The Maxwell-Bloch equations on fractional Leibniz algebroids

Mihai Ivan, Gheorghe Ivan and Dumitru Opris

Abstract

Numerous Mircea Puta's papers were dedicated to the study of Maxwell - Bloch equations. The main purpose of this paper is to present several types of fractional Maxwell - Bloch equations.

M.S.C. 2000: 53D17, 58F06.

Key words: Fractional Leibniz algebroid, revised and fractional Maxwell-Bloch equations.

1 Introduction

It is well known that many dynamical systems turned out to be Hamilton - Poisson systems. Among other things, an important role is played by the Maxwell - Bloch equations from laser - matter dynamics. More details can be found in [1], [4] and M. Puta [5].

In this paper the revised and the dynamical systems associated to Maxwell - Bloch equations on a Leibniz algebroid are discussed.

Derivatives of fractional order have found many applications in recent studies in mechanics, physics and economics. Some classes of fractional differentiable systems have studied in [3]. In this paper we present some fractional Maxwell- Bloch equations associated to Hamilton - Poisson systems or defined on a fractional Leibniz algebroid.

2 The revised Maxwell - Bloch equations

Let $C^{\infty}(M)$ be the ring of smooth functions on a n - dimensional smooth manifold M. A Leibniz bracket on M is a bilinear map $[\cdot, \cdot]: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that it is a derivation on each entry, that is, for all $f, g, h \in C^{\infty}(M)$ the following relations hold:

$$
\begin{equation*}
[f g, h]=[f, h] g+f[g, h] \quad \text { and } \quad[f, g h]=g[f, h]+[f, g] h \tag{1}
\end{equation*}
$$

We will say that the pair $(M,[\cdot, \cdot])$ is a Leibniz manifold. If the bilinear map $[\cdot, \cdot]$ verify only the first equality in (1), we say that $[\cdot, \cdot]$ is a left Leibniz bracket and $(M,[\cdot, \cdot])$ is an almost Leibniz manifold.

Let P and g be two contravariant 2 - tensor fields on M. We define the map $[\cdot,(\cdot, \cdot)]: C^{\infty}(M) \times\left(C^{\infty}(M) \times C^{\infty}(M)\right) \rightarrow C^{\infty}(M)$ by:
(2) $\left[f,\left(h_{1}, h_{2}\right)\right]=P\left(d f, d h_{1}\right)+g\left(d f, d h_{2}\right), \quad$ for all $\quad f, h_{1}, h_{2} \in C^{\infty}(M)$.

We consider the map $[[\cdot, \cdot]]: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ defined by:

$$
\begin{equation*}
[[f, h]]=[f,(h, h)]=P(d f, d h)+g(d f, d h), \text { for all } f, h \in C^{\infty}(M) \tag{3}
\end{equation*}
$$

It is easy to prove that $(M, P, g,[[\cdot, \cdot]])$ is a Leibniz manifold.
A Leibniz manifold $(M, P, g,[[\cdot, \cdot]])$ such that P and g is a skew - symmetric resp. symmetric tensor field is called almost metriplectic manifold.

Let $\left(M, P, g,[[\cdot, \cdot]]\right.$ be an almost metriplectic manifold. If there exists $h_{1}, h_{2} \in$ $C^{\infty}(M)$ such that $P\left(d f, d h_{2}\right)=0$ and $g\left(d f, d h_{1}\right)=0$ for all $f \in C^{\infty}(M)$, then:
(4) $\left[\left[f, h_{1}+h_{2}\right]\right]=\left[f,\left(h_{1}, h_{2}\right)\right]$, for all $f \in C^{\infty}(M)$.

In this case, we have:

$$
\begin{equation*}
\left[\left[f, h_{1}+h_{2}\right]\right]=P\left(d f, d h_{1}\right)+g\left(d f, d h_{2}\right), \quad \text { for all } f \in C^{\infty}(M) \tag{5}
\end{equation*}
$$

If $\left(x^{i}\right), i=\overline{1, n}$ are local coordinates on M, the differential system given by:

$$
\begin{equation*}
\dot{x}^{i}=\left[\left[x^{i}, h_{1}+h_{2}\right]\right]=P^{i j} \frac{\partial h_{1}}{\partial x^{j}}+g^{i j} \frac{\partial h_{2}}{\partial x^{j}}, i, j=\overline{1, n} \tag{6}
\end{equation*}
$$

with $P^{i j}=P\left(d x^{i}, d x^{j}\right)$ and $g^{i j}=g\left(d x^{i}, d x^{j}\right)$, is called the almost metriplectic system on $(M, P, g,[[\cdot, \cdot]])$ associated to $h_{1}, h_{2} \in C^{\infty}(M)$ which satisfies the conditions $P\left(d f, d h_{2}\right)=0$ and $g\left(d f, d h_{1}\right)=0$ for all $f \in C^{\infty}(M)$.

Let be a Hamilton-Poisson system on M described by the Poisson tensor $P=\left(P^{i j}\right)$ and the Hamiltonian $h_{1} \in C^{\infty}(M)$ with the Casimir $h_{2} \in C^{\infty}(M)$ (i.e. $P^{i j} \frac{\partial h_{2}}{\partial x^{j}}=0$ for $i, j=\overline{1, n}$). The differential equations of the Hamilton-Poisson system are the following:

$$
\begin{equation*}
\dot{x}^{i}=P^{i j} \frac{\partial h_{1}}{\partial x^{j}}, \quad i, j=\overline{1, n} \tag{7}
\end{equation*}
$$

We determine the matrix $g=\left(g^{i j}\right)$ such that $g^{i j} \frac{\partial h_{1}}{\partial x^{j}}=0$ where:

$$
\begin{equation*}
g^{i i}(x)=-\sum_{k=1, k \neq i}^{n}\left(\frac{\partial h_{1}}{\partial x^{k}}\right)^{2}, \quad g^{i j}(x)=\frac{\partial h_{1}}{\partial x^{i}} \frac{\partial h_{1}}{\partial x^{j}} \quad \text { for } \quad i \neq j . \tag{8}
\end{equation*}
$$

The revised system of the Hamilton - Poisson system (7) is:

$$
\begin{equation*}
\dot{x}^{i}=P^{i j} \frac{\partial h_{1}}{\partial x^{j}}+g^{i j} \frac{\partial h_{2}}{\partial x^{j}}, \quad i, j=\overline{1, n} . \tag{9}
\end{equation*}
$$

The real valued 3- dimensional Maxwell-Bloch equations from laser - matter dynamics are usually written as:

$$
\begin{equation*}
\dot{x}^{1}(t)=x^{2}(t), \quad \dot{x}^{2}(t)=x^{1}(t) x^{3}(t), \quad \dot{x}^{3}(t)=-x^{1}(t) x^{2}(t), \quad t \in R . \tag{10}
\end{equation*}
$$

The dynamics (10) is described by the Poisson tensor P_{1} and the Hamiltonian $h_{1,1}$ given by:

$$
P_{1}=\left(P_{1}^{i j}\right)=\left(\begin{array}{ccc}
0 & -x^{3} & x^{2} \tag{11}\\
x^{3} & 0 & 0 \\
-x^{2} & 0 & 0
\end{array}\right), \quad h_{1,1}(x)=\frac{1}{2}\left(x^{1}\right)^{2}+x^{3},
$$

or by the Poisson tensor P_{2} and the Hamiltonian $h_{2,1}$ given by:

$$
P_{2}=\left(P_{2}^{i j}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{12}\\
-1 & 0 & x^{1} \\
0 & -x^{1} & 0
\end{array}\right), \quad h_{2,1}(x)=\frac{1}{2}\left(x^{2}\right)^{2}+\frac{1}{2}\left(x^{3}\right)^{2} .
$$

The dynamics (10) can be written in the matrix form:

$$
\begin{equation*}
\dot{x}(t)=P_{1}(x(t)) \cdot \nabla h_{1,1}(x(t)), \quad \text { or } \quad \dot{x}(t)=P_{2}(x(t)) \cdot \nabla h_{2,1}(x(t)) \tag{13}
\end{equation*}
$$

where $\dot{x}(t)=\left(\dot{x}^{1}(t), \dot{x}^{2}(t), \dot{x}^{3}(t)\right)^{T}$ and $\nabla h(x(t))$ is the gradient of h with respect to the canonical metric on R^{3}.

The dynamics (10) has the Hamilton-Poisson formulation $\left(R^{3}, P_{1}, h_{1,1}\right)$, with the Casimir $h_{1,2} \in C^{\infty}\left(R^{3}\right)$ given by:

$$
\begin{equation*}
h_{1,2}(x)=\frac{1}{2}\left[\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}\right] . \tag{14}
\end{equation*}
$$

Applying (8) for $P=P_{1}, h_{1}(x)=h_{1,1}(x)$ and $h_{2}(x)=h_{1,2}(x)$ we obtain the symmetric tensor g_{1} which is given by the matrix:

$$
g_{1}=\left(\begin{array}{ccc}
-1 & 0 & x^{1} \\
0 & -\left(x^{1}\right)^{2}-1 & 0 \\
x^{1} & 0 & -\left(x^{1}\right)^{2}
\end{array}\right)
$$

Using (9) for the Hamilton- Poisson system $\left(R^{3}, P_{1}, h_{1,1}\right), h_{1,2}$ and g_{1} we obtain the revised Maxwell-Bloch equations associated to ($P_{1}, h_{1,1}, h_{1,2}$):

$$
\begin{equation*}
\dot{x}^{1}=x^{2}+x^{1} x^{3}, \quad \dot{x}^{2}=x^{1} x^{3}-\left(x^{1}\right)^{2} x^{2}-x^{2}, \quad \dot{x}^{3}=-x^{1} x^{2}-\left(x^{1}\right)^{2} x^{3} \tag{15}
\end{equation*}
$$

Also, the Hamilton-Poisson formulation $\left(R^{3}, P_{2}, h_{2,1}\right)$ of the dynamics (10) has the Casimir $h_{2,2} \in C^{\infty}\left(R^{3}\right)$ given by:

$$
\begin{equation*}
h_{2,2}(x)=\frac{1}{2}\left(x^{1}\right)^{2}+x^{3} \tag{16}
\end{equation*}
$$

and its associated symmetric tensor g_{2} given by the matrix:

$$
g_{2}=\left(\begin{array}{ccc}
-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} & 0 & 0 \\
0 & -\left(x^{3}\right)^{2} & x^{2} x^{3} \\
0 & x^{2} x^{3} & -\left(x^{2}\right)^{2}
\end{array}\right)
$$

In this case, for the Hamilton- Poisson system $\left(R^{3}, P_{2}, h_{2,1}\right), h_{2,2}$ and g_{2} we obtain the revised Maxwell-Bloch equations associated to $\left(P_{2}, h_{2,1}, h_{2,2}\right)$:

$$
\begin{equation*}
\dot{x}^{1}=x^{2}-x^{1}\left(x^{2}\right)^{2}-x^{1}\left(x^{3}\right)^{2}, \quad \dot{x}^{2}=x^{1} x^{3}+x^{2} x^{3}, \quad \dot{x}^{3}=-x^{1} x^{2}-\left(x^{2}\right)^{2} . \tag{17}
\end{equation*}
$$

3 The dynamical system associated to Maxwell Bloch equations on a Leibniz algebroid

In this section we refer to the dynamical systems on Leibniz algebroids. For more details can be consult the paper [2].

A Leibniz algebroid structure on a vector bundle $\pi: E \rightarrow M$ is given by a bracket (bilinear operation) $[\cdot, \cdot]$ on the space of $\operatorname{sections} \operatorname{Sec}(\pi)$ and two vector bundle morphisms $\rho_{1}, \rho_{2}: E \rightarrow T M$ (called the left resp. right anchor) such that for all $\sigma_{1}, \sigma_{2} \in \operatorname{Sec}(\pi)$ and $f, g \in C^{\infty}(M)$, we have:

$$
\begin{equation*}
\left[f \sigma_{1}, g \sigma_{2}\right]=f \rho_{1}\left(\sigma_{1}\right)(g) \sigma_{2}-g \rho_{2}\left(\sigma_{2}\right)(f) \sigma_{1}+f g\left[\sigma_{1}, \sigma_{2}\right] \tag{18}
\end{equation*}
$$

A vector bundle $\pi: E \rightarrow M$ endowed with a Leibniz algebroid structure on E, is called Leibniz algebroid over M and denoted by ($E,[\cdot, \cdot], \rho_{1}, \rho_{2}$).

In the paper [2], it proved that a Leibniz algebroid structure on a vector bundle $\pi: E \rightarrow M$ is determined by a linear contravariant 2 - tensor field on manifold E^{*} of the dual vector bundle $\pi^{*}: E^{*} \rightarrow M$. More precisely, if Λ is a linear 2 - tensor field on E^{*} then the bracket $[\cdot, \cdot]_{\Lambda}$ of functions is given by:

$$
\begin{equation*}
[f, g]_{\Lambda}=\Lambda(d f, d g) \tag{19}
\end{equation*}
$$

Let $\left(x^{i}\right), i=\overline{1, n}$ be a local coordinate system on M and let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis of local sections of E. We denote by $\left\{e^{1}, \ldots, e^{m}\right\}$ the dual basis of local sections of E^{*} and $\left(x^{i}, y^{a}\right)\left(\right.$ resp., $\left.\left(x^{i}, \xi_{a}\right)\right)$ the corresponding coordinates on E (resp., E^{*}). Locally, the linear 2 - tensor Λ has the form:

$$
\begin{equation*}
\Lambda=C_{a b}^{d} \xi_{d} \frac{\partial}{\partial \xi_{a}} \otimes \frac{\partial}{\partial \xi_{b}}+\rho_{1 a}^{i} \frac{\partial}{\partial \xi_{a}} \otimes \frac{\partial}{\partial x^{i}}-\rho_{2 a}^{i} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial \xi_{a}}, \tag{20}
\end{equation*}
$$

with $C_{a b}^{d}, \rho_{1 a}^{i}, \rho_{2 a}^{i} \in C^{\infty}(M), i=\overline{1, n}, a, b, d=\overline{1, m}$.
We call a dynamical system on Leibniz algebroid $\pi: E \rightarrow M$, the dynamical system associated to vector field X_{h} with $h \in C^{\infty}(M)$ given by:

$$
\begin{equation*}
X_{h}(f)=\Lambda(d f, d h), \text { for all } f \in C^{\infty}(M) \tag{21}
\end{equation*}
$$

Locally, the dynamical system (21) is given by:

$$
\begin{equation*}
\dot{\xi}_{a}=\left[\xi_{a}, h\right]_{\Lambda}=C_{a b}^{d} \xi_{d} \frac{\partial h}{\partial \xi_{b}}+\rho_{1 a}^{i} \frac{\partial h}{\partial x^{i}}, \quad \dot{x}^{i}=\left[x^{i}, h\right]_{\Lambda}=-\rho_{2 a}^{i} \frac{\partial h}{\partial \xi_{a}} . \tag{22}
\end{equation*}
$$

Let the vector bundle $\pi: E=R^{3} \times R^{3} \rightarrow R^{3}$ and $\pi^{*}: E^{*}=R^{3} \times\left(R^{3}\right)^{*} \rightarrow R^{3}$ its dual. We consider on E^{*} the linear 2 - tensor field Λ, the anchors $\rho_{1}, \rho_{2}: \operatorname{Sec}(\pi) \rightarrow$
$T\left(R^{3}\right)$ and the function h given by:

$$
\begin{align*}
P & =\left(\begin{array}{ccc}
0 & -\xi_{3} x^{3} & \xi_{2} x^{2} \\
\xi_{3} x^{3} & 0 & -\xi_{1} x^{1} \\
-\xi_{2} x^{2} & \xi_{1} x^{1} & 0
\end{array}\right) \quad, \quad \rho_{1}=\left(\begin{array}{ccc}
0 & -x^{3} & x^{2} \\
x^{3} & 0 & 0 \\
-x^{2} & 0 & 0
\end{array}\right) \tag{23}\\
\rho_{2} & =\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -x^{1} \\
0 & x^{1} & 0
\end{array}\right) \text { and } h(x, \xi)=x^{2} \xi_{2}+x^{3} \xi_{3} . \tag{24}
\end{align*}
$$

Proposition 3.1.([2]) The dynamical system (22) on the Leibniz algebroid ($R^{3} \times$ $\left.R^{3}, P, \rho_{1}, \rho_{2}\right)$ associated to function h, where P, ρ_{1}, ρ_{2}, h are given by (23) and (24) is:

$$
\left\{\begin{array}{lll}
\dot{\xi}_{1} & = & x^{3}\left(x^{2}-1\right) \xi_{2}-x^{2}\left(x^{3}-1\right) \xi_{3} \tag{25}\\
\dot{\xi}_{2} & = & -x^{3} x^{1} \xi_{1} \\
\dot{\xi}_{3} & = & x^{1} x^{2} \xi_{1}
\end{array} \quad, \quad\left\{\begin{array}{lll}
\dot{x}^{1} & = & x^{2} \\
\dot{x}^{2} & = & x^{1} x^{3} \\
\dot{x}^{3} & = & -x^{1} x^{2}
\end{array}\right.\right.
$$

The dynamical system (25) is called the Maxwell - Bloch equations on the Leibniz algebroid $\pi: E=R^{3} \times R^{3} \rightarrow R^{3}$.

4 The fractional Maxwell - Bloch equations

Let $f:[a, b] \rightarrow R$ and $\alpha \in R, \alpha>0$. The Riemann-Liouville fractional derivative at to left of a is the function $f \rightarrow D_{t}^{\alpha} f$, where:

$$
D_{t}^{\alpha} f(t)=\frac{1}{\Gamma(m-\alpha)}\left(-\frac{d}{d t}\right)^{m} \int_{a}^{t}(t-s)^{m-\alpha-1}(f(s)-f(a)) d s
$$

with $m \in N^{*}$ such that $m-1 \leq \alpha \leq m, \Gamma$ is the Euler gamma function and $\left(\frac{d}{d t}\right)^{m}=\frac{d}{d t} \circ \frac{d}{d t} \circ \ldots \circ \frac{d}{d t}$. Clearly, if $\bar{\alpha} \rightarrow 1$ then $D_{t}^{\alpha} f(t)=\frac{d f}{d t}$.

We have (see, [3]):
(i) If $f(t)=c,(\forall) t \in[a, b], D_{t}^{\alpha} f(t)=0$.
(ii) If $f_{1}(t)=t^{\gamma},(\forall) t \in[a, b]$, then $D_{t}^{\alpha} f_{1}(t)=\frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma-\alpha)} t^{\gamma-\alpha}$.
(iii) $D_{t}^{\alpha}\left(u f_{1}(t)+v f_{2}(t)\right)=u D_{t}^{\alpha} f_{1}(t)+v D_{t}^{\alpha} f_{2}(t)$, for all $u, v \in R$.

For $\alpha \in R, \alpha>0$ and a manifold M, let $\left(T^{\alpha}(M), \pi^{\alpha}, M\right)$ the fractional tangent bundle to M (see [3]). Locally, if $x_{0} \in U$ and $c: I \rightarrow M$ is a curve given by $x^{i}=x^{i}(t),(\forall) t \in I$, on $\left(\pi^{\alpha}\right)^{-1}(U) \in T^{\alpha}(M)$, the coordinates of the class $\left([c]_{x_{0}}^{\alpha}\right) \in T^{\alpha}(M)$ are $\left(x^{i}, y^{i(\alpha)}\right)$, where:

$$
\begin{equation*}
x^{i}=x^{i}(0), \quad y^{i(\alpha)}=\frac{1}{\Gamma(1+\alpha)} D_{t}^{\alpha} x^{i}(t), i=\overline{1, n} . \tag{26}
\end{equation*}
$$

Let $\mathcal{D}^{\alpha}(U)$ the module of 1 - forms on U. The fractional exterior derivative $d^{\alpha}: C^{\infty}(U) \rightarrow \mathcal{D}^{\alpha}(U), f \rightarrow d^{\alpha}(f)$ (see [3]), is given by:

$$
\begin{equation*}
d^{\alpha}(f)=d\left(x^{i}\right)^{\alpha} D_{x^{i}}^{\alpha}(f), \quad \text { where } \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
D_{x^{i}}^{\alpha} f(x)=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{x^{i}} \frac{\partial f\left(x^{1}, \ldots, x^{i-1}, s, x^{i+1}, \ldots, x^{n}\right)}{\partial x^{i}} \frac{1}{\left(x^{i}-s\right)^{\alpha}} d s \tag{28}
\end{equation*}
$$

We denote by $\mathcal{X}^{\alpha}(U)$ the module of fractional vector fields generated by $\left\{D_{x^{i}}^{\alpha}, i=\right.$ $\overline{1, n}\}$. The fractional differentiable equations associated to $\stackrel{\alpha}{X} \in \mathcal{X}^{\alpha}(U)$, where $\stackrel{\alpha}{X}=\stackrel{\alpha}{X}^{i} D_{x^{i}}^{\alpha}$ with $\stackrel{\alpha}{X}^{i} \in C^{\infty}(U)$ is defined by:

$$
\begin{equation*}
D_{t}^{\alpha} x^{i}(t)=\stackrel{\alpha}{X}^{i}(x(t)), i=\overline{1, n} \tag{29}
\end{equation*}
$$

Let $\stackrel{\alpha}{P}$ resp. ${ }_{g}^{\alpha}$ be a skew-symmetric resp. symmetric fractional $2-$ tensor field on M. We define the bracket $[\cdot,(\cdot, \cdot)]^{\alpha}: C^{\infty}(M) \times\left(C^{\infty}(M) \times C^{\infty}(M)\right) \rightarrow C^{\infty}(M)$ by:

$$
\begin{equation*}
\left[f,\left(h_{1}, h_{2}\right)\right]^{\alpha}=\stackrel{\alpha}{P}\left(d^{\alpha} f, d^{\alpha} h_{1}\right)+\stackrel{\alpha}{g}\left(d^{\alpha} f, d^{\alpha} h_{2}\right),(\forall) f, h_{1}, h_{2} \in C^{\infty}(M) \tag{30}
\end{equation*}
$$

The fractional vector field $\stackrel{\alpha}{X}_{h_{1} h_{2}}$ defined by

$$
\begin{equation*}
\stackrel{\alpha}{X}_{h_{1} h_{2}}=\left[f,\left(h_{1}, h_{2}\right)\right]^{\alpha}, \quad(\forall) f \in C^{\infty}(M) . \tag{31}
\end{equation*}
$$

is called the fractional almost Leibniz vector field.
Locally, the fractional almost Leibniz system associated to $\left(\stackrel{\alpha}{P}, \stackrel{\alpha}{g}, h_{1}, h_{2}\right)$ on M is the differential system associated to $\stackrel{\alpha}{X}_{h_{1} h_{2}}$, that is:

$$
\begin{equation*}
D_{t}^{\alpha} x^{i}(t)=\stackrel{\alpha^{i j}}{P} D_{x^{j}}^{\alpha} h_{1}+{ }_{g}^{\alpha i j} D_{x^{j}}^{\alpha} h_{2} . \tag{32}
\end{equation*}
$$

Proposition 4.1. The fractional almost Leibniz system associated to $\left(\stackrel{\alpha}{P}, \stackrel{\alpha}{g}, \stackrel{\alpha}{h_{1}}, \stackrel{\alpha}{h_{2}}\right)$ on R^{3}, where $\stackrel{\alpha}{P}=P_{1}, \stackrel{\alpha}{g}=g_{1}, \stackrel{\alpha}{h} 1=\frac{1}{2}\left(x^{1}\right)^{1+\alpha}+\left(x^{3}\right)^{\alpha}$ and $\stackrel{\alpha}{h_{2}}=\frac{1}{2}\left(x^{2}\right)^{1+\alpha}+\frac{1}{2}\left(x^{3}\right)^{1+\alpha}$ is:

$$
\left\{\begin{align*}
D_{t}^{\alpha} x^{1} & =\Gamma(1+\alpha) x^{2}+\frac{1}{2} \Gamma(2+\alpha) x^{1} x^{3} \tag{33}\\
D_{t}^{\alpha} x^{2} & =\frac{1}{2} \Gamma(2+\alpha)\left[x^{1} x^{3}-\left(x^{1}\right)^{2} x^{2}-x^{2}\right] \\
D_{t}^{\alpha} x^{3} & =\frac{1}{2} \Gamma(2+\alpha)\left[-x^{1} x^{2}-\left(x^{1}\right)^{2} x^{3}\right]
\end{align*}\right.
$$

Proof. The equations (32) are written in the following matrix form:
(34) $\quad\left(\begin{array}{c}D_{t}^{\alpha} x^{1} \\ D_{t}^{\alpha} x^{2} \\ D_{t}^{\alpha} x^{3}\end{array}\right)=\stackrel{\alpha}{P}\left(\begin{array}{c}D_{x^{1}}^{\alpha} \stackrel{\alpha}{h_{1}} \\ D_{x^{2}}^{\alpha}{ }_{2} \\ D_{x^{3}}^{\alpha} h_{1}\end{array}\right)+\stackrel{\alpha}{g}\left(\begin{array}{c}D_{x^{1}}^{\alpha}{ }_{2}^{\alpha} \\ D_{x^{2}}^{\alpha}{ }_{2} \\ D_{x^{3}}^{\alpha}{ }_{2}\end{array}\right)$.

We have $\quad D_{x^{1}}^{\alpha} h_{1}^{\alpha}=\frac{1}{2} \Gamma(2+\alpha) x^{1}, \quad D_{x^{2}}^{\alpha} h_{1}^{\alpha}=0, \quad D_{x^{3}}^{\alpha} h_{1}^{\alpha}=\Gamma(1+\alpha), \quad D_{x^{1}}^{\alpha} h_{2}=$ $0, \quad D_{x^{2}}^{\alpha}{ }_{2}^{\alpha}=\frac{1}{2} \Gamma(2+\alpha) x^{2}, \quad D_{x^{3}}^{\alpha} h_{2}=\frac{1}{2} \Gamma(2+\alpha) x^{3}$,

With P_{1} given by (11) and $g_{1}, \stackrel{\alpha}{h_{1}}, \stackrel{\alpha}{h_{2}}$, the system (34) becomes:

$$
\left(\begin{array}{c}
D_{t}^{\alpha} x^{1} \\
D_{t}^{\alpha} x^{2} \\
D_{t}^{\alpha} x^{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -x^{3} & x^{2} \\
x^{3} & 0 & 0 \\
-x^{2} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} \Gamma(2+\alpha) x^{1} \\
0 \\
\Gamma(1+\alpha)
\end{array}\right)+
$$

$+\left(\begin{array}{ccc}-1 & 0 & x^{1} \\ 0 & -\left(x^{1}\right)^{2}-1 & 0 \\ x^{1} & 0 & -\left(x^{1}\right)^{2}\end{array}\right)\left(\begin{array}{c}0 \\ \frac{1}{2} \Gamma(2+\alpha) x^{2} \\ \frac{1}{2} \Gamma(2+\alpha) x^{3}\end{array}\right)$.
By direct computation we obtain the equations (33).
Similarly we prove the following proposition.
Proposition 4.2. The fractional almost Leibniz system associated to $\left(\stackrel{\alpha}{P}, \stackrel{\alpha}{g}, \stackrel{\alpha}{h_{1}}, \stackrel{\alpha}{h_{2}}\right)$ on R^{3}, where $\stackrel{\alpha}{P}=P_{2}, \stackrel{\alpha}{g}=g_{2}, \stackrel{\alpha}{h} 1=\frac{1}{2}\left(x^{2}\right)^{1+\alpha}+\frac{1}{2}\left(x^{3}\right)^{1+\alpha}$ and $\stackrel{\alpha}{h}=\frac{1}{2}\left(x^{1}\right)^{1+\alpha}+\left(x^{3}\right)^{\alpha}$ $i s$:

$$
\left\{\begin{align*}
D_{t}^{\alpha} x^{1} & =\frac{1}{2} \Gamma(2+\alpha)\left[x^{2}-x^{1}\left(x^{2}\right)^{2}-x^{1}\left(x^{3}\right)^{2}\right] \tag{35}\\
D_{t}^{\alpha} x^{2} & =\frac{1}{2} \Gamma(2+\alpha) x^{1} x^{3}+\Gamma(1+\alpha) x^{2} x^{3} \\
D_{t}^{\alpha} x^{3} & =-\frac{1}{2} \Gamma(2+\alpha) x^{1} x^{2}-\Gamma(1+\alpha)\left(x^{2}\right)^{2}
\end{align*}\right.
$$

The differential system (33) resp.(35) is called the revised fractional Maxwell-Bloch equations associated to Hamilton-Poisson realization $\left(R^{3}, P_{1}, h_{1,1}\right)$ resp. $\left(R^{3}, P_{2}, h_{2,1}\right)$.

If in (33) resp. (35), we take $\alpha \rightarrow 1$, then one obtain the revised Maxwell-Bloch equations (15) resp. (17).

5 The fractional Maxwell - Bloch equations on a fractional Leibniz algebroid

If E is a Leibniz algebroid over M then, in the description of fractional Leibniz algebroid, the role of the tangent bundle is played by the fractional tangent bundle $T^{\alpha} M$ to M. For more details about this subject see [3].

A fractional Leibniz algebroid structure on a vector bundle $\pi: E \rightarrow M$ is given by a bracket $[\cdot, \cdot]^{\alpha}$ on the space of $\operatorname{sections} \operatorname{Sec}(\pi)$ and two vector bundle morphisms $\stackrel{\alpha}{\rho}_{1}, \stackrel{\alpha}{\rho_{2}}: E \rightarrow T^{\alpha} M$ (called the left resp. right fractional anchor) such that for all $\sigma_{1}, \sigma_{2} \in \operatorname{Sec}(\pi)$ and $f, g \in C^{\infty}(M)$ we have:

$$
\left\{\begin{array}{l}
{\left[e_{a}, e_{b}\right]^{\alpha}=C_{a b}^{c} e_{c}} \tag{36}\\
{\left[f \sigma_{1}, g \sigma_{2}\right]^{\alpha}=f^{\alpha} \rho_{1}^{\alpha}\left(\sigma_{1}\right)(g) \sigma_{2}-g \rho_{2}^{\alpha}\left(\sigma_{2}\right)(f) \sigma_{1}+f g\left[\sigma_{1}, \sigma_{2}\right]^{\alpha}}
\end{array}\right.
$$

A vector bundle $\pi: E \rightarrow M$ endowed with a fractional Leibniz algebroid structure on E, is called fractional Leibniz algebroid over M and denoted by $\left(E,[\cdot, \cdot]^{\alpha}, \stackrel{\alpha}{\rho}, \stackrel{\alpha}{\rho_{2}}\right)$.

A fractional Leibniz algebroid structure on a vector bundle $\pi: E \rightarrow M$ is determined by a linear fractional 2 - tensor field $\stackrel{\alpha}{\Lambda}$ on the dual vector bundle $\pi^{*}: E^{*} \rightarrow M$ (see $[3]$). Then the bracket $[\cdot, \cdot]_{\Lambda}$ is defined by:

$$
\begin{equation*}
[f, g]_{\Lambda}^{\alpha \beta}=\Lambda_{\Lambda}^{\alpha \beta}\left(d^{\alpha \beta} f, d^{\alpha \beta} g\right),(\forall) f, g \in C^{\infty}\left(E^{*}\right) \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
d^{\alpha \beta} f=d\left(x^{i}\right)^{\alpha} D_{x^{i}}^{\alpha} f+d\left(\xi_{a}\right)^{\beta} D_{\xi_{a}}^{\beta} f=d^{\alpha}(f)+d^{\beta}(f) \tag{38}
\end{equation*}
$$

If $\left(x^{i}\right),\left(x^{i}, y^{a}\right)$ resp., $\left(x^{i}, \xi_{a}\right)$ for $i=\overline{1, n}, a=\overline{1, m}$ are coordinates on M, E resp. E^{*}, then the linear fractional tensor $\Lambda{ }_{\Lambda}^{\alpha \beta}$ on E^{*} has the form:

$$
\begin{equation*}
\stackrel{\alpha}{\Lambda}^{\alpha}=C_{a b}^{d} \xi_{d} D_{\xi_{a}}^{\beta} \otimes D_{\xi_{b}}^{\beta}+\stackrel{\alpha}{\rho}_{1 a}^{i} D_{\xi_{a}}^{\beta} \otimes D_{x^{i}}^{\alpha}-\stackrel{\alpha^{i}}{\rho_{2 a}} D_{x^{i}}^{\alpha} \otimes D_{\xi_{a}}^{\beta} \tag{39}
\end{equation*}
$$

We call a fractional dynamical system on $\left(E,[\cdot, \cdot]^{\alpha}, \stackrel{\alpha}{\rho_{1}}, \stackrel{\alpha}{\rho_{2}}\right)$, the fractional system associated to vector field $\stackrel{\alpha}{X}_{h}^{\beta}$ with $h \in C^{\infty}\left(E^{*}\right)$ given by:

$$
\begin{equation*}
\stackrel{\alpha}{X}_{h}^{\beta}(f)=\stackrel{\alpha}{\Lambda}\left(d^{\alpha \beta} f, d^{\alpha \beta} h\right) \text {, for all } f \in C^{\infty}\left(E^{*}\right) \tag{40}
\end{equation*}
$$

Locally, the dynamical system (40) reads:

$$
\left\{\begin{array}{l}
D_{t}^{\alpha} \xi_{a}=\left[\xi_{a}, h\right]_{\Lambda \beta}=C_{a b}^{d} \xi_{d} D_{\xi_{b}}^{\beta} h+\rho_{1 a}^{\alpha i} D_{x^{i}}^{\alpha} h \tag{41}\\
D_{t}^{\alpha} x^{i}=\left[x^{i}, h\right]_{\Lambda}^{\alpha \beta}=-\stackrel{\rho_{2 a}^{i}}{\rho_{2}} D_{\xi_{a}}^{\beta} h
\end{array}\right.
$$

If $P^{\beta}=\left(C_{a b}^{d} \xi_{d}\right), \rho_{1}=\binom{\alpha^{i}}{\rho_{1 a}}$ and $\rho_{2}=\binom{\alpha^{i}}{\rho_{2 a}}$ then the dynamical system (41) can be written in the matrix form:
(42) $\left(\begin{array}{c}D_{t}^{\beta} \xi_{1} \\ D_{t}^{\beta} \xi_{2} \\ D_{t}^{\beta} \xi_{1}\end{array}\right)=P^{\beta}\left(\begin{array}{c}D_{\xi_{1}}^{\beta} h \\ D_{\xi_{2}}^{\beta} h \\ D_{\xi_{3}}^{\beta} h\end{array}\right)+\rho_{1}\left(\begin{array}{c}D_{x^{1}}^{\alpha} h \\ D_{x^{2}}^{\alpha} h \\ D_{x^{3}}^{\alpha} h\end{array}\right),\left(\begin{array}{c}D_{t}^{\alpha} x^{1} \\ D_{t}^{\alpha} x^{2} \\ D_{t}^{\alpha} x^{3}\end{array}\right)=-\rho_{2}\left(\begin{array}{c}D_{\xi_{1}}^{\beta} h \\ D_{\xi_{2}}^{\beta} h \\ D_{\xi_{1}}^{\beta} h\end{array}\right)$.

Proposition 5.1. Let the dual $\pi^{*}: E^{*}=R^{3} \times\left(R^{3}\right)^{*} \rightarrow R^{3}$ of the vector bundle $\pi: E=R^{3} \times R^{3} \rightarrow R^{3}$ and $\alpha>0, \beta>0$. Let $\stackrel{\alpha}{\Lambda}$ defined by the matrix P^{β} and $\stackrel{\alpha}{\rho_{1}}, \stackrel{\alpha}{\rho}, h$ given by:

$$
\begin{aligned}
& P^{\beta}=\left(\begin{array}{ccc}
0 & -\xi_{3} x^{3} & \xi_{2} x^{2} \\
\xi_{3} x^{3} & 0 & -\xi_{1} x^{1} \\
-\xi_{2} x^{2} & \xi_{1} x^{1} & 0
\end{array}\right) \quad, \quad \stackrel{\alpha}{\rho_{1}}=\left(\begin{array}{ccc}
0 & -x^{3} & x^{2} \\
x^{3} & 0 & 0 \\
-x^{2} & 0 & 0
\end{array}\right), \\
& \stackrel{\alpha}{\rho}_{2}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -x^{1} \\
0 & x^{1} & 0
\end{array}\right), h(x, \xi)=\left(x^{2}\right)^{\alpha}\left(\xi_{2}\right)^{\beta}+\left(x^{3}\right)^{\alpha}\left(\xi_{3}\right)^{\beta} .
\end{aligned}
$$

The fractional dynamical system (41) on the fractional Leibniz algebroid $\left(R^{3} \times\right.$ $\left.R^{3}, P, \rho_{1}, \rho_{2}\right)$ associated to the function h is:

$$
\left\{\begin{align*}
D_{t}^{\beta} \xi_{1}= & \Gamma(1+\beta)\left(-\xi_{3}\left(x^{2}\right)^{\alpha} x^{3}+\xi_{2} x^{2}\left(x^{3}\right)^{\alpha}\right)+ \tag{43}\\
& \quad+\Gamma(1+\alpha)\left(-x^{3}\left(\xi_{2}\right)^{\beta}+x^{2}\left(\xi_{3}\right)^{\beta}\right) \\
D_{t}^{\beta} \xi_{2}= & -\Gamma(1+\beta) x^{1}\left(x^{3}\right)^{\alpha} \xi_{1} \\
D_{t}^{\beta} \xi_{3}= & \Gamma(1+\beta) x^{1}\left(x^{2}\right)^{\alpha} \xi_{1} \\
D_{t}^{\alpha} x^{1}= & \Gamma(1+\beta)\left(x^{2}\right)^{\alpha} \\
D_{t}^{\alpha} x^{2}= & \Gamma(1+\beta) x^{1}\left(x^{3}\right)^{\alpha} \\
D_{t}^{\alpha} x^{3}= & -\Gamma(1+\beta) x^{1}\left(x^{2}\right)^{\alpha}
\end{align*}\right.
$$

The fractional dynamical system (43) is the (α, β) - fractional dynamical system associated to fractional Maxwell - Bloch equations.

If $\alpha \rightarrow 1, \beta \rightarrow 1$, the fractional system (43) reduces to the Maxwell - Bloch equations (25) on the Leibniz algebroid $\pi: E=R^{3} \times R^{3} \rightarrow R^{3}$. Conclusion. The numerical integration of the fractional Maxwell- Bloch systems presented in this paper will be discussed in future papers.

References

[1] R. Abraham, J.E. Marsden, Foundations of Mechanics, Second Edition, AddisonWesley, 1978.
[2] Gh.Ivan, M. Ivan, D. Opriş, Fractional dynamical systems on fractional Leibniz algebroids, Proc. Conf. of Diff. Geometry: Lagrange and Hamilton spaces. Sept. 3-8, 2007, Iaşi, Romania, to appear.
[3] Gh. Ivan, D. Opriş, Dynamical systems on Leibniz algebroids, Diff. Geometry Dynamical Systems, 8 (2006), 127-137.
[4] J.E. Marsden, T. Raţiu, Introduction to Mechanics and Symmetry, SpringerVerlag 1994.
[5] M. Puta, Maxwell - Bloch equations with one control and stability problem, Bull. des Sciences Mathématiques, 124 (2000), 333-338.

Authors' address:
Mihai Ivan, Gheorghe Ivan and Dumitru Opriş
West University of Timişoara,
4, B-dul V. Pârvan, 300223, Timişoara, Romania.
E-mail: ivan@math.uvt.ro ; miticaopris@yahoo.com

