one gets

(3.9)
$$h(e_i, e_i) = h'(e_i, e_i) + h(e_i, e_i), \forall i \in \overline{1, n}$$

and hence

Constantin Udrişte and Teodor Oprea

(3.10)
$$H = H' + \frac{1}{n} \sum_{i=1}^{n} \tilde{h}(e_i, e_i),$$

where H is the mean curvature vector field of $M \subset R^{m+1}$ and H' is the mean curvature vector field of $S^m \subset R^{m+1}$. We introduce the quadratic forms

$$\Omega, \ \Omega': T_x M \times T_x M \to R,$$

$$\Omega(X,Y) = \langle h(X,Y), H \rangle, \ \Omega'(X,Y) = \langle h'(X,Y), H' \rangle.$$

From (3.8) and (3.10), we obtain

(3.11)
$$\Omega(X,Y) = \langle h(X,Y),H \rangle = \langle h'(X,Y) + \widetilde{h}(X,Y),H' + \frac{1}{n}\sum_{i=1}^{n}\widetilde{h}(e_i,e_i) \rangle.$$

Using the fact that h'(X,Y) and H' are tangent vectors at S^m , and $\tilde{h}(X,Y)$ and $\sum_{i=1}^{n} \tilde{h}(e_i, e_i)$ are normal vectors at S^m , one gets

(3.12)
$$\Omega(X,Y) = \langle h'(X,Y), H' \rangle + \langle \tilde{h}(X,Y), \frac{1}{n} \sum_{i=1}^{n} \tilde{h}(e_i, e_i) \rangle$$
$$= \Omega'(X,Y) + \langle \tilde{h}(X,Y), \frac{1}{n} \sum_{i=1}^{n} \tilde{h}(e_i, e_i) \rangle.$$

Theorem 3.4 We consider a point $x \in M$.

(i) If M is a submanifold in S^m , H-convex at x, then M is strictly H-convex at x, as submanifold in \mathbb{R}^{m+1} .

(ii) If the Weingarten operator A_H of $M \subset \mathbb{R}^{m+1}$ satisfies the inequality $A_H > I_n$, then M is a submanifold in S^m , strictly H-convex at x.

Proof. We denote with X the position vector field of S^m . The second fundamental form of $S^m \subset \mathbb{R}^{m+1}$ is given by

(3.13)
$$\widetilde{h}(X,Y) = \langle \widetilde{h}(X,Y), \widetilde{X} \rangle \widetilde{X} = \langle \widetilde{\nabla}_X Y, \widetilde{X} \rangle \widetilde{X}$$

$$= -\langle Y, \nabla_X X \rangle X = -\langle X, Y \rangle X, \ \forall X, Y \in \mathcal{X}(M).$$

Using (3.13), we find

(3.14)
$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{h}(e_i,e_i) = -\frac{1}{n}\sum_{i=1}^{n}\langle e_i,e_i\rangle\widetilde{X} = -\widetilde{X}.$$

From (3.12), (3.13), (3.14) and $\forall X, Y \in T_x M$, one gets

(3.15)
$$\Omega(X,Y) = \Omega'(X,Y) + \langle \langle X,Y \rangle \widetilde{X}, \widetilde{X} \rangle = \Omega'(X,Y) + \langle X,Y \rangle$$

We read (3.15) in two ways: (i) If M is a submanifold in S^m , H-convex at x, then $\Omega'(x)$ is positive semidefinite. Using the fact that \langle, \rangle is positive definite, it follows

118

that $\Omega(x)$ is positive definite, therefore M is a strictly H-convex submanifold in \mathbb{R}^{m+1} at x. (ii) If $A_H > I_n$, then $\langle A_H X, X \rangle > ||X||^2$, $\forall X \in T_x M$. Therefore

$$\Omega'(X,X) = \Omega(X,X) - ||X||^2 = \langle h(X,X),H \rangle - ||X||^2$$
$$= \langle A_H X,X \rangle - ||X||^2 > 0, \forall X \in T_x M.$$

Consequently M is a submanifold in S^m , strictly H-convex at x.

Corollary 3.5 If M is a minimal submanifold in S^m , then M is strictly H-convex at x as submanifold in R^{m+1} .

Proof. Using the fact that M is minimal in S^m , one gets $\Omega' = 0$, therefore $\Omega(X,Y) = \langle X,Y \rangle, \forall X,Y \in \mathcal{X}(M)$. Consequently Ω is positive definite.

References

- R.L. Bishop, Infinitesimal convexity implies local convexity, Indiana Univ. Math. J. 24, 2 (1974), 169-172.
- [2] B.Y. Chen, Mean curvature shape operator of isometric immersions in real-spaceforms, Glasgow Math. J. 38 (1996), 87-97.
- B.Y. Chen, Relations between Ricci curvature shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41(1999), 33-41.
- [4] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol 1,2, Interscience, New York, 1963, 1969.
- [5] J.A. Thorpe, Elementary topics in differential geometry, Springer-Verlag 1979.
- [6] C. Udrişte, Convex hypersuprafaces, Analele Şt. Univ. Al. I. Cuza, Iaşi, 32 (1986), 85-87.
- [7] C. Udrişte, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, 297, Kluwer Academic Publishers Group, Dordrecht, 1994.

Authors' addresses:

Constantin Udrişte Department of Mathematics-Informatics I, Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independenței, RO-060042 Bucharest, Romania. E-mail: udriste@mathem.pub.ro

Teodor Oprea University of Bucharest, Faculty of Mathematics and Informatics, Department of Geometry, 14 Academiei Str., RO-010014, Bucharest 1, Romania. E-mail: teodoroprea@yahoo.com