The Maxwell-Bloch equations on fractional Leibniz algebroids

Mihai Ivan, Gheorghe Ivan and Dumitru Opriş

Abstract. Numerous Mircea Puta's papers were dedicated to the study of Maxwell - Bloch equations. The main purpose of this paper is to present several types of fractional Maxwell - Bloch equations.

M.S.C. 2000: 53D17, 58F06.

Key words: Fractional Leibniz algebroid, revised and fractional Maxwell-Bloch equations.

1 Introduction

It is well known that many dynamical systems turned out to be Hamilton - Poisson systems. Among other things, an important role is played by the Maxwell - Bloch equations from laser - matter dynamics. More details can be found in [1], [4] and M. Puta [5].

In this paper the revised and the dynamical systems associated to Maxwell - Bloch equations on a Leibniz algebroid are discussed.

Derivatives of fractional order have found many applications in recent studies in mechanics, physics and economics. Some classes of fractional differentiable systems have studied in [3]. In this paper we present some fractional Maxwell- Bloch equations associated to Hamilton - Poisson systems or defined on a fractional Leibniz algebroid.

2 The revised Maxwell - Bloch equations

Let $C^{\infty}(M)$ be the ring of smooth functions on a n-dimensional smooth manifold M. A Leibniz bracket on M is a bilinear map $[\cdot, \cdot] : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that it is a derivation on each entry, that is, for all $f, g, h \in C^{\infty}(M)$ the following relations hold:

(1) [fg,h] = [f,h]g + f[g,h] and [f,gh] = g[f,h] + [f,g]h.

Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 50-58. © Balkan Society of Geometers, Geometry Balkan Press 2008.

The Maxwell-Bloch equations

We will say that the pair $(M, [\cdot, \cdot])$ is a *Leibniz manifold*. If the bilinear map $[\cdot, \cdot]$ verify only the first equality in (1), we say that $[\cdot, \cdot]$ is a *left Leibniz bracket* and $(M, [\cdot, \cdot])$ is an *almost Leibniz manifold*.

Let P and g be two contravariant 2 - tensor fields on M. We define the map $[\cdot, (\cdot, \cdot)] : C^{\infty}(M) \times (C^{\infty}(M) \times C^{\infty}(M)) \to C^{\infty}(M)$ by:

(2)
$$[f, (h_1, h_2)] = P(df, dh_1) + g(df, dh_2), \text{ for all } f, h_1, h_2 \in C^{\infty}(M).$$

We consider the map $[[\cdot, \cdot]] : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ defined by:

(3)
$$[[f,h]] = [f,(h,h)] = P(df,dh) + g(df,dh), \text{ for all } f,h \in C^{\infty}(M).$$

It is easy to prove that $(M, P, g, [[\cdot, \cdot]])$ is a Leibniz manifold.

A Leibniz manifold $(M, P, g, [[\cdot, \cdot]])$ such that P and g is a skew - symmetric resp. symmetric tensor field is called *almost metriplectic manifold*.

Let $(M, P, g, [[\cdot, \cdot]])$ be an almost metriplectic manifold. If there exists $h_1, h_2 \in C^{\infty}(M)$ such that $P(df, dh_2) = 0$ and $g(df, dh_1) = 0$ for all $f \in C^{\infty}(M)$, then:

(4)
$$[[f, h_1 + h_2]] = [f, (h_1, h_2)],$$
 for all $f \in C^{\infty}(M)$.
In this case, we have:

(5)
$$[[f, h_1 + h_2]] = P(df, dh_1) + g(df, dh_2), \text{ for all } f \in C^{\infty}(M).$$

If $(x^i), i = \overline{1, n}$ are local coordinates on M, the differential system given by:

(6)
$$\dot{x}^i = \left[\left[x^i, h_1 + h_2 \right] \right] = P^{ij} \frac{\partial h_1}{\partial x^j} + g^{ij} \frac{\partial h_2}{\partial x^j}, \ i, j = \overline{1, n}$$

with $P^{ij} = P(dx^i, dx^j)$ and $g^{ij} = g(dx^i, dx^j)$, is called the *almost metriplectic* system on $(M, P, g, [[\cdot, \cdot]])$ associated to $h_1, h_2 \in C^{\infty}(M)$ which satisfies the conditions $P(df, dh_2) = 0$ and $g(df, dh_1) = 0$ for all $f \in C^{\infty}(M)$.

Let be a Hamilton-Poisson system on M described by the Poisson tensor $P = (P^{ij})$ and the Hamiltonian $h_1 \in C^{\infty}(M)$ with the Casimir $h_2 \in C^{\infty}(M)$ (i.e. $P^{ij}\frac{\partial h_2}{\partial x^j} = 0$ for $i, j = \overline{1, n}$). The differential equations of the Hamilton-Poisson system are the following:

(7)
$$\dot{x}^i = P^{ij} \frac{\partial h_1}{\partial x^j}, \quad i, j = \overline{1, n}.$$

We determine the matrix $g = (g^{ij})$ such that $g^{ij} \frac{\partial h_1}{\partial x^j} = 0$ where:

(8)
$$g^{ii}(x) = -\sum_{k=1, k \neq i}^{n} (\frac{\partial h_1}{\partial x^k})^2, \quad g^{ij}(x) = \frac{\partial h_1}{\partial x^i} \frac{\partial h_1}{\partial x^j} \quad \text{for } i \neq j.$$

The *revised system* of the Hamilton - Poisson system (7) is:

(9)
$$\dot{x}^i = P^{ij} \frac{\partial h_1}{\partial x^j} + g^{ij} \frac{\partial h_2}{\partial x^j}, \quad i, j = \overline{1, n}.$$

The real valued 3- dimensional Maxwell-Bloch equations from laser - matter dynamics are usually written as:

(10)
$$\dot{x}^1(t) = x^2(t), \ \dot{x}^2(t) = x^1(t)x^3(t), \ \dot{x}^3(t) = -x^1(t)x^2(t), \ t \in \mathbb{R}.$$

The dynamics (10) is described by the Poisson tensor P_1 and the Hamiltonian $h_{1,1}$ given by:

(11)
$$P_1 = (P_1^{ij}) = \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & 0 \\ -x^2 & 0 & 0 \end{pmatrix}, \quad h_{1,1}(x) = \frac{1}{2}(x^1)^2 + x^3,$$

or by the Poisson tensor P_2 and the Hamiltonian $h_{2,1}$ given by:

(12)
$$P_2 = (P_2^{ij}) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & x^1 \\ 0 & -x^1 & 0 \end{pmatrix}, \quad h_{2,1}(x) = \frac{1}{2}(x^2)^2 + \frac{1}{2}(x^3)^2.$$

The dynamics (10) can be written in the matrix form:

(13)
$$\dot{x}(t) = P_1(x(t)) \cdot \nabla h_{1,1}(x(t)), \text{ or } \dot{x}(t) = P_2(x(t)) \cdot \nabla h_{2,1}(x(t)),$$

where $\dot{x}(t) = (\dot{x}^1(t), \dot{x}^2(t), \dot{x}^3(t))^T$ and $\nabla h(x(t))$ is the gradient of h with respect to the canonical metric on R^3 .

The dynamics (10) has the Hamilton-Poisson formulation $(R^3, P_1, h_{1,1})$, with the Casimir $h_{1,2} \in C^{\infty}(R^3)$ given by:

(14)
$$h_{1,2}(x) = \frac{1}{2}[(x^2)^2 + (x^3)^2].$$

Applying (8) for $P = P_1$, $h_1(x) = h_{1,1}(x)$ and $h_2(x) = h_{1,2}(x)$ we obtain the symmetric tensor g_1 which is given by the matrix:

$$g_1 = \begin{pmatrix} -1 & 0 & x^1 \\ 0 & -(x^1)^2 - 1 & 0 \\ x^1 & 0 & -(x^1)^2 \end{pmatrix}.$$

Using (9) for the Hamilton- Poisson system $(R^3, P_1, h_{1,1})$, $h_{1,2}$ and g_1 we obtain the revised Maxwell-Bloch equations associated to $(P_1, h_{1,1}, h_{1,2})$:

(15)
$$\dot{x}^1 = x^2 + x^1 x^3, \quad \dot{x}^2 = x^1 x^3 - (x^1)^2 x^2 - x^2, \quad \dot{x}^3 = -x^1 x^2 - (x^1)^2 x^3.$$

Also, the Hamilton-Poisson formulation $(R^3, P_2, h_{2,1})$ of the dynamics (10) has the Casimir $h_{2,2} \in C^{\infty}(R^3)$ given by:

(16)
$$h_{2,2}(x) = \frac{1}{2}(x^1)^2 + x^3$$

and its associated symmetric tensor g_2 given by the matrix:

$$g_2 = \begin{pmatrix} -(x^2)^2 - (x^3)^2 & 0 & 0\\ 0 & -(x^3)^2 & x^2 x^3\\ 0 & x^2 x^3 & -(x^2)^2 \end{pmatrix}.$$

52

In this case, for the Hamilton- Poisson system $(R^3, P_2, h_{2,1})$, $h_{2,2}$ and g_2 we obtain the revised Maxwell-Bloch equations associated to $(P_2, h_{2,1}, h_{2,2})$:

(17)
$$\dot{x}^1 = x^2 - x^1 (x^2)^2 - x^1 (x^3)^2, \quad \dot{x}^2 = x^1 x^3 + x^2 x^3, \quad \dot{x}^3 = -x^1 x^2 - (x^2)^2$$

3 The dynamical system associated to Maxwell -Bloch equations on a Leibniz algebroid

In this section we refer to the dynamical systems on Leibniz algebroids. For more details can be consult the paper [2].

A Leibniz algebroid structure on a vector bundle $\pi: E \to M$ is given by a bracket (bilinear operation) $[\cdot, \cdot]$ on the space of sections $Sec(\pi)$ and two vector bundle morphisms $\rho_1, \rho_2: E \to TM$ (called the *left* resp. *right anchor*) such that for all $\sigma_1, \sigma_2 \in Sec(\pi)$ and $f, g \in C^{\infty}(M)$, we have:

(18)
$$[f\sigma_1, g\sigma_2] = f\rho_1(\sigma_1)(g)\sigma_2 - g\rho_2(\sigma_2)(f)\sigma_1 + fg[\sigma_1, \sigma_2].$$

A vector bundle $\pi : E \to M$ endowed with a Leibniz algebroid structure on E, is called *Leibniz algebroid* over M and denoted by $(E, [\cdot, \cdot], \rho_1, \rho_2)$.

In the paper [2], it proved that a Leibniz algebroid structure on a vector bundle $\pi : E \to M$ is determined by a linear contravariant 2- tensor field on manifold E^* of the dual vector bundle $\pi^* : E^* \to M$. More precisely, if Λ is a linear 2 - tensor field on E^* then the bracket $[\cdot, \cdot]_{\Lambda}$ of functions is given by:

(19)
$$[f,g]_{\Lambda} = \Lambda(df,dg)$$

Let $(x^i), i = \overline{1, n}$ be a local coordinate system on M and let $\{e_1, \ldots, e_m\}$ be a basis of local sections of E. We denote by $\{e^1, \ldots, e^m\}$ the dual basis of local sections of E^* and (x^i, y^a) (resp., (x^i, ξ_a)) the corresponding coordinates on E (resp., E^*). Locally, the linear 2 - tensor Λ has the form:

(20)
$$\Lambda = C^d_{ab} \xi_d \frac{\partial}{\partial \xi_a} \otimes \frac{\partial}{\partial \xi_b} + \rho^i_{1a} \frac{\partial}{\partial \xi_a} \otimes \frac{\partial}{\partial x^i} - \rho^i_{2a} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial \xi_a},$$

with $C^d_{ab}, \rho^i_{1a}, \rho^i_{2a} \in C^{\infty}(M), \ i = \overline{1, n}, \ a, b, d = \overline{1, m}.$

We call a dynamical system on Leibniz algebroid $\pi : E \to M$, the dynamical system associated to vector field X_h with $h \in C^{\infty}(M)$ given by:

(21)
$$X_h(f) = \Lambda(df, dh), \text{ for all } f \in C^{\infty}(M).$$

Locally, the dynamical system (21) is given by:

(22)
$$\dot{\xi}_a = [\xi_a, h]_{\Lambda} = C^d_{ab} \xi_d \frac{\partial h}{\partial \xi_b} + \rho^i_{1a} \frac{\partial h}{\partial x^i}, \qquad \dot{x}^i = [x^i, h]_{\Lambda} = -\rho^i_{2a} \frac{\partial h}{\partial \xi_a}.$$

Let the vector bundle $\pi: E = R^3 \times R^3 \to R^3$ and $\pi^*: E^* = R^3 \times (R^3)^* \to R^3$ its dual. We consider on E^* the linear 2 - tensor field Λ , the anchors $\rho_1, \rho_2: Sec(\pi) \to R^3$

 $T(R^3)$ and the function h given by:

(23)
$$P = \begin{pmatrix} 0 & -\xi_3 x^3 & \xi_2 x^2 \\ \xi_3 x^3 & 0 & -\xi_1 x^1 \\ -\xi_2 x^2 & \xi_1 x^1 & 0 \end{pmatrix}, \quad \rho_1 = \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & 0 \\ -x^2 & 0 & 0 \end{pmatrix}$$

(24)
$$\rho_2 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -x^1 \\ 0 & x^1 & 0 \end{pmatrix} \text{ and } h(x,\xi) = x^2 \xi_2 + x^3 \xi_3.$$

Proposition 3.1.([2]) The dynamical system (22) on the Leibniz algebroid ($\mathbb{R}^3 \times \mathbb{R}^3, \mathbb{P}, \rho_1, \rho_2$) associated to function h, where $\mathbb{P}, \rho_1, \rho_2$, h are given by (23) and (24) is:

(25)
$$\begin{cases} \dot{\xi}_1 = x^3(x^2 - 1)\xi_2 - x^2(x^3 - 1)\xi_3 \\ \dot{\xi}_2 = -x^3x^1\xi_1 \\ \dot{\xi}_3 = x^1x^2\xi_1 \end{cases}, \begin{cases} \dot{x}^1 = x^2 \\ \dot{x}^2 = x^1x^3 \\ \dot{x}^3 = -x^1x^2 \end{cases}$$

The dynamical system (25) is called the Maxwell - Bloch equations on the Leibniz algebroid $\pi: E = R^3 \times R^3 \to R^3$.

4 The fractional Maxwell - Bloch equations

Let $f : [a, b] \to R$ and $\alpha \in R, \alpha > 0$. The *Riemann* - *Liouville fractional derivative* at to left of a is the function $f \to D_t^{\alpha} f$, where:

$$D_t^{\alpha} f(t) = \frac{1}{\Gamma(m-\alpha)} (-\frac{d}{dt})^m \int_a^t (t-s)^{m-\alpha-1} (f(s) - f(a)) ds$$

with $m \in N^*$ such that $m-1 \leq \alpha \leq m, \Gamma$ is the Euler gamma function and $(\frac{d}{dt})^m = \frac{d}{dt} \circ \frac{d}{dt} \circ \dots \circ \frac{d}{dt}$. Clearly, if $\alpha \to 1$ then $D_t^{\alpha} f(t) = \frac{df}{dt}$. We have (see, [3]):

- (i) If f(t) = c, $(\forall)t \in [a, b]$, $D_t^{\alpha}f(t) = 0$. (ii) If $f_1(t) = t^{\gamma}$, $(\forall)t \in [a, b]$, then $D_t^{\alpha}f_1(t) = \frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma-\alpha)}t^{\gamma-\alpha}$.
- $\label{eq:constraint} \text{(iii)} \quad D_t^\alpha(uf_1(t)+vf_2(t))=uD_t^\alpha f_1(t)+vD_t^\alpha f_2(t), \ \text{for all} \ u,v\in R.$

For $\alpha \in R, \alpha > 0$ and a manifold M, let $(T^{\alpha}(M), \pi^{\alpha}, M)$ the fractional tangent bundle to M (see [3]). Locally, if $x_0 \in U$ and $c : I \to M$ is a curve given by $x^i = x^i(t), (\forall)t \in I$, on $(\pi^{\alpha})^{-1}(U) \in T^{\alpha}(M)$, the coordinates of the class $([c]_{x_0}^{\alpha}) \in T^{\alpha}(M)$ are $(x^i, y^{i(\alpha)})$, where:

(26)
$$x^i = x^i(0), \quad y^{i(\alpha)} = \frac{1}{\Gamma(1+\alpha)} D^{\alpha}_t x^i(t), i = \overline{1, n}.$$

Let $\mathcal{D}^{\alpha}(U)$ the module of 1 - forms on U. The fractional exterior derivative $d^{\alpha}: C^{\infty}(U) \to \mathcal{D}^{\alpha}(U), f \to d^{\alpha}(f)$ (see [3]), is given by:

- (27) $d^{\alpha}(f) = d(x^{i})^{\alpha} D^{\alpha}_{x^{i}}(f), \text{ where }$
- (28) $D_{x^{i}}^{\alpha}f(x) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{x^{i}} \frac{\partial f(x^{1},...,x^{i-1},s,x^{i+1},...,x^{n})}{\partial x^{i}} \frac{1}{(x^{i}-s)^{\alpha}} ds.$

We denote by $\mathcal{X}^{\alpha}(U)$ the module of fractional vector fields generated by $\{D_{x^i}^{\alpha}, i=$ $\overline{1,n}$ }. The fractional differentiable equations associated to $\overset{\alpha}{X} \in \mathcal{X}^{\alpha}(U)$, where $\overset{\alpha}{X} = \overset{\alpha}{X}^{i} \overset{i}{D_{x^{i}}}$ with $\overset{\alpha}{X}^{i} \in C^{\infty}(U)$ is defined by:

(29)
$$D_t^{\alpha} x^i(t) = \overset{\alpha}{X}^i(x(t)), \ i = \overline{1, n}.$$

Let $\overset{\alpha}{P}$ resp. $\overset{\alpha}{g}$ be a skew-symmetric resp. symmetric fractional 2– tensor field on M. We define the bracket $[\cdot, (\cdot, \cdot)]^{\alpha} : C^{\infty}(M) \times (C^{\infty}(M) \times C^{\infty}(M)) \to C^{\infty}(M)$ by:

(30)
$$[f, (h_1, h_2)]^{\alpha} = \overset{\alpha}{P} (d^{\alpha} f, d^{\alpha} h_1) + \overset{\alpha}{g} (d^{\alpha} f, d^{\alpha} h_2), \ (\forall) f, h_1, h_2 \in C^{\infty}(M).$$

The fractional vector field $\overset{\alpha}{X}_{h_1h_2}$ defined by

(31)
$$\ddot{X}_{h_1h_2} = [f, (h_1, h_2)]^{\alpha}, \quad (\forall) f \in C^{\infty}(M).$$

is called the *fractional almost Leibniz vector field*.

Locally, the fractional almost Leibniz system associated to $(\overset{\alpha}{P}, \overset{\alpha}{g}, h_1, h_2)$ on M is the differential system associated to $\overset{\alpha}{X}_{h_1h_2},$ that is:

(32)
$$D_t^{\alpha} x^i(t) = \overset{\alpha^{ij}}{P} D_{x^j}^{\alpha} h_1 + \overset{\alpha^{ij}}{g} D_{x^j}^{\alpha} h_2.$$

Proposition 4.1. The fractional almost Leibniz system associated to $(\overset{\alpha}{P}, \overset{\alpha}{g}, \overset{\alpha}{h}, \overset{\alpha}{h}_2)$ on R^3 , where $\overset{\alpha}{P} = P_1$, $\overset{\alpha}{g} = g_1$, $\overset{\alpha}{h}_1 = \frac{1}{2}(x^1)^{1+\alpha} + (x^3)^{\alpha}$ and $\overset{\alpha}{h}_2 = \frac{1}{2}(x^2)^{1+\alpha} + \frac{1}{2}(x^3)^{1+\alpha}$ is:

(33)
$$\begin{cases} D_t^{\alpha} x^1 &= \Gamma(1+\alpha)x^2 + \frac{1}{2}\Gamma(2+\alpha)x^1x^3\\ D_t^{\alpha} x^2 &= \frac{1}{2}\Gamma(2+\alpha)[x^1x^3 - (x^1)^2x^2 - x^2]\\ D_t^{\alpha} x^3 &= \frac{1}{2}\Gamma(2+\alpha)[-x^1x^2 - (x^1)^2x^3] \end{cases}$$

Proof. The equations (32) are written in the following matrix form:

$$(34) \qquad \begin{pmatrix} D_t^{\alpha} x^1 \\ D_t^{\alpha} x^2 \\ D_t^{\alpha} x^3 \end{pmatrix} = \overset{\alpha}{P} \begin{pmatrix} D_{x_1}^{\alpha} \overset{\alpha}{h_1} \\ D_{x_2}^{\alpha} \overset{\alpha}{h_1} \\ D_{x_3}^{\alpha} \overset{\alpha}{h_1} \end{pmatrix} + \overset{\alpha}{g} \begin{pmatrix} D_{x_1}^{\alpha} \overset{\alpha}{h_2} \\ D_{x_2}^{\alpha} \overset{\alpha}{h_2} \\ D_{x_3}^{\alpha} \overset{\alpha}{h_2} \end{pmatrix}$$

We have $D_{x^1}^{\alpha} \overset{\alpha}{h_1} = \frac{1}{2} \Gamma(2+\alpha) x^1$, $D_{x^2}^{\alpha} \overset{\alpha}{h_1} = 0$, $D_{x^3}^{\alpha} \overset{\alpha}{h_1} = \Gamma(1+\alpha)$, $D_{x^1}^{\alpha} \overset{\alpha}{h_2} = \Gamma(1+\alpha)$ 0, $D_{x^2}^{\alpha} \stackrel{\alpha}{h_2} = \frac{1}{2} \Gamma(2+\alpha) x^2$, $D_{x^3}^{\alpha} \stackrel{\alpha}{h_2} = \frac{1}{2} \Gamma(2+\alpha) x^3$, With P_1 given by (11) and $g_1, \stackrel{\alpha}{h_1}, \stackrel{\alpha}{h_2}$, the system (34) becomes:

$$\begin{pmatrix} D_t^{\alpha} x^1 \\ D_t^{\alpha} x^2 \\ D_t^{\alpha} x^3 \end{pmatrix} = \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & 0 \\ -x^2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \Gamma(2+\alpha) x^1 \\ 0 \\ \Gamma(1+\alpha) \end{pmatrix} +$$

Mihai Ivan, Gheorghe Ivan and Dumitru Opriş

$$+ \begin{pmatrix} -1 & 0 & x^{1} \\ 0 & -(x^{1})^{2} - 1 & 0 \\ x^{1} & 0 & -(x^{1})^{2} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{2}\Gamma(2+\alpha)x^{2} \\ \frac{1}{2}\Gamma(2+\alpha)x^{3} \end{pmatrix}.$$

By direct computation we obtain the equations (33). Similarly we prove the following proposition.

Proposition 4.2. The fractional almost Leibniz system associated to $(\overset{\alpha}{P}, \overset{\alpha}{g}, \overset{\alpha}{h}_1, \overset{\alpha}{h}_2)$ on R^3 , where $\overset{\alpha}{P} = P_2$, $\overset{\alpha}{g} = g_2$, $\overset{\alpha}{h}_1 = \frac{1}{2}(x^2)^{1+\alpha} + \frac{1}{2}(x^3)^{1+\alpha}$ and $\overset{\alpha}{h}_2 = \frac{1}{2}(x^1)^{1+\alpha} + (x^3)^{\alpha}$ is:

(35)
$$\begin{cases} D_t^{\alpha} x^1 &= \frac{1}{2} \Gamma(2+\alpha) [x^2 - x^1 (x^2)^2 - x^1 (x^3)^2] \\ D_t^{\alpha} x^2 &= \frac{1}{2} \Gamma(2+\alpha) x^1 x^3 + \Gamma(1+\alpha) x^2 x^3 \\ D_t^{\alpha} x^3 &= -\frac{1}{2} \Gamma(2+\alpha) x^1 x^2 - \Gamma(1+\alpha) (x^2)^2 \end{cases}$$

The differential system (33) resp.(35) is called the *revised fractional Maxwell-Bloch* equations associated to Hamilton-Poisson realization $(R^3, P_1, h_{1,1})$ resp. $(R^3, P_2, h_{2,1})$.

If in (33) resp. (35), we take $\alpha \to 1$, then one obtain the revised Maxwell-Bloch equations (15) resp. (17).

5 The fractional Maxwell - Bloch equations on a fractional Leibniz algebroid

If E is a Leibniz algebroid over M then, in the description of fractional Leibniz algebroid, the role of the tangent bundle is played by the fractional tangent bundle $T^{\alpha}M$ to M. For more details about this subject see [3].

A fractional Leibniz algebroid structure on a vector bundle $\pi: E \to M$ is given by a bracket $[\cdot, \cdot]^{\alpha}$ on the space of sections $Sec(\pi)$ and two vector bundle morphisms $\stackrel{\alpha}{\rho}_1, \stackrel{\alpha}{\rho}_2: E \to T^{\alpha}M$ (called the *left* resp. *right fractional anchor*) such that for all $\sigma_1, \sigma_2 \in Sec(\pi)$ and $f, g \in C^{\infty}(M)$ we have:

(36)
$$\begin{cases} [e_a, e_b]^{\alpha} = C_{ab}^c e_c \\ [f\sigma_1, g\sigma_2]^{\alpha} = f_{\rho_1}^{\alpha}(\sigma_1)(g)\sigma_2 - g_{\rho_2}^{\alpha}(\sigma_2)(f)\sigma_1 + fg[\sigma_1, \sigma_2]^{\alpha}. \end{cases}$$

A vector bundle $\pi: E \to M$ endowed with a fractional Leibniz algebroid structure on E, is called *fractional Leibniz algebroid* over M and denoted by $(E, [\cdot, \cdot]^{\alpha}, \stackrel{\alpha}{\rho}_{1}, \stackrel{\alpha}{\rho}_{2})$.

A fractional Leibniz algebroid structure on a vector bundle $\pi : E \to M$ is determined by a linear fractional 2 - tensor field $\stackrel{\alpha}{\Lambda}$ on the dual vector bundle $\pi^* : E^* \to M$ (see [3]). Then the bracket $[\cdot, \cdot]_{\stackrel{\alpha}{\Lambda}}$ is defined by:

(37)
$$[f,g]_{\stackrel{\alpha\beta}{\Lambda}} = \stackrel{\alpha\beta}{\Lambda} (d^{\alpha\beta}f, d^{\alpha\beta}g), \ (\forall) \ f,g \in C^{\infty}(E^*),$$

where

(38)
$$d^{\alpha\beta}f = d(x^i)^{\alpha}D^{\alpha}_{x^i}f + d(\xi_a)^{\beta}D^{\beta}_{\xi_a}f = d^{\alpha}(f) + d^{\beta}(f).$$

56

The Maxwell-Bloch equations

If (x^i) , (x^i, y^a) resp., (x^i, ξ_a) for $i = \overline{1, n}$, $a = \overline{1, m}$ are coordinates on M, E resp. E^* , then the linear fractional tensor $\stackrel{\alpha\beta}{\Lambda}$ on E^* has the form:

(39)
$$\Lambda^{\alpha\beta} = C^d_{ab}\xi_d D^{\beta}_{\xi_a} \otimes D^{\beta}_{\xi_b} + \overset{\alpha i}{\rho_{1a}} D^{\beta}_{\xi_a} \otimes D^{\alpha}_{x^i} - \overset{\alpha i}{\rho_{2a}} D^{\alpha}_{x^i} \otimes D^{\beta}_{\xi_a}.$$

We call a fractional dynamical system on $(E, [\cdot, \cdot]^{\alpha}, \overset{\alpha}{\rho}_{1}, \overset{\alpha}{\rho}_{2})$, the fractional system associated to vector field $\overset{\alpha}{X}_{h}^{\beta}$ with $h \in C^{\infty}(E^{*})$ given by:

(40)
$$\overset{\alpha}{X}^{\beta}_{h}(f) = \overset{\alpha}{\Lambda}^{\beta}(d^{\alpha\beta}f, d^{\alpha\beta}h), \text{ for all } f \in C^{\infty}(E^{*}).$$

Locally, the dynamical system (40) reads:

(41)
$$\begin{cases} D_t^{\alpha}\xi_a = [\xi_a, h]_{\Lambda^{\beta}} = C_{ab}^d \xi_d D_{\xi_b}^{\beta} h + \overset{\alpha^i}{\rho_{1a}} D_{x^i}^{\alpha} h \\ D_t^{\alpha} x^i = [x^i, h]_{\Lambda^{\beta}} = -\overset{\alpha^i}{\rho_{2a}} D_{\xi_a}^{\beta} h \end{cases}$$

If $P^{\beta} = (C_{ab}^{d}\xi_{d}), \ \rho_{1} = (\overset{\alpha^{i}}{\rho_{1a}}) \ \text{and} \ \rho_{2} = (\overset{\alpha^{i}}{\rho_{2a}}) \ \text{then the dynamical system (41) can}$ be written in the matrix form:

$$(42) \quad \begin{pmatrix} D_t^{\beta}\xi_1\\ D_t^{\beta}\xi_2\\ D_t^{\beta}\xi_1 \end{pmatrix} = P^{\beta} \begin{pmatrix} D_{\xi_1}^{\beta}h\\ D_{\xi_2}^{\beta}h\\ D_{\xi_3}^{\beta}h \end{pmatrix} + \rho_1 \begin{pmatrix} D_{x_1}^{\alpha}h\\ D_{x_2}^{\alpha}h\\ D_{x_3}^{\alpha}h \end{pmatrix}, \begin{pmatrix} D_t^{\alpha}x^1\\ D_t^{\alpha}x^2\\ D_t^{\alpha}x^3 \end{pmatrix} = -\rho_2 \begin{pmatrix} D_{\xi_1}^{\beta}h\\ D_{\xi_2}^{\beta}h\\ D_{\xi_1}^{\beta}h \end{pmatrix}.$$

Proposition 5.1. Let the dual $\pi^* : E^* = R^3 \times (R^3)^* \to R^3$ of the vector bundle $\pi : E = R^3 \times R^3 \to R^3$ and $\alpha > 0, \beta > 0$. Let $\stackrel{\alpha}{\Lambda}$ defined by the matrix P^β and $\stackrel{\alpha}{\rho_1}, \stackrel{\alpha}{\rho_2}, h$ given by:

$$\begin{split} P^{\beta} &= \begin{pmatrix} 0 & -\xi_3 x^3 & \xi_2 x^2 \\ \xi_3 x^3 & 0 & -\xi_1 x^1 \\ -\xi_2 x^2 & \xi_1 x^1 & 0 \end{pmatrix} \ , \ \stackrel{\alpha}{\rho_1} &= \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & 0 \\ -x^2 & 0 & 0 \end{pmatrix} \\ \stackrel{\alpha}{\rho_2} &= \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -x^1 \\ 0 & x^1 & 0 \end{pmatrix} \ , \ h(x,\xi) &= (x^2)^{\alpha} (\xi_2)^{\beta} + (x^3)^{\alpha} (\xi_3)^{\beta}. \end{split}$$

The fractional dynamical system (41) on the fractional Leibniz algebroid $(R^3 \times R^3, P, \rho_1, \rho_2)$ associated to the function h is :

(43)
$$\begin{cases} D_t^{\beta} \xi_1 = \Gamma(1+\beta)(-\xi_3(x^2)^{\alpha}x^3 + \xi_2 x^2(x^3)^{\alpha}) + \\ +\Gamma(1+\alpha)(-x^3(\xi_2)^{\beta} + x^2(\xi_3)^{\beta}) \\ D_t^{\beta} \xi_2 = -\Gamma(1+\beta)x^1(x^3)^{\alpha} \xi_1, \\ D_t^{\beta} \xi_3 = \Gamma(1+\beta)x^1(x^2)^{\alpha} \xi_1 \\ D_t^{\alpha} x^1 = \Gamma(1+\beta)(x^2)^{\alpha} \\ D_t^{\alpha} x^2 = \Gamma(1+\beta)x^1(x^3)^{\alpha} \\ D_t^{\alpha} x^3 = -\Gamma(1+\beta)x^1(x^2)^{\alpha} \end{cases}$$

The fractional dynamical system (43) is the (α, β) - fractional dynamical system associated to fractional Maxwell - Bloch equations.

If $\alpha \to 1, \beta \to 1$, the fractional system (43) reduces to the Maxwell - Bloch equations (25) on the Leibniz algebroid $\pi : E = R^3 \times R^3 \to R^3$. Conclusion. The numerical integration of the fractional Maxwell-Bloch systems presented in this paper will be discussed in future papers.

References

- R. Abraham, J.E. Marsden, Foundations of Mechanics, Second Edition, Addison-Wesley, 1978.
- Gh.Ivan, M. Ivan, D. Opriş, Fractional dynamical systems on fractional Leibniz algebroids, Proc. Conf. of Diff. Geometry: Lagrange and Hamilton spaces. Sept. 3 - 8, 2007, Iaşi, Romania, to appear.
- [3] Gh. Ivan, D. Opriş, Dynamical systems on Leibniz algebroids, Diff. Geometry -Dynamical Systems, 8 (2006), 127-137.
- [4] J.E. Marsden, T. Raţiu, Introduction to Mechanics and Symmetry, Springer-Verlag 1994.
- [5] M. Puta, Maxwell Bloch equations with one control and stability problem, Bull. des Sciences Mathématiques, 124 (2000), 333 - 338.

Authors' address:

Mihai Ivan, Gheorghe Ivan and Dumitru Opriş West University of Timişoara, 4, B-dul V. Pârvan, 300223, Timişoara, Romania. E-mail: ivan@math.uvt.ro; miticaopris@yahoo.com