A geometric construction of (para-)pluriharmonic maps into GL(2r)/Sp(2r)

Lars Schäfer

Abstract

In this work we use symplectic (para-) $t t^{*}$-bundles to obtain a geometric construction of (para-)pluriharmonic maps into the pseudoRiemannian symmetric space $G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$. We prove, that these (para-)pluriharmonic maps are exactly the admissible (para-)pluriharmonic maps. Moreover, we construct symplectic (para-) $t t^{*}$-bundles from (para-)harmonic bundles and analyse the related (para-)pluriharmonic maps.

M.S.C. 2000: 53C43,58E20.

Key words: symplectic (para-)tt*-geometry, (para-)pluriharmonic maps, (para-)harmonic bundles, pseudo-Riemannian symmetric spaces

1 Introduction

The first motivation of this work is the study of metric (para-) $t t^{*}$-bundles (E, D, S, g) over a (para-)complex manifold $\left(M, J^{\epsilon}\right)$ and their relation to admissible (para-)pluriharmonic maps from M into the space of (pseudo-)metrics. Roughly speaking there exists a correspondence between these objects. For metric $t t^{*}$-bundles (with positive definite metric) on the tangent bundle of a complex manifold this result was shown by Dubrovin [8]. In [17, 19] we generalised it to the case of metric $t t^{*}$-bundles on abstract vector bundles with metrics of arbitrary signature and to para-complex geometry. Solutions of (metric) (para-) $t t^{*}$-bundles are for example given by special (para-)complex and special (para-)Kähler manifolds (cf. [3, 19]) and by (para-)harmonic bundles [18, 22]. The related (para-)pluriharmonic maps are described in the given references. The analysis [20, 21] of $t t^{*}$-bundles $(E=T M, D, S)$ on the tangent bundle of an almost (para-)complex manifold $\left(M, J^{\epsilon}\right)$ shows that there exists a second interesting class of (para-) $t t^{*}$-bundles $(E=T M, D, S, \omega)$, carrying symplectic forms ω instead of metrics g. These will be called symplectic (para-)tt*-bundles. Examples are given by Levi-Civita flat nearly (para-)Kähler manifolds (Here non-integrable (para-)complex structures appear.) and by (para-)harmonic bundles which are discussed later in this work. A constructive classification of Levi-Civita flat nearly (para-)Kähler manifolds

[^0]is subject of $[4,5]$.
In the context of the above mentioned correspondence it arises the question if one can use these techniques to construct (para-)pluriharmonic maps out of symplectic (pa-ra-) $t t^{*}$-bundles and if one can characterise the obtained (para-)pluriharmonic maps. In this paper we answer positively to this question: We associate an admissible (cf. definition 4) (para-)pluriharmonic map from M into $G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$ to a symplectic (para-)tt*-bundle and show that an admissible (para-)pluriharmonic map induces a symplectic (para-) $t t^{*}$-bundle on $E=M \times \mathbb{R}^{2 r}$. This is the analogue of the correspondence discussed in the first paragraph. In other words we characterise in a geometric fashion the class of admissible (para-)pluriharmonic maps into $G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$. In the sequel we construct symplectic (para-) $t t^{*}$-bundles from (para-)harmonic bundles and analyse the relation between the (para-)pluriharmonic maps which are obtained from these symplectic (para-) tt*-bundles and the (para-)pluriharmonic maps which were found in $[18,22]$. We restrict to simply connected manifolds M, since the case of general fundamental group can be obtained like in [17, 19]. In the general case all (para-)pluriharmonic maps have to be replaced by twisted (para-)pluriharmonic maps.

2 Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry. For a more complete source we refer to [2].
In para-complex geometry one replaces the complex structure J with $J^{2}=-\mathbb{1}$ (on a finite dimensional vector space V) by the para-complex structure $\tau \in \operatorname{End}(V)$ satisfying $\tau^{2}=\mathbb{1}$ and one requires that the ± 1-eigenspaces have the same dimension. An almost para-complex structure on a smooth manifold M is an endomorphism-field τ, which is a point-wise para-complex structure. If the eigen-distributions $T^{ \pm} M$ are integrable τ is called para-complex structure on M and M is called a para-complex manifold. As in the complex case, there exists a tensor, also called Nijenhuis tensor, which is the obstruction to the integrability of the para-complex structure.
The real algebra, which is generated by 1 and by the para-complex unit e with $e^{2}=1$, is called the para-complex numbers and denoted by C. For all $z=x+e y \in C$ with $x, y \in \mathbb{R}$ we define the para-complex conjugation as ${ }^{-}: C \rightarrow C, x+e y \mapsto x-e y$ and the real and imaginary parts of z by $\mathcal{R}(z):=x, \Im(z):=y$. The free C-module C^{n} is a para-complex vector space where its para-complex structure is just the multiplication with e and the para-complex conjugation of C extends to ${ }^{-}: C^{n} \rightarrow C^{n}, v \mapsto \bar{v}$.
Note, that $z \bar{z}=x^{2}-y^{2}$. Therefore the algebra C is sometimes called the hypercomplex numbers. The circle $\mathbb{S}^{1}=\left\{z=x+i y \in \mathbb{C} \mid x^{2}+y^{2}=1\right\}$ is replaced by the four hyperbolas $\left\{z=x+e y \in C \mid x^{2}-y^{2}= \pm 1\right\}$. We define $\tilde{\mathbb{S}}^{1}$ to be the hyperbola given by the one parameter group $\{z(\theta)=\cosh (\theta)+e \sinh (\theta) \mid \theta \in \mathbb{R}\}$.
A para-complex vector space (V, τ) endowed with a pseudo-Euclidean metric g is called para-hermitian vector space, if g is τ-anti-invariant, i.e. $\tau^{*} g=-g$. The paraunitary group of V is defined as the group of automorphisms

$$
U^{\pi}(V):=\operatorname{Aut}(V, \tau, g):=\left\{L \in G L(V) \mid[L, \tau]=0 \text { and } L^{*} g=g\right\}
$$

and its Lie-algebra is denoted by $\mathfrak{u}^{\pi}(V)$. For $C^{n}=\mathbb{R}^{n} \oplus e \mathbb{R}^{n}$ the standard parahermitian structure is defined by the above para-complex structure and the metric
$g=\operatorname{diag}(\mathbb{1},-\mathbb{1})$ (cf. Example 7 of $[2])$. The corresponding para-unitary group is given by (cf. Proposition 4 of [2]):

$$
U^{\pi}\left(C^{n}\right)=\left\{\left.\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right) \right\rvert\, A, B \in \operatorname{End}\left(\mathbb{R}^{n}\right), A^{T} A-B^{T} B=\mathbb{1}_{n}, A^{T} B-B^{T} A=0\right\}
$$

There exist two bi-gradings on the exterior algebra: The one is induced by the splitting in $T^{ \pm} M$ and denoted by $\Lambda^{k} T^{*} M=\bigoplus_{k=p+q} \Lambda^{p+, q-} T^{*} M$ and induces an obvious bigrading on exterior forms with values in a vector bundle E. The second is induced by the decomposition of the para-complexified tangent bundle $T M^{C}=T M \otimes_{\mathbb{R}} C$ into the subbundles $T_{p}^{1,0} M$ and $T_{p}^{0,1} M$ which are defined as the $\pm e$-eigenbundles of the para-complex linear extension of τ. This induces a bi-grading on the C-valued exterior forms noted $\Lambda^{k} T^{*} M^{C}=\bigoplus_{k=p+q} \Lambda^{p, q} T^{*} M$ and finally on the C-valued differential forms on $M \Omega_{C}^{k}(M)=\bigoplus_{k=p+q} \Omega^{p, q}(M)$. In the case $(1,1)$ and $(1+, 1-)$ the two gradings induced by τ coincide, in the sense that $\Lambda^{1,1} T^{*} M=\left(\Lambda^{1+, 1-} T^{*} M\right) \otimes C$. The bundles $\Lambda^{p, q} T^{*} M$ are para-complex vector bundles in the following sense: A para-complex vector bundle of rank r over a para-complex manifold (M, τ) is a smooth real vector bundle $\pi: E \rightarrow M$ of rank $2 r$ endowed with a fiber-wise para-complex structure $\tau^{E} \in \Gamma($ End $(E))$. We denote it by $\left(E, \tau^{E}\right)$. In the following text we always identify the fibers of a para-complex vector bundle E of rank r with the free C-module C^{r}. One has a notion of para-holomorphic vector bundles, too. These were extensively studied in a common work with M.-A. Lawn-Paillusseau [14].

Let us transfer some notions of hermitian linear algebra (cf. [22]) : A para-hermitian sesquilinear scalar product is a non-degenerate sesquilinear form $h: C^{r} \times C^{r} \rightarrow C$, i.e. it satisfies (i) h is non-degenerate: Given $w \in C^{r}$ such that for all $v \in C^{r} h(v, w)=0$, then it follows $w=0$, (ii) $h(v, w)=\overline{h(w, v)}, \forall v, w \in C^{r}$, and (iii) $h(\lambda v, w)=$ $\lambda h(v, w), \forall \lambda \in C ; v, w \in C^{r}$. The standard para-hermitian sesquilinear scalar product is given by

$$
(z, w)_{C^{r}}:=z \cdot \bar{w}=\sum_{i=1}^{r} z^{i} \bar{w}^{i}, \text { for } z=\left(z^{1}, \ldots, z^{r}\right), w=\left(w^{1}, \ldots, w^{r}\right) \in C^{r}
$$

The para-hermitian conjugation is defined by $C \mapsto C^{h}=\bar{C}^{t}$ for $C \in \operatorname{End}\left(C^{r}\right)=$ $E n d_{C}\left(C^{r}\right)$ and C is called para-hermitian if and only if $C^{h}=C$. We denote by $\operatorname{herm}\left(C^{r}\right)$ the set of para-hermitian endomorphisms and by $\operatorname{Herm}\left(C^{r}\right)=\operatorname{herm}\left(C^{r}\right) \cap$ $G L(r, C)$. We remark, that there is no notion of para-hermitian signature, since from $h(v, v)=-1$ for an element $v \in C^{r}$ we obtain $h(e v, e v)=1$.
Proposition 1. Given an element C of $\operatorname{End}\left(C^{r}\right)$ then it holds $(C z, w)_{C^{r}}=$ $\left(z, C^{h} w\right)_{C^{r}}, \forall z, w \in C^{r}$. The set herm $\left(C^{r}\right)$ is a real vector space. There is a bijective correspondence between $\operatorname{Herm}\left(C^{r}\right)$ and para-hermitian sesquilinear scalar products h on C^{r} given by $H \mapsto h(\cdot, \cdot):=(H \cdot, \cdot)_{C^{r}}$.

A para-hermitian metric h on a para-complex vector-bundle E over a para-complex manifold (M, τ) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations: First we note J^{ϵ} where $J^{\epsilon 2}=\epsilon \mathbb{1}$ with $\epsilon \in\{ \pm 1\}$. The ϵ complex unit is denoted by \hat{i},
i.e. $\hat{i}:=e$, for $\epsilon=1$, and $\hat{i}=i$, for $\epsilon=-1$. Further we introduce \mathbb{C}_{ϵ} with $\mathbb{C}_{1}=C$ and $\mathbb{C}_{-1}=\mathbb{C}$ and $\mathbb{S}_{\epsilon}^{1}$ with $\mathbb{S}_{1}^{1}=\tilde{\mathbb{S}}^{1}$ and $\mathbb{S}_{-1}^{1}=\mathbb{S}^{1}$. In the rest of this work we extend our language by the following ϵ-notation: If a word has a prefix ϵ with $\epsilon \in\{ \pm 1\}$, i.e. is of the form $\epsilon \mathrm{X}$, this expression is replaced by

$$
\epsilon X:=\left\{\begin{array}{l}
\mathrm{X}, \text { for } \epsilon=-1 \\
\text { para-X, for } \epsilon=1
\end{array}\right.
$$

The ϵ unitary group and its Lie-algebra are

$$
U^{\epsilon}(p, q):=\left\{\begin{array}{l}
U^{\pi}\left(C^{r}\right), \text { for } \epsilon=1, \\
U(p, q), \text { for } \epsilon=-1
\end{array} \quad \text { and } \mathfrak{u}^{\epsilon}(p, q):=\left\{\begin{array}{l}
\mathfrak{u}^{\pi}\left(C^{r}\right), \text { for } \epsilon=1 \\
\mathfrak{u}(p, q), \text { for } \epsilon=-1
\end{array}\right.\right.
$$

where in the complex case (p, q) for $r=p+q$ is the hermitian signature.
Further we use the notation

$$
\operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right):=\left\{\begin{array}{l}
\operatorname{Herm}\left(C^{r}\right) ; \epsilon=1, \\
\operatorname{Herm}_{p, q}\left(\mathbb{C}^{r}\right) ; \epsilon=-1,
\end{array} \quad \operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right):=\left\{\begin{array}{l}
\operatorname{herm}\left(C^{r}\right) ; \epsilon=1 \\
\operatorname{herm}_{p, q}\left(\mathbb{C}^{r}\right) ; \epsilon=-1
\end{array}\right.\right.
$$

where, for $p+q=r, \operatorname{Herm}_{p, q}\left(\mathbb{C}^{r}\right)$ are the hermitian matrices of hermitian signature (p, q) and herm ${ }_{p, q}\left(\mathbb{C}^{r}\right)$ are the hermitian matrices with respect to the standard hermitian product of hermitian signature (p, q) on \mathbb{C}^{r}. The standard ϵ hermitian sesquilinear scalar product is $(z, w)_{\mathbb{C}_{\epsilon}^{r}}:=z \cdot \bar{w}=\sum_{i=1}^{r} z^{i} \bar{w}^{i}$, for $z=\left(z^{1}, \ldots, z^{r}\right), w=$ $\left(w^{1}, \ldots, w^{r}\right) \in \mathbb{C}_{\epsilon}^{r}$ and we note

$$
\cos _{\epsilon}(x):=\left\{\begin{array}{l}
\cos (x), \text { for } \epsilon=-1, \\
\cosh (x), \text { for } \epsilon=1
\end{array} \quad \text { and } \sin _{\epsilon}(x):=\left\{\begin{array}{l}
\sin (x), \text { for } \epsilon=-1 \\
\sinh (x), \text { for } \epsilon=1
\end{array}\right.\right.
$$

$3 t t^{*}$-bundles

For the convenience of the reader we recall the definition of an $\epsilon t t^{*}$-bundle given in $[3,17,19]$ and the notion of a symplectic $\epsilon t t^{*}$-bundle $[20,21]$:

Definition 1. An $\epsilon t t^{*}$-bundle (E, D, S) over an ϵ complex manifold $\left(M, J^{\epsilon}\right)$ is a real vector bundle $E \rightarrow M$ endowed with a connection D and a section $S \in \Gamma\left(T^{*} M \otimes\right.$ End E) satisfying the $\epsilon t t^{*}$-equation

$$
\begin{equation*}
R^{\theta}=0 \quad \text { for all } \quad \theta \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

where R^{θ} is the curvature tensor of the connection D^{θ} defined by

$$
\begin{equation*}
D_{X}^{\theta}:=D_{X}+\cos _{\epsilon}(\theta) S_{X}+\sin _{\epsilon}(\theta) S_{J^{\epsilon} X} \quad \text { for all } \quad X \in T M \tag{3.2}
\end{equation*}
$$

A symplectic $\epsilon t t^{*}$-bundle (E, D, S, ω) is an $\epsilon t t^{*}$-bundle (E, D, S) endowed with the structure of a symplectic vector bundle ${ }^{1}(E, \omega)$, such that ω is D-parallel and S is ω-symmetric, i.e. for all $p \in M$

$$
\begin{equation*}
\omega\left(S_{X} \cdot, \cdot\right)=\omega\left(\cdot, S_{X} \cdot\right) \quad \text { for all } \quad X \in T_{p} M \tag{3.3}
\end{equation*}
$$

[^1]
Remark 1.

1) It is obvious that every $\epsilon t t^{*}$-bundle (E, D, S) induces a family of $\epsilon t t^{*}$-bundles $\left(E, D, S^{\theta}\right)$, for $\theta \in \mathbb{R}$, with

$$
\begin{equation*}
S^{\theta}:=D^{\theta}-D=\cos _{\epsilon}(\theta) S+\sin _{\epsilon}(\theta) S_{J^{\epsilon}} \tag{3.4}
\end{equation*}
$$

The same remark applies to symplectic $\epsilon t t^{*}$-bundles.
2) Notice that a symplectic $\epsilon t t^{*}$-bundle (E, D, S, ω) of rank $2 r$ carries a D-parallel volume given by $\underbrace{\omega \wedge \ldots \wedge \omega}_{\mathrm{r} \text { times }}$.

The next proposition gives explicit equations for D and S, such that (E, D, S) is an $\epsilon t t^{*}$-bundle.

Proposition 2. (cf. [17, 19]) Let E be a real vector bundle over an ϵ complex manifold $\left(M, J^{\epsilon}\right)$ endowed with a connection D and a section $S \in \Gamma\left(T^{*} M \otimes \operatorname{End} E\right)$. Then (E, D, S) is an $\epsilon t t^{*}$-bundle if and only if D and S satisfy the following equations:

$$
\begin{equation*}
R^{D}+S \wedge S=0, \quad S \wedge S \text { is of type }(1,1), \quad d^{D} S=0 \quad \text { and } \quad d^{D} S_{J^{\epsilon}}=0 \tag{3.5}
\end{equation*}
$$

4 Pluriharmonic maps into $G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$

In this section we present the notion of ϵ pluriharmonic maps and some properties of ϵ pluriharmonic maps into the target space $S=S(2 r):=G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$.

The following notion was introduced in [1] for holomorphic and in [14] for paraholomorphic vector bundles.
Definition 2. Let $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold. A connection D on $T M$ is called adapted if it satisfies

$$
\begin{equation*}
D_{J^{\epsilon} Y} X=J^{\epsilon} D_{Y} X \tag{4.1}
\end{equation*}
$$

for all vector fields which satisfy $\mathcal{L}_{X} J^{\epsilon}=0$ (i.e. for which $X+\epsilon \hat{i} J^{\epsilon} X$ is ϵ holomorphic).
Definition 3. Let $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold and (N, h) a pseudo-Riemannian manifold with Levi-Civita connection ∇^{h}, D an adapted connection on M and ∇ the connection on $T^{*} M \otimes f^{*} T N$ which is induced by D and ∇^{h} and consider $\alpha=\nabla d f \in$ $\Gamma\left(T^{*} M \otimes T^{*} M \otimes f^{*} T N\right)$. Then f is ϵ pluriharmonic if and only if α is of type $(1,1)$, i.e.

$$
\alpha(X, Y)-\epsilon \alpha\left(J^{\epsilon} X, J^{\epsilon} Y\right)=0
$$

for all $X, Y \in T M$.

Remark 2.

1. Note, that an equivalent definition of ϵ pluriharmonicity is to say, that f is ϵ pluriharmonic if and only if f restricted to every ϵ complex curve is harmonic. For a short discussion the reader is referred to [3, 17, 19].
2. One knows, that every ϵ complex manifold $\left(M, J^{\epsilon}\right)$ can be endowed with a torsion-free ϵ complex connection D (cf. [12] in the complex and [19] Theorem 1 for the para-complex case), i.e. D is torsion-free and satisfies $D J^{\epsilon}=0$. Such a connection is adapted. In the rest of the paper, we assume, that the connection D on $\left(M, J^{\epsilon}\right)$ is also torsion-free.

The harmonic analogue of the following proposition is well-known.
Proposition 3. Let $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold, X, Y be pseudo-Riemannian manifolds and $\Psi: X \rightarrow Y$ a totally geodesic immersion. Then a map $f: M \rightarrow X$ is ϵ pluriharmonic if and only if $\Psi \circ f: M \rightarrow Y$ is ϵ pluriharmonic.

The ϵ pluriharmonic maps obtained by our construction are exactly the admissible ϵ pluriharmonic maps in the sense of the following general definition:

Definition 4. Let $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold and G / K be a locally symmetric space with associated Cartan-decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$. A map $f:\left(M, J^{\epsilon}\right) \rightarrow G / K$ is called admissible if the ϵ complex linear extension of its differential $d f$ maps $T^{1,0} M$ to an Abelian subspace of $\mathfrak{p}^{\mathbb{C}_{\epsilon}}$.

Let ω_{0} be the standard symplectic form of $\mathbb{R}^{2 r}$, i.e. $\omega_{0}=\sum_{i=1}^{r} e_{i} \wedge e_{i+r}$ where $\left(e_{i}\right)_{i=1}^{2 r}$ is the dual of the standard basis of $\mathbb{R}^{2 r}$. Then we define

$$
\begin{equation*}
\operatorname{Sym}\left(\omega_{0}\right):=\left\{A \in G L(2 r, \mathbb{R}) \mid \omega_{0}(A \cdot, \cdot)=\omega_{0}(\cdot, A \cdot)\right\} \tag{4.2}
\end{equation*}
$$

The adjoint of $g \in G L(2 r, \mathbb{R})$ with respect to ω_{0} will be denoted by g^{\dagger}. Hence $\operatorname{Sym}\left(\omega_{0}\right)$ are the elements $A \in G L(2 r, \mathbb{R})$ which satisfy $A^{\dagger}=A$.
Every element $A \in \operatorname{Sym}\left(\omega_{0}\right)$ defines a symplectic form ω_{A} on $\mathbb{R}^{2 r}$ by $\omega_{A}(\cdot, \cdot)=$ $\omega_{0}(A \cdot, \cdot)$. To this interpretation corresponds an action

$$
G L(2 r, \mathbb{R}) \times \operatorname{Sym}\left(\omega_{0}\right) \rightarrow \operatorname{Sym}\left(\omega_{0}\right), \quad(g, A) \mapsto\left(g^{-1}\right)^{\dagger} A g^{-1}
$$

This action is used to identify $S(2 r)$ and $S y m\left(\omega_{0}\right)$ by a map Ψ in the following proposition.

Proposition 4. Let Ψ be the canonical map $\Psi: S(2 r) \xrightarrow{\sim} \operatorname{Sym}\left(\omega_{0}\right) \subset G L(2 r, \mathbb{R})$ where $G L(2 r, \mathbb{R})$ carries the pseudo-Riemannian metric induced by the Ad-invariant trace-form. Then Ψ is a totally geodesic immersion and a map from an ccomplex manifold $\left(M, J^{\epsilon}\right)$ to $S(2 r)$ is ϵ pluriharmonic, if and only if the map $\Psi \circ f: M \rightarrow$ $\operatorname{Sym}\left(\omega_{0}\right) \subset G L(2 r, \mathbb{R})$ is ϵ pluriharmonic.

Proof. The proof is done by relating the map Ψ to the well-known Cartan-immersion. Additional information can be found in [10, 7, 9, 12].

1. First we study the identification $S(2 r) \xrightarrow{\sim} \operatorname{Sym}\left(\omega_{0}\right)$.
$G L(2 r, \mathbb{R})$ operates on $\operatorname{Sym}\left(\omega_{0}\right)$ via

$$
G L(2 r, \mathbb{R}) \times \operatorname{Sym}\left(\omega_{0}\right) \rightarrow \operatorname{Sym}\left(\omega_{0}\right), \quad(g, B) \mapsto g \cdot B:=\left(g^{-1}\right)^{\dagger} B g^{-1}
$$

The stabiliser of the $\mathbb{1}_{2 r}$ is $S p\left(\mathbb{R}^{2 r}\right)$ and the action is seen to be transitive by choosing a symplectic basis. Using the orbit-stabiliser theorem we get by identifying orbits and rest-classes a diffeomorphism

$$
\Psi: S(2 r) \stackrel{\sim}{\rightarrow} \operatorname{Sym}\left(\omega_{0}\right), \quad g S p\left(\mathbb{R}^{2 r}\right) \mapsto g \cdot \mathbb{1}_{2 r}=\left(g^{-1}\right)^{\dagger} \mathbb{1}_{2 r} g^{-1}=\left(g^{-1}\right)^{\dagger} g^{-1}
$$

2. We recall some results about symmetric spaces (see: $[7,13]$). Let G be a Liegroup and $\sigma: G \rightarrow G$ a group-homomorphism with $\sigma^{2}=I d_{G}$. Let K denote
the subgroup $K=G^{\sigma}=\{g \in G \mid \sigma(g)=g\}$. The Lie-algebra \mathfrak{g} of G decomposes in $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$ with $d \sigma_{I d_{G}}(\mathfrak{h})=\mathfrak{h}, \quad d \sigma_{I d_{G}}(\mathfrak{p})=-\mathfrak{p}$. One has the following information: The map $\phi: G / K \rightarrow G$ with $\phi:[g K] \mapsto g \sigma\left(g^{-1}\right)$ defines a totally geodesic immersion called the Cartan-immersion.
We want to utilise this in the case $G=G L(2 r, \mathbb{R})$ and $K=S p\left(\mathbb{R}^{2 r}\right)$. In this spirit we define $\sigma: G L(2 r, \mathbb{R}) \rightarrow G L(2 r, \mathbb{R}), g \mapsto\left(g^{-1}\right)^{\dagger}$. The map σ is obviously a homomorphism and an involution with $G L(2 r, \mathbb{R})^{\sigma}=S p\left(\mathbb{R}^{2 r}\right)$.
By a direct calculation one gets $d \sigma_{I d_{G}}=-h^{\dagger}$ and hence
$\mathfrak{h}=\left\{h \in \mathfrak{g l}_{2 r}(\mathbb{R}) \mid h^{\dagger}=-h\right\}=\mathfrak{s p}\left(\mathbb{R}^{2 r}\right), \mathfrak{p}=\left\{h \in \mathfrak{g l}_{2 r}(\mathbb{R}) \mid h^{\dagger}=h\right\}=: \operatorname{sym}\left(\omega_{0}\right)$.
Thus we end up with $\phi: S(2 r) \rightarrow G L(2 r, \mathbb{R}), \quad g \mapsto g \sigma\left(g^{-1}\right)=g g^{\dagger}=\Psi \circ$ $\Lambda(g)$. Here Λ is the map induced by $\Lambda: G \rightarrow G, h \mapsto\left(h^{-1}\right)^{\dagger}$. This map is an isometry of the invariant metric. Hence Ψ is a totally geodesic immersion. Using proposition 3 the proof is finished.

Remark 3. Above we have identified $S(2 r)$ with $\operatorname{Sym}\left(\omega_{0}\right)$ via Ψ.
Let us choose $o=e S p\left(\mathbb{R}^{2 r}\right)$ as base point and suppose that Ψ is chosen to map o to $\mathbb{1}_{2 r}$. By construction Ψ is $\mathrm{GL}(2 r, \mathbb{R})$-equivariant. We identify the tangent-space $T_{\omega} \operatorname{Sym}\left(\omega_{0}\right)$ at $\omega \in \operatorname{Sym}\left(\omega_{0}\right)$ with the (ambient) vector space of ω_{0}-symmetric matrices in $\mathfrak{g l}_{2 r}(\mathbb{R})$

$$
\begin{equation*}
T_{\omega} \operatorname{Sym}\left(\omega_{0}\right)=\operatorname{sym}\left(\omega_{0}\right) . \tag{4.3}
\end{equation*}
$$

For $\tilde{\omega} \in S(2 r)$ such that $\Psi(\tilde{\omega})=\omega$, the tangent space $T_{\tilde{\omega}} S(2 r)$ is canonically identified with the vector space of ω-symmetric matrices:

$$
\begin{equation*}
T_{\tilde{\omega}} S(2 r)=\operatorname{sym}(\omega):=\left\{A \in \mathfrak{g l}_{2 r}(\mathbb{R}) \mid A^{\dagger} \omega=\omega A\right\} \tag{4.4}
\end{equation*}
$$

Note that $\operatorname{sym}\left(\mathbb{1}_{2 r}\right)=\operatorname{sym}\left(\omega_{0}\right)$.
Proposition 5. The differential of $\varphi:=\Psi^{-1}$ at $\omega \in \operatorname{Sym}\left(\omega_{0}\right)$ is given by

$$
\begin{equation*}
\operatorname{sym}\left(\omega_{0}\right) \ni X \mapsto-\frac{1}{2} \omega^{-1} X \in \omega^{-1} \operatorname{sym}\left(\omega_{0}\right)=\operatorname{sym}(\omega) . \tag{4.5}
\end{equation*}
$$

Using this proposition we relate now the differentials

$$
\begin{equation*}
d f_{x}: T_{x} M \rightarrow \operatorname{sym}\left(\omega_{0}\right) \tag{4.6}
\end{equation*}
$$

of a map $f: M \rightarrow \operatorname{Sym}\left(\omega_{0}\right)$ at $x \in M$ and

$$
\begin{equation*}
d \tilde{f}_{x}: T_{x} M \rightarrow \operatorname{sym}(f(x)) \tag{4.7}
\end{equation*}
$$

of a map $\tilde{f}=\varphi \circ f: M \rightarrow S(2 r): d \tilde{f}_{x}=d \varphi d f_{x}=-\frac{1}{2} f(x)^{-1} d f_{x}$.
We interpret the one-form $A=-2 d \tilde{f}=f^{-1} d f$ with values in $\mathfrak{g l}_{2 r}(\mathbb{R})$ as connection form on the vector bundle $E=M \times \mathbb{R}^{2 r}$. We note, that the definition of A is the pure gauge, i.e. A is gauge-equivalent to $A^{\prime}=0$. Since for $A^{\prime}=0$ one has $A=$ $f^{-1} A^{\prime} f+f^{-1} d f=f^{-1} d f$, the curvature vanishes. This yields the next proposition:

Proposition 6. Let $f: M \rightarrow G L(2 r, \mathbb{R})$ be a C^{∞}-mapping and $A:=f^{-1} d f:$ $T M \rightarrow \mathfrak{g l}_{2 r}(\mathbb{R})$. Then the curvature of A vanishes, i.e. for $X, Y \in \Gamma(T M)$ it is

$$
\begin{equation*}
Y\left(A_{X}\right)-X\left(A_{Y}\right)+\left[A_{Y}, A_{X}\right]+A_{[X, Y]}=0 \tag{4.8}
\end{equation*}
$$

In the next proposition we recall the equations for ϵ pluriharmonic maps from an ϵ complex manifold to $G L(2 r, \mathbb{R})$:
Proposition 7. (cf. [17, 19]) Let $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold, $f: M \rightarrow$ $G L(2 r, \mathbb{R})$ a C^{∞}-map and A defined as in proposition 6.
The ϵ pluriharmonicity of f is equivalent to the equation

$$
\begin{equation*}
Y\left(A_{X}\right)+\frac{1}{2}\left[A_{Y}, A_{X}\right]-\epsilon J^{\epsilon} Y\left(A_{J^{\epsilon} X}\right)-\epsilon \frac{1}{2}\left[A_{J^{\epsilon} Y}, A_{J^{\epsilon} X}\right]=0 \tag{4.9}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$.
With a similar argument as in proposition 4 we have shown in $[18,22]$:
Proposition 8. Let $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold. A map

$$
\phi: M \rightarrow G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q)
$$

where the target-space is carrying the (pseudo-)metric induced by the trace-form on $G L\left(r, \mathbb{C}_{\epsilon}\right)$, is ϵ pluriharmonic if and only if

$$
\psi=\Psi^{\epsilon} \circ \phi: M \rightarrow G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q) \stackrel{\sim}{\rightarrow} \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right) \subset G L\left(r, \mathbb{C}_{\epsilon}\right)
$$

is єpluriharmonic.
To be complete we mention the related symmetric decomposition:

$$
\mathfrak{h}=\left\{A \in \mathfrak{g l}_{r}\left(\mathbb{C}_{\epsilon}\right) \mid A^{h}=-A\right\}=\mathfrak{u}^{\epsilon}(p, q), \mathfrak{p}=\left\{A \in \mathfrak{g l}_{r}\left(\mathbb{C}_{\epsilon}\right) \mid A^{h}=A\right\}=: \operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right) .
$$

$5 \quad t t^{*}$-geometry and pluriharmonic maps

In this section we are going to state and prove the main results. Like in section 4 one regards the mapping $A=f^{-1} d f$ as a map $A: T M \rightarrow \mathfrak{g l}_{2 r}(\mathbb{R})$.

Theorem 1. Let $\left(M, J^{\epsilon}\right)$ be a simply connected ϵ complex manifold. Let (E, D, S, ω) be a symplectic $\epsilon t t^{*}$-bundle where E has rank $2 r$ and M dimension n.
The matrix representation $f: M \rightarrow \operatorname{Sym}\left(\omega_{0}\right)$ of ω in a D^{θ}-flat frame of E induces an admissible ϵ pluriharmonic map $\tilde{f}: M \xrightarrow{f} \operatorname{Sym}\left(\omega_{0}\right) \xrightarrow{\sim} S(2 r)$, where $S(2 r)$ carries the (pseudo-Riemannian) metric induced by the trace-form on $G L(2 r, \mathbb{R})$. Let s^{\prime} be another D^{θ}-flat frame. Then $s^{\prime}=s \cdot U$ for a constant matrix and the ϵ pluriharmonic map associated to s^{\prime} is $f^{\prime}=U^{\dagger} f U$.

Proof. Thanks to remark 1.1) we can restrict to the case $\theta=\pi$ for $\epsilon=-1$ and $\theta=0$ for $\epsilon=1$.

Let $s:=\left(s_{1}, \ldots, s_{2 r}\right)$ be a D^{θ}-flat frame of E (i.e. $D s=-\epsilon S s$), f the matrix $\omega\left(s_{k}, s_{l}\right)$ and further S^{s} the matrix-valued one-form representing the tensor S in the frame s. For $X \in \Gamma(T M)$ we get:

$$
\begin{aligned}
X(f) & =X \omega(s, s)=\omega\left(D_{X} s, s\right)+\omega\left(s, D_{X} s\right) \\
& =-\epsilon\left[\omega\left(S_{X} s, s\right)+\omega\left(s, S_{X} s\right)\right] \\
& =-2 \epsilon \omega\left(S_{X} s, s\right)=-2 \epsilon f \cdot S_{X}^{s}
\end{aligned}
$$

It follows $A_{X}=-2 \epsilon S_{X}^{s}$. We now prove the ϵ pluriharmonicity using

$$
\begin{align*}
d^{D} S(X, Y) & =D_{X}\left(S_{Y}\right)-D_{Y}\left(S_{X}\right)-S_{[X, Y]}=0 \tag{5.1}\\
d^{D} S_{J^{\epsilon}}(X, Y) & =D_{X}\left(S_{J^{\epsilon} Y}\right)-D_{Y}\left(S_{J^{\epsilon} X}\right)-S_{J^{\epsilon}[X, Y]}=0 . \tag{5.2}
\end{align*}
$$

The equation (5.2) implies

$$
\begin{aligned}
0=d^{D} S_{J^{\epsilon}}\left(J^{\epsilon} X, Y\right) & =D_{J^{\epsilon} X}\left(S_{J^{\epsilon} Y}\right)-\underbrace{\epsilon}_{(\underbrace{(5,1)}=} \epsilon\left(D_{X}\left(S_{Y}\right)-S_{[X, Y]}\right) \\
& =D_{J^{\epsilon} X}\left(S_{J^{\epsilon} Y}\right)-\epsilon D_{X}\left(S_{Y}\right)+\epsilon S_{[X, Y]}-S_{J^{\epsilon}\left[J^{\epsilon} X, Y\right]} \\
& =S_{\left.J^{\epsilon} X, Y\right]} .
\end{aligned}
$$

In local ϵ holomorphic coordinate fields X, Y on M we get in the frame s

$$
J^{\epsilon} X\left(S_{J^{\epsilon} Y}^{s}\right)-\epsilon X\left(S_{Y}^{s}\right)+\left[S_{X}^{s}, S_{Y}^{s}\right]-\epsilon\left[S_{J^{\epsilon} X}^{s}, S_{J^{\epsilon} Y}^{s}\right]=0
$$

Now $A=-2 \epsilon S^{s}$ gives equation (4.9) and proves the ϵ pluriharmonicity of f.
Using $A_{X}=-2 \epsilon S_{X}^{s}=-2 d \tilde{f}(X)$, we find the property of the differential, as $S \wedge S$ is of type $(1,1)$ by the $\epsilon t t^{*}$-equations, see proposition 2 . The last statement is obvious.

Theorem 2. Let $\left(M, J^{\epsilon}\right)$ be a simply connected ϵ complex manifold and put $E=M \times \mathbb{R}^{2 r}$. Then an ϵ pluriharmonic map $\tilde{f}: M \rightarrow S(2 r)$ gives rise to an єpluriharmonic map $f: M \xrightarrow{\tilde{f}} S(2 r) \stackrel{\sim}{\rightarrow} \operatorname{Sym}\left(\omega_{0}\right) \stackrel{i}{\hookrightarrow} G L(2 r, \mathbb{R})$.
If the map \tilde{f} is admissible, then the map f induces a symplectic $\epsilon t t^{*}$-bundle $(E, D=$ $\left.\partial-\epsilon S, S=\epsilon d \tilde{f}, \omega=\omega_{0}(f \cdot, \cdot)\right)$ on M where ∂ is the canonical flat connection on E.

Remark 4. We observe, that for ϵ Riemannian surfaces $M=\Sigma$ every ϵ pluriharmonic map is admissible, since $T^{1,0} \Sigma$ is one-dimensional.

Proof.
Let $\tilde{f}: M \rightarrow S(2 r)$ be an ϵ pluriharmonic map. Then due to proposition 4 we know, that $f: M \stackrel{\sim}{\rightarrow} \operatorname{Sym}\left(\omega_{0}\right) \stackrel{i}{\hookrightarrow} G L(2 r, \mathbb{R})$ is ϵ pluriharmonic.
Since $E=M \times \mathbb{R}^{2 r}$, we want to regard sections of E as 2 r-tuples of $C^{\infty}(M, \mathbb{R})$ functions.
As in section 4 we consider the one-form $A=-2 d \tilde{f}=f^{-1} d f$ with values in $\mathfrak{g l}_{2 r}(\mathbb{R})$ as a connection on E. The curvature of this connection vanishes (proposition 6). First, the constraints on ω are fulfilled:

Lemma 1. The connection D is compatible with the symplectic form ω and S is symmetric with respect to ω.

Proof. This is a direct computation with $X \in \Gamma(T M)$ and $v, w \in \Gamma(E)$:

$$
\begin{aligned}
X \omega(v, w)= & X \omega_{0}(f v, w)=\omega_{0}(X(f) v, w)+\omega_{0}(f(X v), w)+\omega_{0}(f v, X w) \\
= & \frac{1}{2} \omega_{0}(X(f) v, w)+\frac{1}{2} \omega_{0}(v, X(f) w)+\omega_{0}(f(X v), w)+\omega_{0}(f v, X w) \\
= & \frac{1}{2} \omega_{0}\left(f \cdot f^{-1}(X f) v, w\right)+\frac{1}{2} \omega_{0}\left(v, f \cdot f^{-1}(X f) w\right) \\
& +\omega_{0}(f X v, w)+\omega_{0}(f v, X w) \\
= & \omega\left(X v-\epsilon S_{X} v, w\right)+\omega\left(v, X w-\epsilon S_{X} w\right)=\omega\left(D_{X} v, w\right)+\omega\left(v, D_{X} w\right) .
\end{aligned}
$$

S is ω-symmetric, since for $x \in M d \tilde{f}_{x}$ takes by definition values in $\operatorname{sym}(f(x))$.
To finish the proof, we have to check the $\epsilon t t^{*}$-equations. The second $\epsilon t t^{*}$-equation

$$
\begin{equation*}
-\epsilon\left[S_{X}, S_{Y}\right]=\left[S_{J^{\epsilon} X}, S_{J^{\epsilon} Y}\right] \tag{5.3}
\end{equation*}
$$

for S follows from the assumption that the image of $T^{1,0} M$ under $(d \tilde{f})^{\mathbb{C}_{\epsilon}}$ is Abelian. In fact, this is equivalent to $\left[d \tilde{f}\left(J^{\epsilon} X\right), d \tilde{f}\left(J^{\epsilon} Y\right)\right]=-\epsilon[d \tilde{f}(X), d \tilde{f}(Y)] \forall X, Y \in T M$.

$$
\begin{aligned}
d^{D} S(X, Y) & =\left[D_{X}, S_{Y}\right]-\left[D_{Y}, S_{X}\right]-S_{[X, Y]} \\
& =\partial_{X}\left(S_{Y}\right)-\partial_{Y}\left(S_{X}\right)-2 \epsilon\left[S_{X}, S_{Y}\right]-S_{[X, Y]}=0
\end{aligned}
$$

is equivalent to the vanishing of the curvature of $A=-2 \epsilon S$ interpreted as a connection on E (see proposition 6).
Finally one has for ϵ holomorphic coordinate fields $X, Y \in \Gamma(T M)$:

$$
\begin{aligned}
d^{D} S_{J^{\epsilon}}\left(J^{\epsilon} X, Y\right) & =\left[D_{J^{\epsilon} X}, S_{J^{\epsilon} Y}\right]-\epsilon\left[D_{Y}, S_{X}\right] \\
& =\left[\partial_{J^{\epsilon} X}-\epsilon S_{J^{\epsilon} X}, S_{J^{\epsilon} Y}\right]-\epsilon\left[\partial_{Y}-\epsilon S_{Y}, S_{X}\right] \\
& =\partial_{J^{\epsilon} X}\left(S_{J^{\epsilon} Y}\right)-\epsilon \partial_{Y}\left(S_{X}\right)-\epsilon\left[S_{J^{\epsilon} X}, S_{J^{\epsilon} Y}\right]-\left[S_{X}, S_{Y}\right] \\
& \stackrel{(5.3)}{=}-\frac{1}{2} \epsilon\left(\partial_{J^{\epsilon} X}\left(A_{J^{\epsilon} Y}\right)-\epsilon \partial_{Y}\left(A_{X}\right)\right) \\
& \stackrel{(4.8)}{=}-\frac{1}{2} \epsilon\left(\partial_{J^{\epsilon} X}\left(A_{J^{\epsilon} Y}\right)-\epsilon \partial_{X}\left(A_{Y}\right)-\epsilon\left[A_{X}, A_{Y}\right]\right) \\
& \stackrel{(5.3)}{=}-\frac{1}{2} \epsilon\left\{\partial_{J^{\epsilon} X}\left(A_{J^{\epsilon} Y}\right)-\epsilon \partial_{X}\left(A_{Y}\right)\right. \\
& \left.-\frac{1}{2} \epsilon\left[A_{X}, A_{Y}\right]+\frac{1}{2}\left[A_{J^{\epsilon} X}, A_{J^{\epsilon} Y}\right]\right\} \\
& \stackrel{(4.9)}{=} 0 .
\end{aligned}
$$

This shows the vanishing of the tensor $d^{D} S_{J^{\epsilon}}$. It remains to show the curvature equation for D. We observe, that $D+\epsilon S=\partial-\epsilon S+\epsilon S=\partial$ and that the connection ∂ is flat, to find $0=R_{X, Y}^{D+\epsilon S}=R_{X, Y}^{D}+\epsilon d^{D} S(X, Y)+\left[S_{X}, S_{Y}\right] \stackrel{d^{D} S=0}{=} R_{X, Y}^{D}+\left[S_{X}, S_{Y}\right]$.

In the situation of theorem 2 the two constructions are inverse.

Proposition 9.

1. Given a symplectic $\epsilon t t^{*}$-bundle (E, D, S, ω) on an ϵ complex manifold $\left(M, J^{\epsilon}\right)$. Let \tilde{f} be the associated admissible $\epsilon p l u r i h a r m o n i c ~ m a p ~ c o n s t r u c t e d ~ t o ~ a ~ D ~ D ~-f l a t ~$ frame s in theorem 1. Then the symplectic $\epsilon t t^{*}$-bundle $\left(M \times \mathbb{R}^{r}, \tilde{S}, \tilde{\omega}\right)$ associated to \tilde{f} of theorem 2 is the representation of (E, D, S, ω) in the frame s.
2. Given an admissible ϵ pluriharmonic map $\tilde{f}:\left(M, J^{\epsilon}\right) \rightarrow S(2 r)$, then one obtains via theorem 2 a symplectic $\epsilon t t^{*}$-bundle $\left(M \times \mathbb{R}^{2 r}, D, S, \omega\right)$. The ϵ pluriharmonic map associated to this symplectic $\epsilon t t^{*}$-bundle is conjugated to the map \tilde{f} by a constant matrix.

Proof. Using again remark 1.1) we can set $\theta=\pi$ in the complex and $\theta=0$ in the para-complex case.

1. The map f is obviously ω in the frame s and in the computations of theorem 1 one gets $A=-2 d \tilde{f}=f^{-1} d f=-2 \epsilon S^{s}$. From $0=D^{\theta} s=D s+\epsilon S s$ we obtain that the connection D in the frame s is just $\partial-\epsilon S^{s}=\partial+\frac{A}{2}$.
2. We have to find a D^{θ}-flat frame s. It is $D^{\theta}=\partial-\epsilon S+\epsilon S=\partial$. Hence we can take s as the standard-basis of $\mathbb{R}^{2 r}$ and we get f. Every other basis gives a conjugated result.

6 Harmonic bundle solutions

In this section we use the notation $H^{\epsilon}(p, q):=G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q)$. As motivation for considering ϵ harmonic bundles we prove :
Proposition 10. The canonical inclusion

$$
i: G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q) \hookrightarrow G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)
$$

is totally geodesic. Let further $\left(M, J^{\epsilon}\right)$ be an ϵ complex manifold, then a map $\alpha: M \rightarrow$ $G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q)$ is ϵ pluriharmonic if and only if $i \circ \alpha: M \rightarrow G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$ is єpluriharmonic.
Proof. Looking at the inclusion of the symmetric decompositions

$$
\mathfrak{g l}_{r}\left(\mathbb{C}_{\epsilon}\right)=\operatorname{herm}_{p, q}\left(\mathbb{C}_{\epsilon}^{r}\right) \oplus \mathfrak{u}^{\epsilon}(p, q) \subset \mathfrak{g l}_{2 r} \mathbb{R}=\operatorname{sym}\left(\omega_{0}\right) \oplus \mathfrak{o}(k, l)
$$

we see, that $\operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right) \subset \operatorname{sym}\left(\omega_{0}\right)$ is a Lie-triple system, i.e.

$$
\left[\operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right),\left[\operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right), \operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)\right]\right] \subset \operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)
$$

and that therefore the inclusion $G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q) \stackrel{i}{\hookrightarrow} G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$ is totally geodesic. The second statement follows from proposition 3.

In [18, 22] we related ϵ pluriharmonic maps from an ϵ complex manifold $\left(M, J^{\epsilon}\right)$ into $H^{\epsilon}(p, q)=G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q)$ with $r=p+q$ to ϵ harmonic bundles over $\left(M, J^{\epsilon}\right)$. First we recall the definition of an ϵ harmonic bundle:

Definition 5. An ϵ harmonic bundle $(E \rightarrow M, D, C, \bar{C}, h)$ consists of the following data:
An ϵ complex vector bundle E over an ϵ complex manifold $\left(M, J^{\epsilon}\right)$, an ϵ hermitian metric h, a metric connection D with respect to h and two C^{∞}-linear maps C : $\Gamma(E) \rightarrow \Gamma\left(\Lambda^{1,0} T^{*} M \otimes E\right)$ and $\bar{C}: \Gamma(E) \rightarrow \Gamma\left(\Lambda^{0,1} T^{*} M \otimes E\right)$, such that the connection

$$
D^{(\lambda)}=D+\lambda C+\bar{\lambda} \bar{C}
$$

is flat for all $\lambda \in \mathbb{S}_{\epsilon}^{1}$ and $h\left(C_{Z} a, b\right)=h\left(a, \bar{C}_{\bar{Z}} b\right)$ with $a, b \in \Gamma(E)$ and $Z \in \Gamma\left(T^{1,0} M\right)$.

Remark 5. In the complex case with positive definite metric h this definition is equivalent to the definition of a harmonic bundle in Simpson [23]. Equivalent structures in the complex case with metrics of arbitrary signature have been also regarded in Hertling's paper [11].

The relation of ϵ harmonic bundles to ϵ pluriharmonic maps is stated in the following theorem.

Theorem 3. (cf. [18, 22])
(i) Let $(E \rightarrow M, D, C, \bar{C}, h)$ be an ϵ harmonic bundle over the simply connected єcomplex manifold $\left(M, J^{\epsilon}\right)$. Then the representation of h in a $D^{(\lambda)}$-flat frame defines an ϵ pluriharmonic map $\phi_{h}: M \rightarrow \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$. The map ϕ_{h} induces an admissible єpluriharmonic map $\tilde{\phi}_{h}=\Psi^{\epsilon} \circ \phi_{h}: M \rightarrow H^{\epsilon}(p, q)$ (cf. proposition 8 for Ψ^{ϵ}).
(ii) Let $\left(M, J^{\epsilon}\right)$ be a simply connected ϵ complex manifold and $E=M \times \mathbb{C}_{\epsilon}^{r}$. Given an admissible ϵ pluriharmonic map $\tilde{\phi}_{h}: M \rightarrow H^{\epsilon}(p, q)$, then $(E, D=\partial-\epsilon C-$ $\left.\epsilon \bar{C}, C=\epsilon\left(d \tilde{\phi}_{h}\right)^{1,0}, h=\left(\phi_{h} \cdot, \cdot\right)_{\mathbb{C}_{\epsilon}^{r}}\right)$ defines an ϵ harmonic bundle, where ∂ is the єcomplex linear extension on $T M^{\mathbb{C}_{\epsilon}}$ of the flat connection on $E=M \times \mathbb{C}_{\epsilon}^{r}$. In the complex case of signature $(r, 0)$ and $(0, r)$ every pluriharmonic map $\tilde{\phi}_{h}$ is admissible.

The last theorem and proposition 10 yield ϵ pluriharmonic maps to $G L(2 r, \mathbb{R}) / S p\left(\mathbb{R}^{2 r}\right)$. We are going to identify the related symplectic $\epsilon t t^{*}$-bundles. Therefore we construct symplectic $\epsilon t t^{*}$-bundles from ϵ harmonic bundles, via the next proposition.

Proposition 11. Let $(E \rightarrow M, D, C, \bar{C}, h)$ be an ϵ harmonic bundle over the єcomplex manifold $\left(M, J^{\epsilon}\right)$, then $(E, D, S, \Omega=\operatorname{Imh})$ with $S_{X}:=C_{Z}+\bar{C}_{\bar{Z}}$ for $X=Z+\bar{Z} \in T M$ and $Z \in T^{1,0} M$ is a symplectic $\epsilon t t^{*}$-bundle.

Proof. For $\lambda=\cos _{\epsilon}(\alpha)+\hat{i} \sin _{\epsilon}(\alpha) \in \mathbb{S}_{\epsilon}^{1}$ we compute $D^{(\lambda)}$:

$$
\begin{aligned}
D_{X}^{(\lambda)} & =D_{X}+\lambda C_{Z}+\bar{\lambda} \bar{C}_{\bar{Z}}=D_{X}+\cos _{\epsilon}(\alpha)\left(C_{Z}+\bar{C}_{\bar{Z}}\right)+\sin _{\epsilon}(\alpha)\left(\hat{i} C_{Z}-\hat{i} \bar{C}_{\bar{Z}}\right) \\
& =D_{X}+\cos _{\epsilon}(\alpha) S_{X}+\sin _{\epsilon}(\alpha)\left(C_{J^{\epsilon} Z}+\bar{C}_{J^{\epsilon} \bar{Z}}\right) \\
& =D_{X}+\cos _{\epsilon}(\alpha) S_{X}+\sin _{\epsilon}(\alpha) S_{J^{\epsilon} X}=D_{X}^{\alpha} .
\end{aligned}
$$

Hence we see

$$
\begin{equation*}
D^{\alpha}=D^{(\lambda)} \tag{6.1}
\end{equation*}
$$

and D^{α} is flat if and only if $D^{(\lambda)}$ is flat.
Further we claim, that S is Ω-symmetric. With $X=Z+\bar{Z}$ for $Z \in T^{1,0} M$ one finds

$$
h\left(S_{X} \cdot, \cdot\right)=h\left(C_{Z}+\bar{C}_{\bar{Z}} \cdot, \cdot\right)=h\left(\cdot, C_{Z}+\bar{C}_{\bar{Z}} \cdot\right)=h\left(\cdot, S_{X} \cdot\right)
$$

This yields the symmetry of S with respect to $\Omega=\operatorname{Im} h$.
Finally we show $D \Omega=0$:

$$
\begin{aligned}
2 \hat{i} X \Omega(e, f) & =X \cdot(h(e, f)-h(f, e))=(Z+\bar{Z}) \cdot(h(e, f)-h(f, e)) \\
& =h\left(D_{Z} e, f\right)+h\left(e, D_{\bar{Z}} f\right)+h\left(D_{\bar{Z}} e, f\right)+h\left(e, D_{Z} f\right) \\
& -\left[h\left(D_{Z} f, e\right)+h\left(f, D_{\bar{Z}} e\right)+h\left(D_{\bar{Z}} f, e\right)+h\left(f, D_{Z} e\right)\right] \\
& =h\left(\left(D_{Z}+D_{\bar{Z}}\right) e, f\right)+h\left(e,\left(D_{\bar{Z}}+D_{Z}\right) f\right) \\
& -h\left(\left(D_{Z}+D_{\bar{Z}}\right) f, e\right)-h\left(f,\left(D_{\bar{Z}}+D_{Z}\right) e\right) \\
& =h\left(D_{X} e, f\right)-h\left(f, D_{X} e\right)+h\left(e, D_{X} f\right)-h\left(D_{X} f, e\right) \\
& =2 \hat{i}\left(\Omega\left(D_{X} e, f\right)+\Omega\left(e, D_{X} f\right)\right) .
\end{aligned}
$$

This proves, that $(E, D, S, \Omega=\operatorname{Im} h)$ is a symplectic $\epsilon t t^{*}$-bundle.
From theorem 1 one obtains the next corollary.
Corollary 1. Let $(E \rightarrow M, D, C, \bar{C}, h)$ be an ϵ harmonic bundle over the simply connected ϵ complex manifold $\left(M, J^{\epsilon}\right)$, then the representation of $\Omega=\operatorname{Imh}$ in a $D^{(\lambda)}$ flat frame defines an ϵ pluriharmonic map $\Phi_{\Omega}: M \rightarrow G L\left(\mathbb{R}^{2 r}\right) / S p\left(\mathbb{R}^{2 r}\right)$.

Proof. This follows from the identity (6.1), i.e. $D_{X}^{(\lambda)}=D_{X}^{\alpha}$ for $\lambda=\cos _{\epsilon}(\alpha)+\hat{i} \sin _{\epsilon}(\alpha) \in$ $\mathbb{S}_{\epsilon}^{1}$ and from proposition 11 and theorem 1.

Our aim is to understand the relations between the ϵ pluriharmonic maps in theorem 3 and corollary 1. Therefore we need to have a closer look at the map $h \mapsto \operatorname{Im} h$. First, we identify $\mathbb{C}_{\epsilon}^{r}$ with $\mathbb{R}^{r} \oplus \hat{i} \mathbb{R}^{r}=\mathbb{R}^{2 r}$. In this model the multiplication with \hat{i} coincides with the automorphism $j^{\epsilon}=\left(\begin{array}{cc}0 & \epsilon \mathbb{1}_{r} \\ \mathbb{1}_{r} & 0\end{array}\right)$ and $G L\left(r, \mathbb{C}_{\epsilon}\right)$ (respectively $\mathfrak{g l}_{r}\left(\mathbb{C}_{\epsilon}\right)$) are the elements in $G L(2 r, \mathbb{R})$ (respectively $\mathfrak{g l}_{2 r}(\mathbb{R})$), which commute with j^{ϵ}.
An endomorphism $C \in \operatorname{End}\left(\mathbb{C}_{\epsilon}^{r}\right)$ decomposes in its real-part A and its imaginary part B, i.e. $C=A+\hat{i} B$ with $A, B \in \operatorname{End}\left(\mathbb{R}^{r}\right)$. In the above model C is given by the matrix

$$
\iota(C)=\left(\begin{array}{cc}
A & \epsilon B \\
B & A
\end{array}\right)
$$

The ϵ complex conjugated $\bar{C}=A-\hat{i} B$, the transpose $C^{t}=A^{t}+\hat{i} B^{t}$ and the ϵ hermitian conjugated C^{h} of C correspond to
$\iota(\bar{C})=\left(\begin{array}{cc}A & -\epsilon B \\ -B & A\end{array}\right), \iota\left(C^{t}\right)=\left(\begin{array}{cc}A^{t} & \epsilon B^{t} \\ B^{t} & A^{t}\end{array}\right), \iota\left(C^{h}\right)=\iota\left(\bar{C}^{t}\right)=\left(\begin{array}{cc}A^{t} & -\epsilon B^{t} \\ -B^{t} & A^{t}\end{array}\right)$.
We observe, that $\iota\left(\bar{C}^{t}\right)=I^{\epsilon} \iota(C)^{T} I^{\epsilon}$ where $\cdot{ }^{T}$ is the transpose in $\operatorname{End}\left(\mathbb{R}^{2 r}\right)$ and

$$
I^{\epsilon}=\left(\begin{array}{cc}
\mathbb{1}_{r} & 0 \\
0 & -\epsilon \mathbb{1}_{r}
\end{array}\right)
$$

The ϵ hermitian matrices $\operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$ (of signature (p, q) for $\epsilon=-1$, i.e. in the complex case) coincide with the subset of symmetric matrices $H \in \operatorname{Sym}_{k, l}\left(\mathbb{R}^{2 r}\right)$, which commute with j^{ϵ}, i.e. $\left[H, j^{\epsilon}\right]=0$, where the pair (k, l) is

$$
(k, l)=\left\{\begin{array}{l}
(2 p, 2 q) \text { for } \epsilon=-1 \\
(r, r) \text { for } \epsilon=1
\end{array}\right.
$$

Likewise, $T_{I_{k, l}} \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$ consists of symmetric matrices $h \in \operatorname{sym}_{k, l}\left(\mathbb{R}^{2 r}\right)$, which commute with j^{ϵ}, i.e. the ϵ hermitian matrices in $\operatorname{sym}_{k, l}\left(\mathbb{R}^{2 r}\right)$ which we have denoted by $\operatorname{herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$.
An ϵ hermitian sesquilinear scalar product h (of signature (p, q) for $\epsilon=-1$) corresponds to an ϵ hermitian matrix $H \in \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$ (of hermitian signature (p, q) for $\epsilon=-1$) defined by $h(\cdot, \cdot)=(H \cdot, \cdot)_{\mathbb{C}_{\epsilon}^{r}}$. The condition $C^{h}=\bar{C}^{t}=C$, i.e. C is ϵ hermitian, means in our model, that C has the form

$$
\iota(C)=\left(\begin{array}{cc}
A & \epsilon B \\
B & A
\end{array}\right)
$$

with $A=A^{t}$ and $B=-B^{t}$.
Using this information we find the explicit representation of the map which corresponds to taking the imaginary part $\operatorname{Im} h$ of h. This is the map \Im satisfying $\operatorname{Im} h=(\Im(H) \cdot, \cdot)_{\mathbb{R}^{2 r}}$, where $(\cdot, \cdot)_{\mathbb{R}^{2 r}}$ is the Euclidean standard scalar product on $\mathbb{R}^{2 r}$. With $z, w \in \mathbb{C}_{\epsilon}^{r}$ we define

$$
\beta(z, w):=\operatorname{Im}(z, w)_{\mathbb{C}_{\epsilon}^{r}}=\frac{1}{2 \hat{i}}(z \cdot \bar{w}-\bar{z} \cdot w)
$$

and find $\operatorname{Im} h(z, w)=\operatorname{Im}(H z, w)_{\mathbb{C}_{e}^{r}}=\frac{1}{2 \hat{i}}[(H z) \cdot \bar{w}-(\overline{H z}) \cdot w]=\beta(H z, w)$. Further we remark that $\beta(\cdot, \cdot)=\operatorname{Im}(\cdot, \cdot)_{\mathbb{C}_{\epsilon}^{r}}=\left(I^{\epsilon} j^{\epsilon} \cdot, \cdot\right)_{\mathbb{R}^{2 r}}$, where $(\cdot, \cdot)_{\mathbb{R}^{2 r}}$ is the Euclidean standard scalar product on $\mathbb{R}^{2 r}$.
This yields $\operatorname{Im} h(z, w)=\left(I^{\epsilon} j^{\epsilon} \iota(H) z, w\right)_{\mathbb{R}^{2 r}}=-\epsilon\left(j^{\epsilon} I^{\epsilon} \iota(H) z, w\right)_{\mathbb{R}^{2 r}}$ and for $H=A+\hat{i} B$ with $A, B \in \operatorname{End}\left(\mathbb{R}^{r}\right)$ one obtains

$$
\Im(H)=I^{\epsilon} j^{\epsilon}\left(\begin{array}{cc}
A & \epsilon B \\
B & A
\end{array}\right)=\epsilon\left(\begin{array}{cc}
0 & \mathbb{1}_{r} \\
-\mathbb{1}_{r} & 0
\end{array}\right)\left(\begin{array}{cc}
A & \epsilon B \\
B & A
\end{array}\right)=\epsilon\left(\begin{array}{cc}
B & A \\
-A & -\epsilon B
\end{array}\right)
$$

This map is easily seen to have maximal rank and to be equivariant with respect to the following $G L\left(r, \mathbb{C}_{\epsilon}\right)$-action on $\operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$:

$$
G L\left(r, \mathbb{C}_{\epsilon}\right) \times \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right) \rightarrow \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right), \quad(g, H) \mapsto\left(g^{-1}\right)^{h} H g^{-1}
$$

and the $G L(2 r, \mathbb{R})$-action on $\operatorname{Sym}\left(\omega_{0}\right)$ which was considered in section 4 . Summarising we have the commutative diagram in which all maps apart \Im of the square were shown to be totally geodesic:

where [i] is induced by the inclusion $i: G L\left(r, \mathbb{C}_{\epsilon}\right) \hookrightarrow G L(2 r, \mathbb{R})$. Hence \Im is totally geodesic. Utilising this diagram we show the next proposition.

Proposition 12. A map $h: M \rightarrow \operatorname{Herm}_{p, q}^{\epsilon}\left(\mathbb{C}_{\epsilon}^{r}\right)$ is ϵ pluriharmonic, if and only if $\Omega=\operatorname{Imh}: M \rightarrow \operatorname{Sym}\left(\omega_{0}\right)$ is ϵ pluriharmonic.

Proof. As discussed above, the map \Im is a totally geodesic immersion and therefore we are in the situation of proposition 3.

From this proposition it follows:
Proposition 13. Let $(E \rightarrow M, D, C, \bar{C}, h)$ be an ϵ harmonic bundle over the ϵ complex manifold $\left(M, J^{\epsilon}\right),\left(E, D, S, \Omega=\right.$ Imh) the symplectic $\epsilon t t^{*}$-bundle constructed in proposition 11 and $\tilde{\Phi}_{\Omega}: M \rightarrow G L\left(\mathbb{R}^{2 r}\right) / S p\left(\mathbb{R}^{2 r}\right)$ the ϵ pluriharmonic map given in corollary 1. Then $\tilde{\Phi}_{\Omega}=[i] \circ \tilde{\Phi}_{h}$ and these ϵ pluriharmonic maps are admissible.
Proof. This follows using the definition of (E, D, S, Ω) (cf. proposition 11) from corollary 1 and proposition 12. For the second part one observes, that the differential of $[i]$ is a homomorphism of Lie-algebras.

This describes the ϵ pluriharmonic maps coming from symplectic $\epsilon t t^{*}$-bundles induced by ϵ harmonic bundles. Conversely, this gives an Ansatz to construct ϵ harmonic bundles from ϵ pluriharmonic maps to $G L\left(r, \mathbb{C}_{\epsilon}\right) / U^{\epsilon}(p, q)$. For metric $\epsilon t t^{*}$-bundles we have gone this way in $[18,22]$ to obtain theorem 3.

References

[1] N. Abe and S. Kurosu, A decomposition of a holomorphic vector-bundle with connection and its applications to complex affine immersions, Res. in Math. 44 (2003), 3-24.
[2] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special Geometry of Euclidean Supersymmetry I: Vectormultiplets, J. High Energy Phys. JHEP03 (2004) 028, hep-th/0312001 2004.
[3] V. Cortés and L. Schäfer, Topological-antitopological fusion equations, pluriharmonic maps and special Kähler manifolds, Progress in Mathematics 234, Birkhäuser 2005, 59-74.
[4] V. Cortés and L. Schäfer, Flat nearly Kähler manifolds, Annals of Global Analysis and Geometry 32 (2007), 379-389.
[5] V. Cortés and L. Schäfer, manuscript in preparation.
[6] S. Cecotti and C. Vafa, Topological-Antitopological fusion, Nuclear Physics B 367 (1991), 351-461.
[7] J. Cheeger and D. G. Ebin, Comparsion Theorems in Riemannian Geometry, North-Holland (1975).
[8] B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Commun. Math. Phys 152 (1992) 539-564.
[9] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer (1993).
[10] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).
[11] C. Hertling, $t t^{*}$-Geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), 77-161.
[12] S. Kobayashi and K. Nomizu, Foundations of differential geometry volume I/II, Interscience Publishers (1964/1969).
[13] Loos O., Symmetric spaces, W.A. Benjamin, Inc. (1969).
[14] M.-A. Lawn and L. Schäfer, Decompositions of para-complex vector-bundles and affine para-complex immersions, Results Math. 48 (2005), 246-274.
[15] D. Mc Duff and D. Salamon, Introduction to symplectic topology, Oxford University Press (1995).
[16] J. H. Sampson, Applications of harmonic maps to Kähler geometry, Contemporary Mathematics Volume 49, (1986), 125-134.
[17] L. Schäfer, tt**-geometry and pluriharmonic maps, Ann. Global Anal. Geom. 28, no. 3 (2005), 285-300.
[18] L. Schäfer, Harmonic bundles, topological-antitoplological fusion and the related puriharmonic maps, J. Geom. Phys. 56 (2006), no. 5, 830-842.
[19] L. Schäfer, tt *-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps, Diff. Geom. Appl. 24 (2006), 60-89.
[20] L. Schäfer, $t t^{*}$-bundles on the tangent bundle of an almost complex manifold, Journal of Geometry and Physics 57 (2007), 999-1014.
[21] L. Schäfer, Para-tt*-bundles on the tangent bundle of an almost para-complex manifold, Annals of Global Analysis and Geometry 32 (2007), 125-145.
[22] L. Schäfer, Harmonic bundle solutions of topological-antitoplological fusion in para-complex geometry, to appear in Diff. Geom. Appl.
[23] C.T. Simpson: Higgs-bundles and local systems, Institut des hautes Etudes scientifiques - Publication mathematiques, No. 75 (1992), 5-95.

Author's address:
Lars Schäfer
Department Mathematik, Universität Hamburg,
Bundesstraße 55, D-20146 Hamburg, Germany,
E-mail: schaefer@math.uni-hamburg.de

[^0]: Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 86-101.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2008.

[^1]: ${ }^{1}$ see D. Mc Duff and D. Salamon [15]

