A geometric construction of (para-)pluriharmonic maps into GL(2r)/Sp(2r)

Lars Schäfer

Abstract. In this work we use symplectic (para-) tt^* -bundles to obtain a geometric construction of (para-)pluriharmonic maps into the pseudo-Riemannian symmetric space $GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$. We prove, that these (para-)pluriharmonic maps are exactly the admissible (para-)pluriharmonic maps. Moreover, we construct symplectic (para-) tt^* -bundles from (para-)harmonic bundles and analyse the related (para-)pluriharmonic maps.

M.S.C. 2000: 53C43,58E20.

Key words: symplectic (para-)*tt**-geometry, (para-)pluriharmonic maps, (para-)harmonic bundles, pseudo-Riemannian symmetric spaces

1 Introduction

The first motivation of this work is the study of metric (para-) tt^* -bundles (E, D, S, g)over a (para-)complex manifold (M, J^{ϵ}) and their relation to admissible (para-)pluriharmonic maps from M into the space of (pseudo-)metrics. Roughly speaking there exists a correspondence between these objects. For metric tt^* -bundles (with positive definite metric) on the tangent bundle of a complex manifold this result was shown by Dubrovin [8]. In [17, 19] we generalised it to the case of metric tt^* -bundles on abstract vector bundles with metrics of arbitrary signature and to para-complex geometry. Solutions of (metric) (para-) tt^* -bundles are for example given by special (para-)complex and special (para-)Kähler manifolds (cf. [3, 19]) and by (para-)harmonic bundles [18, 22]. The related (para-)pluriharmonic maps are described in the given references. The analysis [20, 21] of tt^* -bundles (E = TM, D, S) on the tangent bundle of an almost (para-)complex manifold (M, J^{ϵ}) shows that there exists a second interesting class of (para-) tt^* -bundles ($E = TM, D, S, \omega$), carrying symplectic forms ω instead of metrics q. These will be called symplectic $(para)tt^*$ -bundles. Examples are given by Levi-Civita flat nearly (para-)Kähler manifolds (Here non-integrable (para-)complex structures appear.) and by (para-)harmonic bundles which are discussed later in this work. A constructive classification of Levi-Civita flat nearly (para-)Kähler manifolds

Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 86-101.

[©] Balkan Society of Geometers, Geometry Balkan Press 2008.

is subject of [4, 5].

In the context of the above mentioned correspondence it arises the question if one can use these techniques to construct (para-)pluriharmonic maps out of symplectic (para-)tt*-bundles and if one can characterise the obtained (para-)pluriharmonic maps. In this paper we answer positively to this question: We associate an admissible (cf. definition 4) (para-)pluriharmonic map from M into $GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$ to a symplectic $(para-)tt^*$ -bundle and show that an admissible (para-)pluriharmonic map inducesa symplectic (para-) tt^* -bundle on $E = M \times \mathbb{R}^{2r}$. This is the analogue of the correspondence discussed in the first paragraph. In other words we characterise in a geometric fashion the class of admissible (para-)pluriharmonic maps into $GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$. In the sequel we construct symplectic (para-) tt^* -bundles from (para-)harmonic bundles and analyse the relation between the (para-)pluriharmonic maps which are obtained from these symplectic (para-) tt^* -bundles and the (para-)pluriharmonic maps which were found in [18, 22]. We restrict to simply connected manifolds M, since the case of general fundamental group can be obtained like in [17, 19]. In the general case all (para-)pluriharmonic maps have to be replaced by twisted (para-)pluriharmonic maps.

2 Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry. For a more complete source we refer to [2].

In para-complex geometry one replaces the complex structure J with $J^2 = -1$ (on a finite dimensional vector space V) by the para-complex structure $\tau \in End(V)$ satisfying $\tau^2 = 1$ and one requires that the ± 1 -eigenspaces have the same dimension. An almost para-complex structure on a smooth manifold M is an endomorphism-field τ , which is a point-wise para-complex structure. If the eigen-distributions $T^{\pm}M$ are integrable τ is called para-complex structure on M and M is called a para-complex manifold. As in the complex case, there exists a tensor, also called Nijenhuis tensor, which is the obstruction to the integrability of the para-complex structure.

The real algebra, which is generated by 1 and by the para-complex unit e with $e^2 = 1$, is called the para-complex numbers and denoted by C. For all $z = x + ey \in C$ with $x, y \in \mathbb{R}$ we define the para-complex conjugation as $\overline{\cdot} : C \to C, x + ey \mapsto x - ey$ and the real and imaginary parts of z by $\mathcal{R}(z) := x$, $\Im(z) := y$. The free C-module C^n is a para-complex vector space where its para-complex structure is just the multiplication with e and the para-complex conjugation of C extends to $\overline{\cdot} : C^n \to C^n, v \mapsto \overline{v}$.

Note, that $z\bar{z} = x^2 - y^2$. Therefore the algebra *C* is sometimes called the hypercomplex numbers. The circle $\mathbb{S}^1 = \{z = x + iy \in \mathbb{C} \mid x^2 + y^2 = 1\}$ is replaced by the four hyperbolas $\{z = x + ey \in C \mid x^2 - y^2 = \pm 1\}$. We define $\tilde{\mathbb{S}}^1$ to be the hyperbola given by the one parameter group $\{z(\theta) = \cosh(\theta) + e \sinh(\theta) \mid \theta \in \mathbb{R}\}$.

A para-complex vector space (V, τ) endowed with a pseudo-Euclidean metric g is called para-hermitian vector space, if g is τ -anti-invariant, i.e. $\tau^*g = -g$. The para-unitary group of V is defined as the group of automorphisms

$$U^{\pi}(V) := \operatorname{Aut}(V, \tau, g) := \{ L \in GL(V) | [L, \tau] = 0 \text{ and } L^*g = g \}$$

and its Lie-algebra is denoted by $\mathfrak{u}^{\pi}(V)$. For $C^n = \mathbb{R}^n \oplus e\mathbb{R}^n$ the standard parahermitian structure is defined by the above para-complex structure and the metric g = diag(1, -1) (cf. Example 7 of [2]). The corresponding para-unitary group is given by (cf. Proposition 4 of [2]):

$$U^{\pi}(C^n) = \left\{ \left(\begin{array}{cc} A & B \\ B & A \end{array} \right) | A, B \in \operatorname{End}(\mathbb{R}^n), A^T A - B^T B = \mathbb{1}_n, A^T B - B^T A = 0 \right\}.$$

There exist two bi-gradings on the exterior algebra: The one is induced by the splitting in $T^{\pm}M$ and denoted by $\Lambda^k T^*M = \bigoplus_{k=p+q} \Lambda^{p+,q-}T^*M$ and induces an obvious bi-

grading on exterior forms with values in a vector bundle E. The second is induced by the decomposition of the **para-complexified** tangent bundle $TM^C = TM \otimes_{\mathbb{R}} C$ into the subbundles $T_p^{1,0}M$ and $T_p^{0,1}M$ which are defined as the $\pm e$ -eigenbundles of the para-complex linear extension of τ . This induces a bi-grading on the C-valued exterior forms noted $\Lambda^k T^* M^C = \bigoplus_{k=p+q} \Lambda^{p,q} T^* M$ and finally on the C-valued differential forms

on $M \ \Omega^k_C(M) = \bigoplus_{k=p+q} \Omega^{p,q}(M)$. In the case (1,1) and (1+,1-) the two gradings

induced by τ coincide, in the sense that $\Lambda^{1,1} T^*M = (\Lambda^{1+,1-} T^*M) \otimes C$. The bundles $\Lambda^{p,q} T^*M$ are para-complex vector bundles in the following sense: A para-complex vector bundle of rank r over a para-complex manifold (M, τ) is a smooth real vector bundle $\pi : E \to M$ of rank 2r endowed with a fiber-wise para-complex structure $\tau^E \in \Gamma(\text{End}(E))$. We denote it by (E, τ^E) . In the following text we always identify the fibers of a para-complex vector bundle E of rank r with the free C-module C^r . One has a notion of para-holomorphic vector bundles, too. These were extensively studied in a common work with M.-A. Lawn-Paillusseau [14].

Let us transfer some notions of hermitian linear algebra (cf. [22]): A para-hermitian sesquilinear scalar product is a non-degenerate sesquilinear form $h: C^r \times C^r \to C$, i.e. it satisfies (i) h is non-degenerate: Given $w \in C^r$ such that for all $v \in C^r$ h(v, w) = 0, then it follows w = 0, (ii) $h(v, w) = \overline{h(w, v)}$, $\forall v, w \in C^r$, and (iii) $h(\lambda v, w) = \lambda h(v, w)$, $\forall \lambda \in C$; $v, w \in C^r$. The standard para-hermitian sesquilinear scalar product is given by

$$(z,w)_{C^r} := z \cdot \bar{w} = \sum_{i=1}^r z^i \bar{w}^i$$
, for $z = (z^1, \dots, z^r), w = (w^1, \dots, w^r) \in C^r$.

The para-hermitian conjugation is defined by $C \mapsto C^h = \overline{C}^t$ for $C \in End(C^r) = End_C(C^r)$ and C is called para-hermitian if and only if $C^h = C$. We denote by herm (C^r) the set of para-hermitian endomorphisms and by $\operatorname{Herm}(C^r) = \operatorname{herm}(C^r) \cap GL(r,C)$. We remark, that there is **no** notion of para-hermitian signature, since from h(v,v) = -1 for an element $v \in C^r$ we obtain h(ev,ev) = 1.

Proposition 1. Given an element C of $End(C^r)$ then it holds $(Cz, w)_{C^r} = (z, C^hw)_{C^r}, \forall z, w \in C^r$. The set $herm(C^r)$ is a real vector space. There is a bijective correspondence between $Herm(C^r)$ and para-hermitian sesquilinear scalar products h on C^r given by $H \mapsto h(\cdot, \cdot) := (H \cdot, \cdot)_{C^r}$.

A para-hermitian metric h on a para-complex vector-bundle E over a para-complex manifold (M, τ) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations: First we note J^{ϵ} where $J^{\epsilon^2} = \epsilon \mathbb{1}$ with $\epsilon \in \{\pm 1\}$. The ϵ complex unit is denoted by \hat{i} , i.e. $\hat{i} := e$, for $\epsilon = 1$, and $\hat{i} = i$, for $\epsilon = -1$. Further we introduce \mathbb{C}_{ϵ} with $\mathbb{C}_1 = C$ and $\mathbb{C}_{-1} = \mathbb{C}$ and \mathbb{S}^1_{ϵ} with $\mathbb{S}^1_1 = \tilde{\mathbb{S}}^1$ and $\mathbb{S}^1_{-1} = \mathbb{S}^1$. In the rest of this work we extend our language by the following ϵ -notation: If a word has a prefix ϵ with $\epsilon \in \{\pm 1\}$, i.e. is of the form ϵX , this expression is replaced by

$$\epsilon X := \begin{cases} X, \text{ for } \epsilon = -1, \\ \text{para-X, for } \epsilon = 1. \end{cases}$$

The ϵ unitary group and its Lie-algebra are

$$U^{\epsilon}(p,q) := \begin{cases} U^{\pi}(C^r), \text{ for } \epsilon = 1, \\ U(p,q), \text{ for } \epsilon = -1 \end{cases} \text{ and } \mathfrak{u}^{\epsilon}(p,q) := \begin{cases} \mathfrak{u}^{\pi}(C^r), \text{ for } \epsilon = 1, \\ \mathfrak{u}(p,q), \text{ for } \epsilon = -1, \end{cases}$$

where in the complex case (p,q) for r = p + q is the hermitian signature. Further we use the notation

$$\operatorname{Herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) := \begin{cases} \operatorname{Herm}(C^{r}); \epsilon = 1, \\ \operatorname{Herm}_{p,q}(\mathbb{C}^{r}); \epsilon = -1, \end{cases} \quad \operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) := \begin{cases} \operatorname{herm}(C^{r}); \epsilon = 1, \\ \operatorname{herm}_{p,q}(\mathbb{C}^{r}); \epsilon = -1, \end{cases}$$

where, for p + q = r, $\operatorname{Herm}_{p,q}(\mathbb{C}^r)$ are the hermitian matrices of hermitian signature (p,q) and $\operatorname{herm}_{p,q}(\mathbb{C}^r)$ are the hermitian matrices with respect to the standard hermitian product of hermitian signature (p,q) on \mathbb{C}^r . The standard ϵ hermitian sequilinear scalar product is $(z,w)_{\mathbb{C}^r_{\epsilon}} := z \cdot \bar{w} = \sum_{i=1}^r z^i \bar{w}^i$, for $z = (z^1, \ldots, z^r), w = (w^1, \ldots, w^r) \in \mathbb{C}^r_{\epsilon}$ and we note

$$\cos_{\epsilon}(x) := \begin{cases} \cos(x), \text{ for } \epsilon = -1, \\ \cosh(x), \text{ for } \epsilon = 1 \end{cases} \text{ and } \sin_{\epsilon}(x) := \begin{cases} \sin(x), \text{ for } \epsilon = -1, \\ \sinh(x), \text{ for } \epsilon = 1. \end{cases}$$

3 tt^* -bundles

For the convenience of the reader we recall the definition of an ϵtt^* -bundle given in [3, 17, 19] and the notion of a symplectic ϵtt^* -bundle [20, 21]:

Definition 1. An ϵtt^* -bundle (E, D, S) over an ϵ complex manifold (M, J^{ϵ}) is a real vector bundle $E \to M$ endowed with a connection D and a section $S \in \Gamma(T^*M \otimes \text{End } E)$ satisfying the ϵtt^* -equation

(3.1)
$$R^{\theta} = 0 \quad \text{for all} \quad \theta \in \mathbb{R} \,,$$

where R^{θ} is the curvature tensor of the connection D^{θ} defined by

(3.2)
$$D_X^{\theta} := D_X + \cos_{\epsilon}(\theta) S_X + \sin_{\epsilon}(\theta) S_{J^{\epsilon}X}$$
 for all $X \in TM$.

A symplectic ϵtt^* -bundle (E, D, S, ω) is an ϵtt^* -bundle (E, D, S) endowed with the structure of a symplectic vector bundle¹ (E, ω) , such that ω is D-parallel and S is ω -symmetric, i.e. for all $p \in M$

(3.3)
$$\omega(S_X, \cdot) = \omega(\cdot, S_X) \quad \text{for all} \qquad X \in T_p M \,.$$

¹see D. Mc Duff and D. Salamon [15]

Remark 1.

1) It is obvious that every ϵtt^* -bundle (E, D, S) induces a family of ϵtt^* -bundles (E, D, S^{θ}) , for $\theta \in \mathbb{R}$, with

(3.4)
$$S^{\theta} := D^{\theta} - D = \cos_{\epsilon}(\theta)S + \sin_{\epsilon}(\theta)S_{J^{\epsilon}}.$$

The same remark applies to symplectic ϵtt^* -bundles.

2) Notice that a symplectic ϵtt^* -bundle (E, D, S, ω) of rank 2r carries a *D*-parallel volume given by $\omega \wedge \ldots \wedge \omega$.

The next proposition gives explicit equations for D and S, such that (E, D, S) is an ϵtt^* -bundle.

Proposition 2. (cf. [17, 19]) Let E be a real vector bundle over an ϵ complex manifold (M, J^{ϵ}) endowed with a connection D and a section $S \in \Gamma(T^*M \otimes \text{End } E)$. Then (E, D, S) is an ϵtt^* -bundle if and only if D and S satisfy the following equations:

(3.5) $R^D + S \wedge S = 0$, $S \wedge S$ is of type (1,1), $d^D S = 0$ and $d^D S_{J^{\epsilon}} = 0$.

4 Pluriharmonic maps into $GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$

In this section we present the notion of ϵ pluriharmonic maps and some properties of ϵ pluriharmonic maps into the target space $S = S(2r) := GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$.

The following notion was introduced in [1] for holomorphic and in [14] for paraholomorphic vector bundles.

Definition 2. Let (M, J^{ϵ}) be an ϵ complex manifold. A connection D on TM is called adapted if it satisfies

$$(4.1) D_{J^{\epsilon}Y}X = J^{\epsilon}D_YX$$

for all vector fields which satisfy $\mathcal{L}_X J^{\epsilon} = 0$ (i.e. for which $X + \hat{\epsilon i} J^{\epsilon} X$ is ϵ holomorphic).

Definition 3. Let (M, J^{ϵ}) be an ϵ complex manifold and (N, h) a pseudo-Riemannian manifold with Levi-Civita connection ∇^h , D an adapted connection on M and ∇ the connection on $T^*M \otimes f^*TN$ which is induced by D and ∇^h and consider $\alpha = \nabla df \in \Gamma(T^*M \otimes T^*M \otimes f^*TN)$. Then f is ϵ pluriharmonic if and only if α is of type (1, 1), i.e.

 $\alpha(X,Y) - \epsilon \alpha(J^{\epsilon}X,J^{\epsilon}Y) = 0$

for all $X, Y \in TM$.

Remark 2.

- 1. Note, that an equivalent definition of ϵ pluriharmonicity is to say, that f is ϵ pluriharmonic if and only if f restricted to every ϵ complex curve is harmonic. For a short discussion the reader is referred to [3, 17, 19].
- 2. One knows, that every ϵ complex manifold (M, J^{ϵ}) can be endowed with a torsion-free ϵ complex connection D (cf. [12] in the complex and [19] Theorem 1 for the para-complex case), i.e. D is torsion-free and satisfies $DJ^{\epsilon} = 0$. Such a connection is adapted. In the rest of the paper, we assume, that the connection D on (M, J^{ϵ}) is also torsion-free.

90

The harmonic analogue of the following proposition is well-known.

Proposition 3. Let (M, J^{ϵ}) be an ϵ complex manifold, X, Y be pseudo-Riemannian manifolds and $\Psi : X \to Y$ a totally geodesic immersion. Then a map $f : M \to X$ is ϵ pluriharmonic if and only if $\Psi \circ f : M \to Y$ is ϵ pluriharmonic.

The ϵ pluriharmonic maps obtained by our construction are exactly the admissible ϵ pluriharmonic maps in the sense of the following general definition:

Definition 4. Let (M, J^{ϵ}) be an ϵ complex manifold and G/K be a locally symmetric space with associated Cartan-decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. A map $f : (M, J^{\epsilon}) \to G/K$ is called admissible if the ϵ complex linear extension of its differential df maps $T^{1,0}M$ to an Abelian subspace of $\mathfrak{p}^{\mathbb{C}_{\epsilon}}$.

Let ω_0 be the standard symplectic form of \mathbb{R}^{2r} , i.e. $\omega_0 = \sum_{i=1}^r e_i \wedge e_{i+r}$ where $(e_i)_{i=1}^{2r}$ is the dual of the standard basis of \mathbb{R}^{2r} . Then we define

(4.2)
$$Sym(\omega_0) := \{A \in GL(2r, \mathbb{R}) \,|\, \omega_0(A, \cdot) = \omega_0(\cdot, A)\}.$$

The adjoint of $g \in GL(2r, \mathbb{R})$ with respect to ω_0 will be denoted by g^{\dagger} . Hence $Sym(\omega_0)$ are the elements $A \in GL(2r, \mathbb{R})$ which satisfy $A^{\dagger} = A$.

Every element $A \in Sym(\omega_0)$ defines a symplectic form ω_A on \mathbb{R}^{2r} by $\omega_A(\cdot, \cdot) = \omega_0(A \cdot, \cdot)$. To this interpretation corresponds an action

$$GL(2r, \mathbb{R}) \times Sym(\omega_0) \to Sym(\omega_0), \quad (g, A) \mapsto (g^{-1})^{\dagger} A g^{-1}.$$

This action is used to identify S(2r) and $Sym(\omega_0)$ by a map Ψ in the following proposition.

Proposition 4. Let Ψ be the canonical map $\Psi : S(2r) \xrightarrow{\sim} Sym(\omega_0) \subset GL(2r, \mathbb{R})$ where $GL(2r, \mathbb{R})$ carries the pseudo-Riemannian metric induced by the Ad-invariant trace-form. Then Ψ is a totally geodesic immersion and a map f from an ϵ complex manifold (M, J^{ϵ}) to S(2r) is ϵ pluriharmonic, if and only if the map $\Psi \circ f : M \to$ $Sym(\omega_0) \subset GL(2r, \mathbb{R})$ is ϵ pluriharmonic.

Proof. The proof is done by relating the map Ψ to the well-known Cartan-immersion. Additional information can be found in [10, 7, 9, 12].

1. First we study the identification $S(2r) \xrightarrow{\sim} Sym(\omega_0)$. $GL(2r, \mathbb{R})$ operates on $Sym(\omega_0)$ via

$$GL(2r,\mathbb{R}) \times Sym(\omega_0) \to Sym(\omega_0), \ (g,B) \mapsto g \cdot B := (g^{-1})^{\dagger}Bg^{-1}.$$

The stabiliser of the $\mathbb{1}_{2r}$ is $Sp(\mathbb{R}^{2r})$ and the action is seen to be transitive by choosing a symplectic basis. Using the orbit-stabiliser theorem we get by identifying orbits and rest-classes a diffeomorphism

$$\Psi: S(2r) \xrightarrow{\sim} Sym(\omega_0), \ g \, Sp(\mathbb{R}^{2r}) \mapsto g \cdot \mathbb{1}_{2r} = (g^{-1})^{\dagger} \mathbb{1}_{2r} g^{-1} = (g^{-1})^{\dagger} g^{-1}.$$

2. We recall some results about symmetric spaces (see: [7, 13]). Let G be a Liegroup and $\sigma : G \to G$ a group-homomorphism with $\sigma^2 = Id_G$. Let K denote the subgroup $K = G^{\sigma} = \{g \in G \mid \sigma(g) = g\}$. The Lie-algebra \mathfrak{g} of G decomposes in $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}$ with $d\sigma_{Id_G}(\mathfrak{h}) = \mathfrak{h}$, $d\sigma_{Id_G}(\mathfrak{p}) = -\mathfrak{p}$. One has the following information: The map $\phi : G/K \to G$ with $\phi : [gK] \mapsto g\sigma(g^{-1})$ defines a totally geodesic immersion called the Cartan-immersion.

We want to utilise this in the case $G = GL(2r, \mathbb{R})$ and $K = Sp(\mathbb{R}^{2r})$. In this spirit we define σ : $GL(2r, \mathbb{R}) \to GL(2r, \mathbb{R}), g \mapsto (g^{-1})^{\dagger}$. The map σ is obviously a homomorphism and an involution with $GL(2r, \mathbb{R})^{\sigma} = Sp(\mathbb{R}^{2r})$. By a direct calculation one gets $d\sigma_{Id_G} = -h^{\dagger}$ and hence

$$\mathfrak{h} = \{h \in \mathfrak{gl}_{2r}(\mathbb{R}) \,|\, h^{\dagger} = -h\} = \mathfrak{sp}(\mathbb{R}^{2r}), \ \mathfrak{p} = \{h \in \mathfrak{gl}_{2r}(\mathbb{R}) \,|\, h^{\dagger} = h\} =: \operatorname{sym}(\omega_0).$$

Thus we end up with $\phi : S(2r) \to GL(2r, \mathbb{R}), \quad g \mapsto g\sigma(g^{-1}) = gg^{\dagger} = \Psi \circ \Lambda(g)$. Here Λ is the map induced by $\Lambda : G \to G, h \mapsto (h^{-1})^{\dagger}$. This map is an isometry of the invariant metric. Hence Ψ is a totally geodesic immersion. Using proposition 3 the proof is finished. \Box

Remark 3. Above we have identified S(2r) with $Sym(\omega_0)$ via Ψ . Let us choose $o = eSp(\mathbb{R}^{2r})$ as base point and suppose that Ψ is chosen to map o to $\mathbb{1}_{2r}$. By construction Ψ is $GL(2r, \mathbb{R})$ -equivariant. We identify the tangent-space $T_{\omega}Sym(\omega_0)$ at $\omega \in Sym(\omega_0)$ with the (ambient) vector space of ω_0 -symmetric matrices in $\mathfrak{gl}_{2r}(\mathbb{R})$

(4.3)
$$T_{\omega} \operatorname{Sym}(\omega_0) = \operatorname{sym}(\omega_0).$$

For $\tilde{\omega} \in S(2r)$ such that $\Psi(\tilde{\omega}) = \omega$, the tangent space $T_{\tilde{\omega}}S(2r)$ is canonically identified with the vector space of ω -symmetric matrices:

(4.4)
$$T_{\tilde{\omega}}S(2r) = \operatorname{sym}(\omega) := \{A \in \mathfrak{gl}_{2r}(\mathbb{R}) | A^{\dagger}\omega = \omega A\}.$$

Note that $\operatorname{sym}(\mathbb{1}_{2r}) = \operatorname{sym}(\omega_0)$.

Proposition 5. The differential of $\varphi := \Psi^{-1}$ at $\omega \in \text{Sym}(\omega_0)$ is given by

(4.5)
$$\operatorname{sym}(\omega_0) \ni X \mapsto -\frac{1}{2}\omega^{-1}X \in \omega^{-1}\operatorname{sym}(\omega_0) = \operatorname{sym}(\omega)$$

Using this proposition we relate now the differentials

(4.6)
$$df_x: T_x M \to \operatorname{sym}(\omega_0)$$

of a map $f: M \to \operatorname{Sym}(\omega_0)$ at $x \in M$ and

(4.7)
$$d\tilde{f}_x: T_x M \to \operatorname{sym}(f(x))$$

of a map $\tilde{f} = \varphi \circ f : M \to S(2r)$: $d\tilde{f}_x = d\varphi df_x = -\frac{1}{2}f(x)^{-1}df_x$.

We interpret the one-form $A = -2d\tilde{f} = f^{-1}df$ with values in $\mathfrak{gl}_{2r}(\mathbb{R})$ as connection form on the vector bundle $E = M \times \mathbb{R}^{2r}$. We note, that the definition of A is the pure gauge, i.e. A is gauge-equivalent to A' = 0. Since for A' = 0 one has $A = f^{-1}A'f + f^{-1}df = f^{-1}df$, the curvature vanishes. This yields the next proposition: A geometric construction of (para-)pluriharmonic maps

Proposition 6. Let $f : M \to GL(2r, \mathbb{R})$ be a C^{∞} -mapping and $A := f^{-1}df$: $TM \to \mathfrak{gl}_{2r}(\mathbb{R})$. Then the curvature of A vanishes, i.e. for $X, Y \in \Gamma(TM)$ it is

(4.8)
$$Y(A_X) - X(A_Y) + [A_Y, A_X] + A_{[X,Y]} = 0.$$

In the next proposition we recall the equations for ϵ pluriharmonic maps from an ϵ complex manifold to $GL(2r, \mathbb{R})$:

Proposition 7. (cf. [17, 19]) Let (M, J^{ϵ}) be an ϵ complex manifold, $f : M \to GL(2r, \mathbb{R})$ a C^{∞} -map and A defined as in proposition 6. The ϵ -pluriharmonicity of f is equivalent to the equation

(4.9)
$$Y(A_X) + \frac{1}{2}[A_Y, A_X] - \epsilon J^{\epsilon} Y(A_{J^{\epsilon}X}) - \epsilon \frac{1}{2}[A_{J^{\epsilon}Y}, A_{J^{\epsilon}X}] = 0,$$

for all $X, Y \in \Gamma(TM)$.

With a similar argument as in proposition 4 we have shown in [18, 22]:

Proposition 8. Let (M, J^{ϵ}) be an ϵ complex manifold. A map

$$\phi : M \to GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p, q),$$

where the target-space is carrying the (pseudo-)metric induced by the trace-form on $GL(r, \mathbb{C}_{\epsilon})$, is ϵ pluriharmonic if and only if

$$\psi = \Psi^{\epsilon} \circ \phi : M \to GL(r, \mathbb{C}_{\epsilon}) / U^{\epsilon}(p, q) \tilde{\to} Herm_{p, q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) \subset GL(r, \mathbb{C}_{\epsilon})$$

is ϵ pluriharmonic.

To be complete we mention the related symmetric decomposition:

$$\mathfrak{h} = \{A \in \mathfrak{gl}_r(\mathbb{C}_\epsilon) \,|\, A^h = -A\} = \mathfrak{u}^\epsilon(p,q), \ \mathfrak{p} = \{A \in \mathfrak{gl}_r(\mathbb{C}_\epsilon) \,|\, A^h = A\} =: \operatorname{herm}_{p,q}^\epsilon(\mathbb{C}_\epsilon^r).$$

5 tt^* -geometry and pluriharmonic maps

In this section we are going to state and prove the main results. Like in section 4 one regards the mapping $A = f^{-1}df$ as a map $A: TM \to \mathfrak{gl}_{2r}(\mathbb{R})$.

Theorem 1. Let (M, J^{ϵ}) be a simply connected ϵ complex manifold. Let (E, D, S, ω) be a symplectic ϵtt^* -bundle where E has rank 2r and M dimension n.

The matrix representation $f: M \to Sym(\omega_0)$ of ω in a D^{θ} -flat frame of E induces an admissible ϵ pluriharmonic map $\tilde{f}: M \xrightarrow{f} Sym(\omega_0) \xrightarrow{\sim} S(2r)$, where S(2r) carries the (pseudo-Riemannian) metric induced by the trace-form on $GL(2r, \mathbb{R})$. Let s' be another D^{θ} -flat frame. Then $s' = s \cdot U$ for a constant matrix and the ϵ pluriharmonic map associated to s' is $f' = U^{\dagger} fU$.

Proof. Thanks to remark 1.1) we can restrict to the case $\theta = \pi$ for $\epsilon = -1$ and $\theta = 0$ for $\epsilon = 1$.

Let $s := (s_1, \ldots, s_{2r})$ be a D^{θ} -flat frame of E (i.e. $Ds = -\epsilon Ss$), f the matrix $\omega(s_k, s_l)$ and further S^s the matrix-valued one-form representing the tensor S in the frame s. For $X \in \Gamma(TM)$ we get:

Lars Schäfer

$$\begin{aligned} X(f) &= X\omega(s,s) = \omega(D_X s, s) + \omega(s, D_X s) \\ &= -\epsilon[\omega(S_X s, s) + \omega(s, S_X s)] \\ &= -2\epsilon\omega(S_X s, s) = -2\epsilon f \cdot S_X^s. \end{aligned}$$

It follows $A_X = -2\epsilon S_X^s$. We now prove the ϵ -pluriharmonicity using

(5.1)
$$d^{D}S(X,Y) = D_{X}(S_{Y}) - D_{Y}(S_{X}) - S_{[X,Y]} = 0,$$

(5.2)
$$d^{D}S_{J^{\epsilon}}(X,Y) = D_{X}(S_{J^{\epsilon}Y}) - D_{Y}(S_{J^{\epsilon}X}) - S_{J^{\epsilon}[X,Y]} = 0$$

The equation (5.2) implies

$$0 = d^{D}S_{J^{\epsilon}}(J^{\epsilon}X,Y) = D_{J^{\epsilon}X}(S_{J^{\epsilon}Y}) - \underbrace{\epsilon D_{Y}(S_{X})}_{\substack{(5,1)\\ = \epsilon(D_{X}(S_{Y}) - S_{[X,Y]})} - S_{J^{\epsilon}[J^{\epsilon}X,Y]}$$
$$= D_{J^{\epsilon}X}(S_{J^{\epsilon}Y}) - \epsilon D_{X}(S_{Y}) + \epsilon S_{[X,Y]} - S_{J^{\epsilon}[J^{\epsilon}X,Y]}.$$

In local ϵ holomorphic coordinate fields X, Y on M we get in the frame s

$$J^{\epsilon}X(S_{J^{\epsilon}Y}^{s}) - \epsilon X(S_{Y}^{s}) + [S_{X}^{s}, S_{Y}^{s}] - \epsilon [S_{J^{\epsilon}X}^{s}, S_{J^{\epsilon}Y}^{s}] = 0.$$

Now $A = -2\epsilon S^s$ gives equation (4.9) and proves the ϵ -pluriharmonicity of f. Using $A_X = -2\epsilon S_X^s = -2d\tilde{f}(X)$, we find the property of the differential, as $S \wedge S$ is of type (1,1) by the ϵtt^* -equations, see proposition 2. The last statement is obvious. \Box

Theorem 2. Let (M, J^{ϵ}) be a simply connected ϵ complex manifold and put $E = M \times \mathbb{R}^{2r}$. Then an ϵ pluriharmonic map $\tilde{f} : M \to S(2r)$ gives rise to an ϵ pluriharmonic map $f : M \xrightarrow{\tilde{f}} S(2r) \xrightarrow{\sim} Sym(\omega_0) \xrightarrow{i} GL(2r, \mathbb{R})$. If the map \tilde{f} is admissible, then the map f induces a symplectic ϵ tt^{*}-bundle (E, D = I)

 $\partial - \epsilon S, S = \epsilon d\tilde{f}, \omega = \omega_0(f \cdot, \cdot))$ on M where ∂ is the canonical flat connection on E.

Remark 4. We observe, that for ϵ Riemannian surfaces $M = \Sigma$ every ϵ pluriharmonic map is admissible, since $T^{1,0}\Sigma$ is one-dimensional.

Proof.

Let $\tilde{f}: M \to S(2r)$ be an ϵ -pluriharmonic map. Then due to proposition 4 we know, that $f: M \to Sum(\omega_0) \stackrel{i}{\hookrightarrow} GL(2r, \mathbb{R})$ is ϵ -pluriharmonic.

that $f: M \xrightarrow{\sim} Sym(\omega_0) \xrightarrow{i} GL(2r, \mathbb{R})$ is ϵ pluriharmonic. Since $E = M \times \mathbb{R}^{2r}$, we want to regard sections of E as 2r-tuples of $C^{\infty}(M, \mathbb{R})$ -functions.

As in section 4 we consider the one-form $A = -2d\tilde{f} = f^{-1}df$ with values in $\mathfrak{gl}_{2r}(\mathbb{R})$ as a connection on E. The curvature of this connection vanishes (proposition 6). First, the constraints on ω are fulfilled:

Lemma 1. The connection D is compatible with the symplectic form ω and S is symmetric with respect to ω .

Proof. This is a direct computation with $X \in \Gamma(TM)$ and $v, w \in \Gamma(E)$:

$$\begin{aligned} X\omega(v,w) &= X\omega_0(fv,w) = \omega_0(X(f)v,w) + \omega_0(f(Xv),w) + \omega_0(fv,Xw) \\ &= \frac{1}{2}\omega_0(X(f)v,w) + \frac{1}{2}\omega_0(v,X(f)w) + \omega_0(f(Xv),w) + \omega_0(fv,Xw) \\ &= \frac{1}{2}\omega_0(f \cdot f^{-1}(Xf)v,w) + \frac{1}{2}\omega_0(v,f \cdot f^{-1}(Xf)w) \\ &\quad + \omega_0(fXv,w) + \omega_0(fv,Xw) \\ &= \omega(Xv - \epsilon S_Xv,w) + \omega(v,Xw - \epsilon S_Xw) = \omega(D_Xv,w) + \omega(v,D_Xw) \end{aligned}$$

S is ω -symmetric, since for $x \in M$ $d\tilde{f}_x$ takes by definition values in sym(f(x)). To finish the proof, we have to check the ϵtt^* -equations. The second ϵtt^* -equation

(5.3)
$$-\epsilon[S_X, S_Y] = [S_{J^\epsilon X}, S_{J^\epsilon Y}]$$

for S follows from the assumption that the image of $T^{1,0}M$ under $(d\tilde{f})^{\mathbb{C}_{\epsilon}}$ is Abelian. In fact, this is equivalent to $[d\tilde{f}(J^{\epsilon}X), d\tilde{f}(J^{\epsilon}Y)] = -\epsilon[d\tilde{f}(X), d\tilde{f}(Y)] \quad \forall X, Y \in TM.$

$$d^{D}S(X,Y) = [D_{X}, S_{Y}] - [D_{Y}, S_{X}] - S_{[X,Y]}$$

= $\partial_{X}(S_{Y}) - \partial_{Y}(S_{X}) - 2\epsilon[S_{X}, S_{Y}] - S_{[X,Y]} = 0$

is equivalent to the vanishing of the curvature of $A = -2\epsilon S$ interpreted as a connection on E (see proposition 6).

Finally one has for ϵ holomorphic coordinate fields $X, Y \in \Gamma(TM)$:

$$d^{D}S_{J^{\epsilon}}(J^{\epsilon}X,Y) = [D_{J^{\epsilon}X}, S_{J^{\epsilon}Y}] - \epsilon[D_{Y}, S_{X}]$$

$$= [\partial_{J^{\epsilon}X} - \epsilon S_{J^{\epsilon}X}, S_{J^{\epsilon}Y}] - \epsilon[\partial_{Y} - \epsilon S_{Y}, S_{X}]$$

$$= \partial_{J^{\epsilon}X}(S_{J^{\epsilon}Y}) - \epsilon \partial_{Y}(S_{X}) - \epsilon[S_{J^{\epsilon}X}, S_{J^{\epsilon}Y}] - [S_{X}, S_{Y}]$$

$$\stackrel{(5.3)}{=} -\frac{1}{2}\epsilon (\partial_{J^{\epsilon}X}(A_{J^{\epsilon}Y}) - \epsilon \partial_{Y}(A_{X}))$$

$$\stackrel{(4.8)}{=} -\frac{1}{2}\epsilon (\partial_{J^{\epsilon}X}(A_{J^{\epsilon}Y}) - \epsilon \partial_{X}(A_{Y}) - \epsilon[A_{X}, A_{Y}])$$

$$\stackrel{(5.3)}{=} -\frac{1}{2}\epsilon \{\partial_{J^{\epsilon}X}(A_{J^{\epsilon}Y}) - \epsilon \partial_{X}(A_{Y}) - \epsilon[A_{X}, A_{Y}]\}$$

$$\stackrel{(4.9)}{=} 0.$$

This shows the vanishing of the tensor $d^D S_{J^{\epsilon}}$. It remains to show the curvature equation for D. We observe, that $D + \epsilon S = \partial - \epsilon S + \epsilon S = \partial$ and that the connection ∂ is flat, to find $0 = R_{X,Y}^{D+\epsilon S} = R_{X,Y}^{D} + \epsilon d^D S(X,Y) + [S_X, S_Y] \stackrel{d^D = 0}{=} R_{X,Y}^{D} + [S_X, S_Y].$

In the situation of theorem 2 the two constructions are inverse.

Proposition 9.

D

1. Given a symplectic ϵtt^* -bundle (E, D, S, ω) on an ϵ complex manifold (M, J^{ϵ}) . Let \hat{f} be the associated admissible ϵ pluriharmonic map constructed to a D^{θ} -flat frame s in theorem 1. Then the symplectic ϵtt^* -bundle $(M \times \mathbb{R}^r, \tilde{S}, \tilde{\omega})$ associated to \tilde{f} of theorem 2 is the representation of (E, D, S, ω) in the frame s.

2. Given an admissible ϵ pluriharmonic map $\tilde{f}: (M, J^{\epsilon}) \to S(2r)$, then one obtains via theorem 2 a symplectic ϵtt^* -bundle $(M \times \mathbb{R}^{2r}, D, S, \omega)$. The ϵ pluriharmonic map associated to this symplectic ϵtt^* -bundle is conjugated to the map \tilde{f} by a constant matrix.

Proof. Using again remark 1.1) we can set $\theta = \pi$ in the complex and $\theta = 0$ in the para-complex case.

- 1. The map f is obviously ω in the frame s and in the computations of theorem 1 one gets $A = -2d\tilde{f} = f^{-1}df = -2\epsilon S^s$. From $0 = D^{\theta}s = Ds + \epsilon Ss$ we obtain that the connection D in the frame s is just $\partial \epsilon S^s = \partial + \frac{A}{2}$.
- 2. We have to find a D^{θ} -flat frame s. It is $D^{\theta} = \partial \epsilon S + \epsilon S = \partial$. Hence we can take s as the standard-basis of \mathbb{R}^{2r} and we get f. Every other basis gives a conjugated result. \Box

6 Harmonic bundle solutions

In this section we use the notation $H^{\epsilon}(p,q) := GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p,q)$. As motivation for considering ϵ harmonic bundles we prove :

Proposition 10. The canonical inclusion

$$i: GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p, q) \hookrightarrow GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$$

is totally geodesic. Let further (M, J^{ϵ}) be an ϵ complex manifold, then a map $\alpha : M \to GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p, q)$ is ϵ pluriharmonic if and only if $i \circ \alpha : M \to GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$ is ϵ pluriharmonic.

Proof. Looking at the inclusion of the symmetric decompositions

 $\mathfrak{gl}_r(\mathbb{C}_\epsilon) = \operatorname{herm}_{p,q}(\mathbb{C}_\epsilon^r) \oplus \mathfrak{u}^\epsilon(p,q) \subset \mathfrak{gl}_{2r}\mathbb{R} = \operatorname{sym}(\omega_0) \oplus \mathfrak{o}(k,l),$

we see, that herm $_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) \subset \operatorname{sym}(\omega_{0})$ is a Lie-triple system, i.e.

$$[\operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}), [\operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}), \operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})]] \subset \operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$$

and that therefore the inclusion $GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p, q) \stackrel{i}{\hookrightarrow} GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$ is totally geodesic. The second statement follows from proposition 3. \Box

In [18, 22] we related ϵ pluriharmonic maps from an ϵ complex manifold (M, J^{ϵ}) into $H^{\epsilon}(p,q) = GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p,q)$ with r = p + q to ϵ harmonic bundles over (M, J^{ϵ}) . First we recall the definition of an ϵ harmonic bundle:

Definition 5. An ϵ harmonic bundle $(E \to M, D, C, \overline{C}, h)$ consists of the following data:

An ϵ complex vector bundle E over an ϵ complex manifold (M, J^{ϵ}) , an ϵ hermitian metric h, a metric connection D with respect to h and two C^{∞} -linear maps C: $\Gamma(E) \to \Gamma(\Lambda^{1,0}T^*M \otimes E)$ and $\overline{C}: \Gamma(E) \to \Gamma(\Lambda^{0,1}T^*M \otimes E)$, such that the connection

$$D^{(\lambda)} = D + \lambda C + \bar{\lambda}\bar{C}$$

is flat for all $\lambda \in \mathbb{S}^1_{\epsilon}$ and $h(C_Z a, b) = h(a, \overline{C}_{\overline{Z}} b)$ with $a, b \in \Gamma(E)$ and $Z \in \Gamma(T^{1,0}M)$.

Remark 5. In the complex case with positive definite metric h this definition is equivalent to the definition of a harmonic bundle in Simpson [23]. Equivalent structures in the complex case with metrics of arbitrary signature have been also regarded in Hertling's paper [11].

The relation of ϵ harmonic bundles to ϵ pluriharmonic maps is stated in the following theorem.

Theorem 3. (cf. [18, 22])

- (i) Let $(E \to M, D, C, \overline{C}, h)$ be an ϵ harmonic bundle over the simply connected ϵ complex manifold (M, J^{ϵ}) . Then the representation of h in a $D^{(\lambda)}$ -flat frame defines an ϵ pluriharmonic map $\phi_h : M \to \operatorname{Herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^r)$. The map ϕ_h induces an admissible ϵ pluriharmonic map $\tilde{\phi}_h = \Psi^{\epsilon} \circ \phi_h : M \to H^{\epsilon}(p,q)$ (cf. proposition 8 for Ψ^{ϵ}).
- (ii) Let (M, J^{ϵ}) be a simply connected ϵ complex manifold and $E = M \times \mathbb{C}^{r}_{\epsilon}$. Given an admissible ϵ pluriharmonic map $\tilde{\phi}_{h} : M \to H^{\epsilon}(p,q)$, then $(E, D = \partial - \epsilon C - \epsilon \overline{C}, C = \epsilon (d\tilde{\phi}_{h})^{1,0}, h = (\phi_{h} \cdot, \cdot)_{\mathbb{C}^{r}_{\epsilon}})$ defines an ϵ -harmonic bundle, where ∂ is the ϵ complex linear extension on $TM^{\mathbb{C}_{\epsilon}}$ of the flat connection on $E = M \times \mathbb{C}^{r}_{\epsilon}$. In the complex case of signature (r, 0) and (0, r) every pluriharmonic map $\tilde{\phi}_{h}$ is admissible.

The last theorem and proposition 10 yield ϵ pluriharmonic maps to $GL(2r, \mathbb{R})/Sp(\mathbb{R}^{2r})$. We are going to identify the related symplectic ϵtt^* -bundles. Therefore we construct symplectic ϵtt^* -bundles from ϵ harmonic bundles, via the next proposition.

Proposition 11. Let $(E \to M, D, C, \overline{C}, h)$ be an ϵ -harmonic bundle over the ϵ -complex manifold (M, J^{ϵ}) , then $(E, D, S, \Omega = Imh)$ with $S_X := C_Z + \overline{C}_{\overline{Z}}$ for $X = Z + \overline{Z} \in TM$ and $Z \in T^{1,0}M$ is a symplectic ϵtt^* -bundle.

Proof. For $\lambda = \cos_{\epsilon}(\alpha) + \hat{i} \sin_{\epsilon}(\alpha) \in \mathbb{S}^{1}_{\epsilon}$ we compute $D^{(\lambda)}$:

$$D_X^{(\lambda)} = D_X + \lambda C_Z + \bar{\lambda} \bar{C}_{\bar{Z}} = D_X + \cos_\epsilon(\alpha) (C_Z + \bar{C}_{\bar{Z}}) + \sin_\epsilon(\alpha) (\hat{i} C_Z - \hat{i} \bar{C}_{\bar{Z}})$$

$$= D_X + \cos_\epsilon(\alpha) S_X + \sin_\epsilon(\alpha) (C_{J^\epsilon Z} + \bar{C}_{J^\epsilon \bar{Z}})$$

$$= D_X + \cos_\epsilon(\alpha) S_X + \sin_\epsilon(\alpha) S_{J^\epsilon X} = D_X^\alpha.$$

Hence we see

$$(6.1) D^{\alpha} = D^{(\lambda)}$$

and D^{α} is flat if and only if $D^{(\lambda)}$ is flat. Further we claim, that S is Ω -symmetric. With $X = Z + \overline{Z}$ for $Z \in T^{1,0}M$ one finds

$$h(S_X, \cdot, \cdot) = h(C_Z + \bar{C}_{\bar{Z}}, \cdot) = h(\cdot, C_Z + \bar{C}_{\bar{Z}}, \cdot) = h(\cdot, S_X).$$

This yields the symmetry of S with respect to $\Omega = \text{Im}h$. Finally we show $D\Omega = 0$:

Lars Schäfer

$$\begin{aligned} 2\hat{i}X\Omega(e,f) &= X.(h(e,f) - h(f,e)) = (Z + \bar{Z}).(h(e,f) - h(f,e)) \\ &= h(D_Z e,f) + h(e, D_{\bar{Z}} f) + h(D_{\bar{Z}} e,f) + h(e, D_Z f) \\ &- [h(D_Z f,e) + h(f, D_{\bar{Z}} e) + h(D_{\bar{Z}} f,e) + h(f, D_Z e)] \\ &= h((D_Z + D_{\bar{Z}})e,f) + h(e, (D_{\bar{Z}} + D_Z)f) \\ &- h((D_Z + D_{\bar{Z}})f,e) - h(f, (D_{\bar{Z}} + D_Z)e) \\ &= h(D_X e,f) - h(f, D_X e) + h(e, D_X f) - h(D_X f,e) \\ &= 2\hat{i}(\Omega(D_X e,f) + \Omega(e, D_X f)). \end{aligned}$$

This proves, that $(E, D, S, \Omega = \text{Im } h)$ is a symplectic ϵtt^* -bundle. From theorem 1 one obtains the next corollary.

Corollary 1. Let $(E \to M, D, C, \overline{C}, h)$ be an ϵ -harmonic bundle over the simply connected ϵ complex manifold (M, J^{ϵ}) , then the representation of $\Omega = Imh$ in a $D^{(\lambda)}$ -flat frame defines an ϵ -pluriharmonic map $\Phi_{\Omega} : M \to GL(\mathbb{R}^{2r})/Sp(\mathbb{R}^{2r})$.

Proof. This follows from the identity (6.1), i.e. $D_X^{(\lambda)} = D_X^{\alpha}$ for $\lambda = \cos_{\epsilon}(\alpha) + \hat{i} \sin_{\epsilon}(\alpha) \in S^1_{\epsilon}$ and from proposition 11 and theorem 1.

Our aim is to understand the relations between the ϵ -pluriharmonic maps in theorem 3 and corollary 1. Therefore we need to have a closer look at the map $h \mapsto \text{Im}h$. First, we identify \mathbb{C}^r_{ϵ} with $\mathbb{R}^r \oplus \hat{i} \mathbb{R}^r = \mathbb{R}^{2r}$. In this model the multiplication with \hat{i} coincides with the automorphism $j^{\epsilon} = \begin{pmatrix} 0 & \epsilon \mathbb{1}_r \\ \mathbb{1}_r & 0 \end{pmatrix}$ and $GL(r, \mathbb{C}_{\epsilon})$ (respectively $\mathfrak{gl}_r(\mathbb{C}_{\epsilon})$) are the elements in $GL(2r, \mathbb{R})$ (respectively $\mathfrak{gl}_{2r}(\mathbb{R})$), which commute with j^{ϵ} .

An endomorphism $C \in \text{End}(\mathbb{C}^r_{\epsilon})$ decomposes in its real-part A and its imaginary part B, i.e. $C = A + \hat{i} B$ with $A, B \in \text{End}(\mathbb{R}^r)$. In the above model C is given by the matrix

$$\iota(C) = \left(\begin{array}{cc} A & \epsilon B \\ B & A \end{array}\right).$$

The ϵ complex conjugated $\overline{C} = A - \hat{i}B$, the transpose $C^t = A^t + \hat{i}B^t$ and the ϵ hermitian conjugated C^h of C correspond to

$$\iota(\bar{C}) = \begin{pmatrix} A & -\epsilon B \\ -B & A \end{pmatrix}, \ \iota(C^t) = \begin{pmatrix} A^t & \epsilon B^t \\ B^t & A^t \end{pmatrix}, \ \iota(C^h) = \iota(\bar{C}^t) = \begin{pmatrix} A^t & -\epsilon B^t \\ -B^t & A^t \end{pmatrix}$$

We observe, that $\iota(\bar{C}^t) = I^{\epsilon}\iota(C)^T I^{\epsilon}$ where \cdot^T is the transpose in $\operatorname{End}(\mathbb{R}^{2r})$ and

$$I^{\epsilon} = \left(\begin{array}{cc} \mathbb{1}_r & 0\\ 0 & -\epsilon \mathbb{1}_r \end{array}\right).$$

The ϵ hermitian matrices $Herm_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$ (of signature (p,q) for $\epsilon = -1$, i.e. in the complex case) coincide with the subset of symmetric matrices $H \in \operatorname{Sym}_{k,l}(\mathbb{R}^{2r})$, which commute with j^{ϵ} , i.e. $[H, j^{\epsilon}] = 0$, where the pair (k, l) is

$$(k,l) = \begin{cases} (2p,2q) \text{ for } \epsilon = -1, \\ (r,r) \text{ for } \epsilon = 1. \end{cases}$$

Likewise, $T_{I_{k,l}}Herm_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$ consists of symmetric matrices $h \in \operatorname{sym}_{k,l}(\mathbb{R}^{2r})$, which commute with j^{ϵ} , i.e. the ϵ hermitian matrices in $\operatorname{sym}_{k,l}(\mathbb{R}^{2r})$ which we have denoted by $\operatorname{herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$.

An ϵ hermitian sesquilinear scalar product h (of signature (p,q) for $\epsilon = -1$) corresponds to an ϵ hermitian matrix $H \in Herm_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$ (of hermitian signature (p,q) for $\epsilon = -1$) defined by $h(\cdot, \cdot) = (H \cdot, \cdot)_{\mathbb{C}_{\epsilon}^{r}}$. The condition $C^{h} = \overline{C}^{t} = C$, i.e. C is ϵ hermitian, means in our model, that C has the form

$$\iota(C) = \left(\begin{array}{cc} A & \epsilon B \\ B & A \end{array}\right)$$

with $A = A^t$ and $B = -B^t$.

Using this information we find the explicit representation of the map which corresponds to taking the imaginary part Im h of h. This is the map \Im satisfying Im $h = (\Im(H)\cdot, \cdot)_{\mathbb{R}^{2r}}$, where $(\cdot, \cdot)_{\mathbb{R}^{2r}}$ is the Euclidean standard scalar product on \mathbb{R}^{2r} . With $z, w \in \mathbb{C}_{\epsilon}^{r}$ we define

$$\beta(z,w) := \operatorname{Im} (z,w)_{\mathbb{C}_{\epsilon}^{r}} = \frac{1}{2\hat{i}} \left(z \cdot \bar{w} - \bar{z} \cdot w \right)$$

and find $\operatorname{Im} h(z,w) = \operatorname{Im} (Hz,w)_{\mathbb{C}_{\epsilon}^{r}} = \frac{1}{2i} \left[(Hz) \cdot \bar{w} - (\overline{Hz}) \cdot w \right] = \beta(Hz,w)$. Further we remark that $\beta(\cdot, \cdot) = \operatorname{Im} (\cdot, \cdot)_{\mathbb{C}_{\epsilon}^{r}} = (I^{\epsilon}j^{\epsilon} \cdot, \cdot)_{\mathbb{R}^{2r}}$, where $(\cdot, \cdot)_{\mathbb{R}^{2r}}$ is the Euclidean standard scalar product on \mathbb{R}^{2r} .

This yields $\operatorname{Im} h(z, w) = (I^{\epsilon} j^{\epsilon} \iota(H) z, w)_{\mathbb{R}^{2r}} = -\epsilon (j^{\epsilon} I^{\epsilon} \iota(H) z, w)_{\mathbb{R}^{2r}}$ and for $H = A + \hat{i}B$ with $A, B \in \operatorname{End}(\mathbb{R}^r)$ one obtains

$$\Im(H) = I^{\epsilon} j^{\epsilon} \begin{pmatrix} A & \epsilon B \\ B & A \end{pmatrix} = \epsilon \begin{pmatrix} 0 & \mathbb{1}_r \\ -\mathbb{1}_r & 0 \end{pmatrix} \begin{pmatrix} A & \epsilon B \\ B & A \end{pmatrix} = \epsilon \begin{pmatrix} B & A \\ -A & -\epsilon B \end{pmatrix}.$$

This map is easily seen to have maximal rank and to be equivariant with respect to the following $GL(r, \mathbb{C}_{\epsilon})$ -action on $\operatorname{Herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$:

$$GL(r, \mathbb{C}_{\epsilon}) \times \operatorname{Herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}) \to \operatorname{Herm}_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r}), \quad (g, H) \mapsto (g^{-1})^{h} Hg^{-1}$$

and the $GL(2r, \mathbb{R})$ -action on $Sym(\omega_0)$ which was considered in section 4. Summarising we have the commutative diagram in which all maps apart \Im of the square were shown to be totally geodesic:

where [i] is induced by the inclusion $i : GL(r, \mathbb{C}_{\epsilon}) \hookrightarrow GL(2r, \mathbb{R})$. Hence \Im is totally geodesic. Utilising this diagram we show the next proposition.

Proposition 12. A map $h: M \to Herm_{p,q}^{\epsilon}(\mathbb{C}_{\epsilon}^{r})$ is ϵ pluriharmonic, if and only if $\Omega = Imh: M \to Sym(\omega_{0})$ is ϵ pluriharmonic.

Proof. As discussed above, the map \Im is a totally geodesic immersion and therefore we are in the situation of proposition 3.

From this proposition it follows:

Proposition 13. Let $(E \to M, D, C, \overline{C}, h)$ be an ϵ -harmonic bundle over the ϵ complex manifold (M, J^{ϵ}) , $(E, D, S, \Omega = Imh)$ the symplectic ϵ tt^{*}-bundle constructed in proposition 11 and $\tilde{\Phi}_{\Omega} : M \to GL(\mathbb{R}^{2r})/Sp(\mathbb{R}^{2r})$ the ϵ -pluriharmonic map given in corollary 1. Then $\tilde{\Phi}_{\Omega} = [i] \circ \tilde{\Phi}_{h}$ and these ϵ -pluriharmonic maps are admissible.

Proof. This follows using the definition of (E, D, S, Ω) (cf. proposition 11) from corollary 1 and proposition 12. For the second part one observes, that the differential of [i] is a homomorphism of Lie-algebras.

This describes the ϵ -pluriharmonic maps coming from symplectic ϵtt^* -bundles induced by ϵ -harmonic bundles. Conversely, this gives an Ansatz to construct ϵ -harmonic bundles from ϵ -pluriharmonic maps to $GL(r, \mathbb{C}_{\epsilon})/U^{\epsilon}(p, q)$. For metric ϵtt^* -bundles we have gone this way in [18, 22] to obtain theorem 3.

References

- N. Abe and S. Kurosu, A decomposition of a holomorphic vector-bundle with connection and its applications to complex affine immersions, Res. in Math. 44 (2003), 3–24.
- [2] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special Geometry of Euclidean Supersymmetry I: Vectormultiplets, J. High Energy Phys. JHEP03 (2004) 028, hep-th/0312001 2004.
- [3] V. Cortés and L. Schäfer, Topological-antitopological fusion equations, pluriharmonic maps and special Kähler manifolds, Progress in Mathematics 234, Birkhäuser 2005, 59–74.
- [4] V. Cortés and L. Schäfer, *Flat nearly Kähler manifolds*, Annals of Global Analysis and Geometry 32 (2007), 379-389.
- [5] V. Cortés and L. Schäfer, manuscript in preparation.
- [6] S. Cecotti and C. Vafa, *Topological-Antitopological fusion*, Nuclear Physics B 367 (1991), 351–461.
- [7] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland (1975).
- [8] B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Commun. Math. Phys 152 (1992) 539-564.
- [9] S. Gallot, D. Hulin and J. Lafontaine, *Riemannian Geometry*, Springer (1993).
- [10] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).
- [11] C. Hertling, tt*-Geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), 77–161.

A geometric construction of (para-)pluriharmonic maps

- [12] S. Kobayashi and K. Nomizu, Foundations of differential geometry volume I/II, Interscience Publishers (1964/1969).
- [13] Loos O., Symmetric spaces, W.A. Benjamin, Inc. (1969).
- [14] M.-A. Lawn and L. Schäfer, Decompositions of para-complex vector-bundles and affine para-complex immersions, Results Math. 48 (2005), 246–274.
- [15] D. Mc Duff and D. Salamon, Introduction to symplectic topology, Oxford University Press (1995).
- [16] J. H. Sampson, Applications of harmonic maps to Kähler geometry, Contemporary Mathematics Volume 49, (1986), 125–134.
- [17] L. Schäfer, tt*-geometry and pluriharmonic maps, Ann. Global Anal. Geom. 28, no. 3 (2005), 285–300.
- [18] L. Schäfer, Harmonic bundles, topological-antitophological fusion and the related puriharmonic maps, J. Geom. Phys. 56 (2006), no. 5, 830–842.
- [19] L. Schäfer, tt*-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps, Diff. Geom. Appl. 24 (2006), 60–89.
- [20] L. Schäfer, tt*-bundles on the tangent bundle of an almost complex manifold, Journal of Geometry and Physics 57 (2007), 999-1014.
- [21] L. Schäfer, Para-tt*-bundles on the tangent bundle of an almost para-complex manifold, Annals of Global Analysis and Geometry 32 (2007), 125-145.
- [22] L. Schäfer, Harmonic bundle solutions of topological-antitoplological fusion in para-complex geometry, to appear in Diff. Geom. Appl.
- [23] C.T. Simpson: *Higgs-bundles and local systems*, Institut des hautes Etudes scientifiques - Publication mathematiques, No. 75 (1992), 5–95.

Author's address:

Lars Schäfer

Department Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany, E-mail: schaefer@math.uni-hamburg.de