
Locally isometric families of minimal surfaces

Aaron Peterson, Stephen Taylor

Abstract. We consider a surface M immersed in R3 with induced metric
g = ψδ2 where δ2 is the two dimensional Euclidean metric. We then con-
struct a system of partial differential equations that constrain M to lift to
a minimal surface via the Weierstrauss-Enneper representation, demand-
ing the metric is of the above form. It is concluded that the associated
surfaces connecting the prescribed minimal surface and its conjugate sur-
face satisfy the system. Moreover, we find a non-trivial symmetry of the
PDE which generates a one parameter family of surfaces isometric to a
specified minimal surface.
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1 Introduction

Given two C2 functions u and v that satisfy Laplace’s equation, a complex valued
harmonic function f is defined via the combination: f = u+iv. The Jacobian of such a
function is given by Jf = uxvy−uyvx. We will only consider harmonic functions that
are univalent (injective) with positive Jacobian on D = {z : |z| < 1}. On a simply
connected domain D ⊂ C, a harmonic mapping f has a canonical decomposition
f = h + g where h and g are analytic in D, which is unique up to a constant. The
dilatation ω of a harmonic map f is defined by ω ≡ g′/h′. The following theorem
provides the link between harmonic univalent functions and minimal surfaces:

Theorem 1. (Weierstrass-Enneper Representation). Every regular minimal sur-
face locally has an isothermal parametric representation of the form

(1.1)
(

Re
{∫ z

p(1 + q2)dw

}
, Im

{∫ z

p(1− q2)dw

}
, 2Im

{∫ z

pqdw

})
,

in some domain D ⊂ C, where p is analytic and q is meromorphic in D, with p
vanishing only at the poles (if any) of q and having a zero of precise order 2m wherever
q has a pole of order m. Conversely, each such pair of functions p and q analytic
and meromorphic, respectively, in a simply connected domain D generate through the
formulas (1.1) an isothermal parametric representation of a regular minimal surface.
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We will use (1.1) in the following form:

Corollary 1. For a harmonic function f = h + g, define the analytic functions h
and g by h =

∫ z
pdζ and g = − ∫ z

pq2dζ. Then the minimal surface representation
(1.1) becomes

(1.2)
(

Re{h + g}, Im{h− g}, 2Im
{∫ z √

h′g′dζ

})
.

See [6], [3] for a further introduction to harmonic mappings. For an introduction
to minimal surfaces see [5].

2 The isometric condition

Let x(u, v) be a parametrization for a surface M immersed in R3. Set z = u + iv and
define φ = ∂x/∂z. Let E, F , and G be the coefficients of the metric induced in R3 by
x(u, v). We then have the relations

φ2 =
1
4
(E −G− 2iF ),(2.1)

φ
2

=
1
4
(E −G + 2iF ),(2.2)

|φ|2 =
1
4
(E + G),(2.3)

where φ2 is notation for φ · φ. Inverting this system we find

E = φ
2

+ φ2 + 2|φ|2,(2.4)

F = i(φ2 − φ
2
),(2.5)

G = −φ
2 − φ2 + 2|φ|2.(2.6)

Since the Weierstrass-Enneper representation theorem requires that M has an isother-
mal parametrization, we require E = G and F = 0, which implies

(2.7) φ2 = 0, φ
2

= 0, E = 2|φ|2.
The first two equations are identically satisfied. Expanding the constraint on E, and
using the identity

(2.8) |φ|2 =
1
4
|p|2 (

(1 + q2)(1 + q2) + (1− q2)(1− q2) + 4qq
)
,

we find E = |h′|2 + |g′|2. Defining Re{h} = 1h, Im{h} = 2h, Re{g} = 1g, and
Im{g} = 2g, we have the Cauchy Riemann and isometric conditions:

(2.9) 1hu − 2hv = 0 1hv + 2hu = 0

(2.10) 1gu − 2gv = 0 1gv + 2gu = 0

(2.11) 1h
2
u + 2h

2
u + 1g

2
u + 2g

2
u − 2

√
(1h2

u + 2h2
u)(1g2

u + 2g2
u) = 0
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3 Symmetry analysis

We now proceed to calculate the symmetry group of (2.9)-(2.11). For an introduction
to symmetry methods see [2], [7], and [8]. The infinitesimal generator of the symmetry
group of the system is given by

(3.1) v = cu∂u + cv∂v + c1h∂1h + c2h∂2h + c1g∂1g + c2g∂2g + cψ∂ψ.

Since the system is first order, we need only consider the first prolongation

pr(1)v = v + 1h
u∂1hu + 1h

v∂1hv + 2h
u∂2hu + 2h

v∂2hv

(3.2) +1g
u∂1gu

+ 1g
v∂1gv

+ 2g
u∂2gu

+ 2g
v∂2gv

,

where the ci are functions of u, v, ψ, 1h, 2h, 1g, and 2g. Applying the first prolongation
to the three PDE determines a system equations for the ci. Integrating this system
yields ten symmetries of (2.9)-(2.11).

v1 = ∂u, v2 = ∂v, v3 = ∂1h, v4 = ∂2h, v5 = ∂1g, v6 = ∂2g,

v7 = −v∂u + u∂v, v8 = −2h∂1h + 1h∂2h, v9 = −2g∂1g + 1g∂2g,

v10 = u∂u + v∂v + 1h∂1h + 2h∂2h + 1g∂1g + 2g∂2g.

Exponentiating these infinitesimal vector fields gives the symmetry transformations:

(3.3) h → h(z − s) g → g(z − s),

(3.4) h → h(z − is) g → g(z − is),

(3.5) h → h + s g → g,

(3.6) h → h + is g → g,

(3.7) h → h g → g + s,

(3.8) h → h g → g + is,

(3.9) h → h(eisz) g → g(eisz),

(3.10) h → eish g → g,

(3.11) h → h g → eisg,

(3.12) h → esh(e−sz) g → esg(e−sz).

In [1] the minimal symmetry group for the real minimal surface equation

(3.13) uxx(1 + u2
y) + uyy(1 + u2

x)− 2uxuyuxy = 0,

was calculated. Many of the translational symmetries and an esf(e−sx, e−sy) symme-
try were found. We note that the analogue of v10 in [1] is similar but different, since
is constrains a Weierstrauss-Enneper representation of a surface and not a graph.
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4 Discussion and applications

Consider the transformation h → eiθh, g → eiθg which preserves the metric E =
|h′|2 + |g′|2. When θ = 0, this is simply a minimal surface specified by defining ψ.
When θ = π/2 we get the conjugate surface. Thus all intermediate surfaces, called
associated surfaces, are isometric. Since all minimal surfaces can be constructed from
parts of a helicoid and catenoid [4], the following examples are of interest. First, we
draw attention to the catenoid, given by ψ = cosh(v)2. It’s conjugate surface is the
helicoid and the associated surfaces between the two are plotted over D in Figure 1.
Since all of the associated surfaces are isometric, geometrically they are equivalent.
However, note the catenoid has topology S1 × R where as the helicoid has topology
R2.

Figure 1: Helicoid to Catenoid Transformation.

We now turn our attention to the other symmetries found in the analysis for the
half catenoid. We will see that the symmetries generate surfaces that are topologically
distinct from the catenoid, but geometrically identical as in the above example. Let
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f be the harmonic mapping f = h + g where

(4.1) h =
1
2

(
1
2

log
[
1 + z

1− z

]
+

z

1− z2

)
,

and

(4.2) g =
1
2

(
1
2

log
[
1 + z

1− z

]
− z

1− z2

)
,

which lifts to the catenoid. We make the transformation in equation (3.12) by letting
h → esh(e−sz) and g → esg(e−sz). Figure 2 gives several plots of this transformation
for various s values. The topology of the half catenoid is R2 for all s up to some value
between (0.3, 0.4) where it changes to a punctured cylinder. Note as s →∞ that the
minimal surfaces eventually degenerate to a line, in a manner peculiarly similar to
neckpinch singularities of the Ricci Flow.

Figure 2: Symmetry (3.12) for s = {−1.2,−0.5, 0, 0.3, 0.4, 0.5, 1, 1.5, 3}.

When (3.12) is applied to the helicoid, we find that the number of rotations of the
helicoid about its axis are scaled. Thus we have:

Theorem 2. Let S be the helicoid over D parameterized isothermally by
x = (sinh u sin v, sinhu cos v,−v). For helicoids S1 given by u ∈ (0, 2π), v ∈ (v0, v1),
and S2 by u ∈ (0, 2π), v ∈ (v2, v3) where vi ∈ R then S1 and S2 are locally isometric.
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It would be interesting to generalize the symmetry methods of this paper to higher
dimensional Riemannian or Lorentizian manifolds. One would need a generalized
Weierstrauss-Enneper. Moreover, we believe there are potential topological theorems
coming from symmetry (3.12). For instance, if one calculates the one parameter fam-
ily of minimal surfaces given by symmetry (3.12) and a simply connected minimal
surface, does the topology always change from the plane to S1 × R1 or some variant
thereof?
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