Clifford-Kähler manifolds

Ilie Burdujan

Abstract

We consider the Clifford-Kähler manifolds defined by means of a representation of the Clifford algebra with three generators, $\mathcal{C}_{3}=\mathcal{C} \ell_{03}$, on its (1,1)-tensor bundle, compatible with a Riemannian structure having a special group of holonomy. Such manifolds are necessarily Einstein. It is proved that its structural bundle is locally paralelizable if and only if the Ricci tensor vanishes identically.

M.S.C. 2000: 53C10, 53C55.

Key words: almost Cliffordian manifold, Clifford-Kähler manifold.

1 Introduction

A smooth 8n-dimensional real manifold M equipped with an action of the Clifford algebra $\mathcal{C} \ell_{03}$ on its tangent bundle is called an almost Cliffordian manifold.

A Clifford Kähler manifold is a Riemannian manifold ($M^{8 n}, g$), whose holonomy group $\operatorname{Hol}(g)$ is isomorphic to a subgroup of $O p(n) \cdot O p(1) \subset S O(8 n)$. Recall that the enlarged Clifford unitary group $O p(n) \cdot O p(1)$ may be presented as the group of \mathbb{R} linear transformations $T: \mathcal{O}^{n} \rightarrow \mathcal{O}^{n}$ (here $\mathcal{O}=\mathcal{C} \ell_{03}$) of the numerical n-dimensional (right) octonic space \mathcal{O}^{n} which have the form

$$
T: \xi \rightarrow \xi^{\prime}=A \xi q, \quad \xi, \xi^{\prime} \in \mathcal{O}^{n}
$$

where $A \in O p(n)$ is a Clifford unitary transformation (with respect to the quasiHermitian product $\eta \cdot \xi=\frac{1}{2} \sum_{\alpha}\left(\bar{\eta}^{\alpha} \xi^{\alpha}+\bar{\xi}^{\alpha} \eta^{\alpha}\right)$) and q is a unitary octon which multiplies on the right. Note that for any element $p \in \mathcal{C} \ell_{03}$ one has $T(\xi p)=(T \xi)\left(p^{\prime}\right)$ with $p^{\prime}=\bar{q} p q$; moreover, the Euclidean scalar product is preserved.

In this paper we shall study the Clifford Kähler manifold by using tensor calculus. In order to do this, it is rather convenient to define a Clifford-like manifold as being a manifold which admits a vector subbundle V of the bundle End $(T M)$ of the (1,1)tensors, having some special properties: V is 6 -dimensional as a vector bundle and admits an algebraic structure which is closely connected with Clifford algebra $\mathcal{C} \ell_{03}$.

In Section 2 we recall some notions and results on the Clifford algebra $\mathcal{C} \ell_{03}$. $\S 3$ is devoted to proving some formulae required in the last section for proving the main results of this paper.

[^0]Manifolds, mappings and geometric objects under consideration in this paper are supposed to be of class C^{∞}. Further, all manifold in use will be paracompact.

2 Clifford algebra $\mathcal{C} \ell_{03}$

Recall that $\mathcal{C} \ell_{03}$ denotes the Clifford algebra with three generators $\left\{e_{1}, e_{2}, e_{3}\right\}$. It is a real unital associative 8-dimensional algebra for which there exists a special basis $\left(e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right)$ such that

$$
\begin{array}{ll}
e_{0} e_{i}=e_{i} e_{0}=e_{i}, & i=0,1, \ldots, 7, \\
e_{i}^{2}=-e_{0}, e_{7}^{2}=e_{0}, & i=1,2, \ldots, 6, \\
e_{i} e_{j}+e_{j} e_{i}=0, & i \neq j, i, j=1,2, \ldots, 6, \quad i+j \neq 7, \\
e_{i} e_{j}=e_{j} e_{i}, & i=0,1, \ldots, 7, \quad i \neq j, \quad i+j=7, \\
e_{1} e_{2}=e_{4}, \quad e_{1} e_{3}=e_{5}, & e_{2} e_{3}=e_{6}, \quad e_{1} e_{6}=e_{7} .
\end{array}
$$

For our comfort, we denote $\mathcal{O}=\mathcal{C} \ell_{03}$ and name their elements octons. The before introduced basis $\mathcal{B}=\left(e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right)$ is called the canonical (or, natural) basis of \mathcal{O}. In [7], it was proved that the center of \mathcal{O} is $\mathcal{C}(\mathcal{O})=\mathbb{R} e_{0} \oplus \mathbb{R} e_{7}$. It must be remarked that $\mathcal{C}(\mathcal{O}) \simeq \mathcal{D}$ where \mathcal{D} denotes the real (associative and commutative) algebra of the so-called double numbers. Moreover, $\mathcal{O} \cong \mathbb{H} \otimes_{\mathbb{R}} \mathcal{D}$ because every element $a=a_{0} e_{0}+a_{1} e_{1}+\ldots+a_{7} e_{7} \in \mathcal{O}$ has the form

$$
\begin{equation*}
a=\left(a_{0} e_{0}+a_{7} e_{7}\right) e_{0}+\left(a_{1} e_{0}-a_{6} e_{7}\right) e_{1}+\left(a_{2} e_{0}+a_{5} e_{7}\right) e_{2}+\left(a_{3} e_{0}-a_{4} e_{7}\right) e_{3} \tag{2.1}
\end{equation*}
$$

consequently, \mathcal{O} is a left \mathcal{D}-module. The conjugation of \mathbb{H} suggests us to introduce a conjugation on \mathcal{O} by

$$
\bar{a}=\left(a_{0} e_{0}+a_{7} e_{7}\right) e_{0}-\left(a_{1} e_{0}-a_{6} e_{7}\right) e_{1}-\left(a_{2} e_{0}+a_{5} e_{7}\right) e_{2}-\left(a_{3} e_{0}-a_{4} e_{7}\right) e_{3}
$$

i.e.

$$
\begin{equation*}
\bar{a}=a_{0} e_{0}-a_{1} e_{1}-\ldots-a_{6} e_{6}+a_{7} e_{7} \tag{2.2}
\end{equation*}
$$

Since

$$
\begin{equation*}
a \bar{a}=\left(\sum_{i=0}^{7} a_{i}^{2}\right) e_{0}+\left(a_{0} a_{7}-a_{1} a_{6}+a_{2} a_{5}-a_{3} a_{4}\right) e_{7} \in \mathcal{D} \tag{2.3}
\end{equation*}
$$

the following two quadratic forms $h_{1}, h_{2}: \mathcal{O} \rightarrow \mathbb{R}$ are naturally defined by

$$
h_{1}(a)=\sum_{i=0}^{7} a_{i}^{2}, h_{2}(a)=a_{0} a_{7}-a_{1} a_{6}+a_{2} a_{5}-a_{3} a_{4}, \quad \forall a \in \mathcal{O}
$$

The linear group preserving both these quadratic forms is isomorphic to $\mathbf{O}(\mathbf{4}, \mathbf{R}) \times$ $\mathrm{O}(4, R)$.

The presence of a natural conjugation on \mathcal{O} suggests the possibility to define an (quasi-)inner product on it. We define now a quasi-inner product on \mathcal{O} by

$$
\begin{equation*}
\langle a, b\rangle=\frac{1}{2}(a \cdot \bar{b}+b \cdot \bar{a}) \in \mathcal{D}, \quad \forall a, b \in \mathcal{O} \tag{2.4}
\end{equation*}
$$

The set $G_{\mathcal{O}}=\mathcal{O} \backslash\left\{\mathbf{L}_{1} \cup \mathbf{L}_{2}\right\}$ is consisting only in regular elements and it is a group. The group $G_{\mathcal{O}}$ is the product of two subgroups, namely $G_{\mathcal{O}}=\mathcal{O}(1) \cdot \mathcal{D}^{*}$, where $\mathcal{O}(1)=\left\{a \in \mathcal{O} \mid a \cdot \bar{a}=e_{0}\right\}$ and \mathcal{D}^{*} is the set of all invertible elements from $\mathcal{C}(\mathcal{O}) \cong \mathcal{D}$ $\left(\mathcal{O}(1)\right.$ and \mathcal{D}^{*} are normal subgroups of $G_{\mathcal{O}}$ with $\left.\mathcal{O}(1) \cap \mathcal{D}^{*}=\left\{ \pm e_{0}, \pm e_{7}\right\}\right)$.

Moreover, the \mathcal{D}-module \mathcal{O}^{n} can be endowed with an quasi-inner product defined by

$$
\begin{align*}
& \langle p, q\rangle=\frac{1}{2} \sum_{i=1}^{n}\left(p_{i} \cdot \bar{q}_{i}+q_{i} \cdot \bar{p}_{i}\right) \in \mathcal{D} \\
& \quad \forall p=\left(p_{1}, p_{2}, \ldots, p_{n}\right), q=\left(q_{1}, q_{2}, \ldots, q_{n}\right) \in \mathcal{O}^{n} \tag{2.5}
\end{align*}
$$

As it is usual, we define the group of "isometries" $O p(n)$ as being the group consisting in all matrices $\sigma \in \mathcal{M}_{n}(\mathcal{O})$ such that

$$
\langle\sigma p, \sigma q\rangle=\langle p, q\rangle, \quad \forall p, q \in \mathcal{O}^{n} .
$$

It is easily to prove that $\mathcal{O}(1)$ can be identified, via an isomorphism, with $O p(1)$.
The Lie algebra \mathcal{O}^{-}associated to the associative algebra \mathcal{O} (by means of the usual bracket) is isomorphic to $s u(2) \oplus s u(2) \oplus \mathcal{D}^{-} \cong s p(1) \oplus s p(1) \oplus \mathcal{D}^{-}$.

It is proved in [3] that $G L_{n}(\mathcal{O})$ can be isomorphically identified with a subgroup of $G L(8 n, \mathbb{R})$, namely

$$
G L_{n}(\mathcal{O})=\left\{\tau \in G L(8 n, \mathbb{R}) \mid \tau F_{i}=F_{i} \tau, i=1,2, \ldots, 6\right\} ;
$$

here $F_{i}(i=1,2, \ldots, 6)$ is the matrix of linear transformation $\mathcal{O}^{n} \rightarrow \mathcal{O}^{n}, q=$ $\left(q_{1}, q_{2}, \ldots, q_{n}\right) \rightarrow q e_{i}=\left(q_{1} e_{i}, q_{2} e_{i}, \ldots, q_{n} e_{i}\right)$ where e_{i} is an element of canonical basis of $\mathcal{C} \ell_{0,3}$ in an admissible frame of \mathcal{O}^{n}. The Lie algebra $g l_{n}(\mathcal{O})$ of $G L_{n}(\mathcal{O})$ can be isomorphically identified with a subalgebra of $g l(8 n, \mathbb{R})$, namely

$$
g l_{n}(\mathcal{O})=\left\{\theta \in g l(8 n, \mathbb{R}) \mid \theta F_{i}=F_{i} \theta, i=1,2, \ldots, 6\right\}
$$

On the other hand, the Lie algebra g of $\mathcal{O} p_{1} \cdot G L_{n}(\mathcal{O})$ can be isomorphically identified with a subalgebra of $g l(8 n, \mathbb{R})$, namely

3 Almost Cliffordian manifolds

Let M be a real smooth manifold of dimension m, and let assume that there is a 6 -dimensional vector bundle V consisting of tensors of type $(1,1)$ over M such that in any coordinate neighborhood U of M, there exists a local basis $\left(F_{1}, F_{2}, \ldots, F_{6}\right)$ of V whose elements behave under the usual composition like the similar labelled elements of the natural basis of the Clifford algebra $\mathcal{C} \ell_{03}$.

Such a local basis $\left(F_{1}, F_{2}, \ldots, F_{6}\right)$ is called a canonical basis of the bundle V in U. Then the bundle V is called an almost Cliffordinan structure on M and (M, V)
is called an almost Cliffordian manifold. Thus, any almost Cliffordian manifold is necessarily of dimension $m=8 n$.

An almost Cliffordian structure on M is given by a reduction of the structural group of the principal frame bundle of M to $O p(n) \cdot O p(1)$. That is why the tensor fields $\left(F_{1}, F_{2}, \ldots, F_{6}\right)$ can be defined only locally. In the almost Cliffordian manifold (M, V) we take the intersecting coordinate neighborhoods U and U^{\prime} and let ($F_{1}, F_{2}, \ldots, F_{6}$) and $\left(F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{6}^{\prime}\right)$ be the canonical local bases of V in U and U^{\prime}, respectively. Then $F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{6}^{\prime}$ are linear combinations of $F_{1}, F_{2}, \ldots, F_{6}$ on $U \cap U^{\prime}$, that is

$$
\begin{equation*}
F_{i}^{\prime}=\sum_{j=1}^{6} s_{i j} F_{j}, \quad i=1,2, \ldots, 6 \tag{3.1}
\end{equation*}
$$

where $s_{i j}(i, j=1,2, \ldots, 6)$ are functions defined on $U \cap U^{\prime}$. The coefficients $s_{i j}$ appearing in (3.1) form an element $s_{U U^{\prime}}=\left(s_{i j}\right)$ of a proper subgroup, of dimension 6 , of the special orthogonal group $S O(6)$. Consequently, any almost Cliffordian manifold is orientable.

If there exists on (M, V) a global basis $\left(F_{1}, F_{2}, \ldots, F_{6}\right)$, then (M, V) is called an almost Clifford manifold; the basis $\left(F_{1}, F_{2}, \ldots, F_{6}\right)$ is named a global canonical basis for V.

Example 3.1. The Clifford module \mathcal{O}^{n} is naturally identified with $\mathbb{R}^{8 n}$. It supplies the simplest example of Clifford manifold. Indeed, if we consider the Cartesian coordinate map with the coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}, \ldots, x_{2 n}, \ldots, x_{7 n+1}, \ldots\right.$, $x_{8 n}$), then the standard almost Clifford structure on $\mathbb{R}^{8 n}$ is defined by means of the three anticommuting operators J_{1}, J_{2}, J_{3} defined by:

$$
\begin{aligned}
J_{1} \frac{\partial}{\partial x_{i}} & =\frac{\partial}{\partial x_{n+i}}, \quad J_{2} \frac{\partial}{\partial x_{i}} \\
J_{1} \frac{\partial}{\partial x_{n+i}} & =-\frac{\partial}{\partial x_{2 n+i}}, \quad J_{3} \frac{\partial}{\partial x_{i}}
\end{aligned}=\frac{\partial}{\partial x_{3 n+i}}, \quad J_{2} \frac{\partial}{\partial x_{n+i}}=-\frac{\partial}{\partial x_{4 n+i}}, \quad J_{3} \frac{\partial}{\partial x_{n+i}}=-\frac{\partial}{\partial x_{5 n+i}},
$$

Example 3.2. The tangent bundle of any quaternionic-like manifold endowed with a linear connection can be naturally endowed with an almost Cliffordian structure [5].

4 Connections on almost Cliffordian manifolds

An almost Cliffordian connection on the almost Cliffordian manifold (M, V) is a linear connection on M which preserves by parallel transport the vector bundle V. This
means that if Φ is a cross-section (local or global) of the bundle V, then $\nabla_{X} \Phi$ is also a cross-section (local or global, respectively) of V, X being an arbitrary vector field of M. The following result was proved in [5].

Proposition 4.1. The linear connection ∇ on the almost Cliffordian manifold (M, V) is an almost Cliffordian connection on M if and only if the covariant derivatives of the local canonical base are expressed as follows

$$
\left\{\begin{array}{l}
\nabla J_{1}=\eta_{4} \otimes J_{2}+\eta_{5} \otimes J_{3}-\eta_{2} \otimes J_{4}-\eta_{3} \otimes J_{5} \tag{4.1}\\
\nabla J_{2}=-\eta_{4} \otimes J_{1}+\eta_{6} \otimes J_{3}+\eta_{1} \otimes J_{4}-\eta_{3} \otimes J_{6} \\
\nabla J_{3}=-\eta_{5} \otimes J_{1}-\eta_{6} \otimes J_{2}+\eta_{1} \otimes J_{5}+\eta_{2} \otimes J_{6} \\
\nabla J_{4}=\eta_{2} \otimes J_{1}-\eta_{1} \otimes J_{2}+\eta_{6} \otimes J_{5}-\eta_{5} \otimes J_{6} \\
\nabla J_{5}=\eta_{3} \otimes J_{1}-\eta_{1} \otimes J_{3}-\eta_{6} \otimes J_{4}+\eta_{4} \otimes J_{6} \\
\nabla J_{6}=\eta_{3} \otimes J_{2}-\eta_{2} \otimes J_{3}+\eta_{5} \otimes J_{4}-\eta_{4} \otimes J_{5}
\end{array}\right.
$$

where $\eta_{1}, \eta_{2}, \ldots, \eta_{6}$ are locally 1-forms defined on the domain of $J_{1}, J_{2}, \ldots, J_{6}$.
Let $\eta_{1}, \eta_{2}, \ldots, \eta_{6}$ be the 1 -forms defined by the connection ∇ with respect to the canonical base $J_{1}, J_{2}, \ldots, J_{6}$. Then, using the relations (3.1) we get the following change formulae

$$
\eta_{a}^{\prime}=\sum_{b=1}^{6} s_{a b} \eta_{b}+\lambda_{a}, \quad a=1,2, \ldots, 6
$$

where λ_{a} are linear combinations of $s_{a b}$ and $d s_{a b}$.

Clifford Hermitian manifolds

The triple (M, g, V), where (M, V) is an almost Cliffordian manifold endowed with the Riemannian structure g, is called an almost Cliffordian Hermitian manifold or a metric Cliffordian manifold if for any canonical basis $J_{1}, J_{2}, \ldots, J_{6}$ of V in a coordinate neighborhood U, the identities

$$
g\left(J_{k} X, J_{k} Y\right)=g(X, Y) \quad \forall X, Y \in \mathcal{X}(M)
$$

hold. Since each $J_{i}(i=1,2, \ldots, 6)$ is almost Hermitian with respect to g, putting

$$
\begin{equation*}
\Phi_{i}(X, Y)=g\left(J_{i} X, Y\right), \quad \forall X, Y \in \mathcal{X}(M), \quad i=1,2, \ldots, 6, \tag{4.2}
\end{equation*}
$$

one gets 6 local 2-forms on U. However, by means of (3.1), it results that the 4 -form

$$
\begin{equation*}
\Omega=\Phi_{1} \wedge \Phi_{1}+\Phi_{2} \wedge \Phi_{2}+\Phi_{3} \wedge \Phi_{3}+\Phi_{4} \wedge \Phi_{4}+\Phi_{5} \wedge \Phi_{5}+\Phi_{6} \wedge \Phi_{6} \tag{4.3}
\end{equation*}
$$

is globally defined on M.
By using (3.1) we easily see that

$$
\begin{equation*}
\Lambda=J_{1} \otimes J_{1}+J_{2} \otimes J_{2}+J_{3} \otimes J_{3}+J_{4} \otimes J_{4}+J_{5} \otimes J_{5}+J_{6} \otimes J_{6} \tag{4.4}
\end{equation*}
$$

is also a global tensor field of type $(2,2)$ on M.
If the Levi-Civita-connection $\nabla=\nabla^{g}$ on (M, g, V) preserves the vector bundle V by parallel transport, then (M, g, V) is called a Clifford-Kähler manifold. Consequently, for any Clifford-Kähler manifold, the formulae (4.1) hold (with $\nabla=\nabla^{g}$).

Actually, a Riemannian manifold is a Clifford-Kähler manifold if and only if its holonomy group is a subgroup of $O p(n) \cdot O p(1)$. Then, one can prove the formulae

$$
\begin{equation*}
\nabla \Omega=0, \quad \nabla \Lambda=0 \tag{4.5}
\end{equation*}
$$

Conversely, if one of the equations (4.5) hold, then (M, g, V) is a Clifford-Kähler manifold. Thus we get the following result.

Theorem 4.2. An almost Clifford Hermitian manifold is a Clifford-Kähler manifold if and only if either $\nabla \Omega=0$ or $\nabla \Lambda=0$.

5 Some formulae

Let (M, V, g) be a Clifford-Kähler manifold with $\operatorname{dim} M=8 n$. In a coordinate neighborhood $\left(U, x^{h}\right)$ of M we denote by $g_{i j}$ the components of g and by J_{i}^{j} the components of $\stackrel{k}{J}$, with $k=1,2, \ldots, 6$ (here and in what follows we shall put the label of any element of a local basis in V above it, i.e. $(\stackrel{1}{J}, \stackrel{2}{J}, \ldots, \stackrel{6}{J})$ is a canonical local basis of V in U). Then formulae (4.1) become
where $\stackrel{i}{\eta}$ are the components of $\stackrel{i}{\eta}(i=1,2, \ldots, 6)$ in $\left(U, x^{h}\right)$.
Using Ricci formula, from (5.1) one gets:
where $K_{k j s}{ }^{h}$ are the components of the curvature tensor K of the Clifford-Kähler manifold (M, V, g) and $\stackrel{1}{\omega}, \stackrel{2}{\omega}, \ldots, \stackrel{6}{\omega}$ are defined by
and

$$
\begin{equation*}
\stackrel{k}{\omega}_{i j}=-\stackrel{k}{\omega} j i \quad \stackrel{k}{\omega}=\frac{1}{2} \stackrel{k}{\omega}_{i j} d x^{i} \wedge d x^{j}, \quad k=1,2, \ldots, 6 \tag{5.4}
\end{equation*}
$$

Thus $\stackrel{i}{\omega}, i=1,2, \ldots, 6$, are local 2 -forms defined on U.
From (5.2) we get
in a coordinate neighborhood $\left(U, x^{h}\right), X$ and Y being arbitrary vector fields in M. In another coordinate neighborhood $\left(U^{\prime}, x^{\prime h}\right)$ we get
where $\left(\stackrel{1}{J^{\prime}}, \stackrel{2}{J^{\prime}}, \ldots, \stackrel{6}{J^{\prime}}\right)$ form a canonical local basis of V in U^{\prime}. Since $S_{U, U^{\prime}}=\left(s_{i j}\right) \in$ $S O(6, \mathbb{R})$, by means of (3.1) we find in $U \cap U^{\prime}$

$$
\begin{equation*}
\stackrel{i}{\omega^{\prime}}=s_{i 1} \stackrel{1}{\omega}+s_{i 2} \stackrel{2}{\omega}+\ldots+s_{i 6} \stackrel{6}{\omega}, \quad i=1,2, \ldots, 6 . \tag{5.7}
\end{equation*}
$$

Using (5.7) we see that the local 4-form

$$
\begin{equation*}
\Sigma=\stackrel{1}{\omega} \wedge \stackrel{1}{\omega}+\stackrel{2}{\omega} \wedge \stackrel{2}{\omega}+\stackrel{3}{\omega} \wedge \stackrel{3}{\omega}+\stackrel{4}{\omega} \wedge \stackrel{4}{\omega}+\stackrel{5}{\omega} \wedge \stackrel{5}{\omega}+\stackrel{6}{\omega} \wedge \stackrel{6}{\omega} \tag{5.8}
\end{equation*}
$$

determines in M a global 4-form, which is denoted also by Σ. This Σ is, in some sense, the curvature tensor of a linear connection defined in the bundle V by means of (4.1). Now, using (5.3) we can prove

Lemma 5.1. Let (M, V, g) be a Clifford-Kähler $8 n$-dimensional real manifold. A necessary and sufficient condition for the 4 -form Σ to vanish on M, is that in each coordinate neighborhood U to exist a canonical local basis $(\stackrel{1}{J}, \stackrel{2}{J}, \ldots, \stackrel{6}{J})$ of V satisfying

$$
\nabla{ }^{i} J=0, \quad i=1,2, \ldots, 6
$$

i.e., that the bundle V be locally paralelizable.

Assuming that a Clifford-Kähler manifold satisfies the conditions stated in Lemma 5.1, we see that the functions $s_{i j}$ appearing in (3.1) are constant in a connected component of $U \cap U^{\prime}, U$ and U^{\prime} being coordinate neighborhoods, if we take $(\stackrel{1}{J}, \stackrel{2}{J}, \ldots, \stackrel{6}{J})$ such that $\nabla_{J}^{i}=0, i=1,2, \ldots, 6$ in each U. In a Clifford-Kähler manifold with M a simply connected manifold and the bundle V is locally paralelizable, then V has a canonical global basis.

Transvecting the 6 equations of (5.2) by $\stackrel{i}{J}_{h u}=\stackrel{i}{J}{ }_{h}^{t} g_{t u}(i=1,2, \ldots, 6)$ and changing indices, we find respectively
where $K_{k j i h}=K_{k j i}^{s} g_{s h}$ and $\stackrel{k}{J_{i h}}=\stackrel{k}{J}{ }_{i}^{s} g_{s h}(k=1,2, \ldots, 6)$ are the components of $\stackrel{k}{\Phi}$ defined by (4.2).

Transvecting the second equation (5.9) with $\stackrel{1}{J}^{i h}=g^{i p} \stackrel{1}{J}_{p}^{h}$ we get

But

$$
\begin{gathered}
-K_{k j t s} \stackrel{2^{t} J^{2} J^{s}}{J_{h}} g^{i p} \stackrel{1}{J}_{p}^{h}=K_{k j t s} \stackrel{2^{t} J_{i} g^{i p} \stackrel{4}{J}^{s}=-K_{k j t s} \stackrel{2}{J}_{i}^{t} g^{s p} \stackrel{4}{J}^{i}}{J_{p}}=-K_{k j t s} \stackrel{1^{t}}{J_{p}} g^{s p}= \\
=K_{k j t s} \stackrel{1}{J}_{p}^{s} g^{t p}=K_{k j t s} \stackrel{1}{J}
\end{gathered}
$$

so that

$$
2 K_{k j i h} \stackrel{1}{J}^{i h}=8 m \stackrel{1}{\omega}_{k j} \quad \Longleftrightarrow \quad \stackrel{1}{\omega}_{k j}=\frac{1}{4 m} K_{k j i h} \stackrel{1}{J}^{i h}
$$

Similarly we obtain

$$
\begin{equation*}
\stackrel{s}{\omega}_{k j}=\frac{1}{4 n} K_{k j i h} \stackrel{s}{J}^{i h} \quad s=1,2, \ldots, 6 \tag{5.10}
\end{equation*}
$$

Using (5.10) and identity $K_{k j t h}+K_{j t k h}+K_{t k j h}=0$, one gets

$$
\begin{equation*}
K_{k t s h} J^{i s}=-n \omega_{k h}^{i} \quad i=1,2, \ldots, 6 \tag{5.11}
\end{equation*}
$$

On the other hand, taking into account of (5.11) and transvecting succesively (5.9) with $g^{i j}$ it results:

Here, $K_{k h}=K_{k j i h} g^{j i}$ are the components of the Ricci tensor S of (M, V, g).
From these equations it follows that

$$
\begin{equation*}
K_{k h}=-2(n+2) \stackrel{i}{\omega}{ }_{k s} J_{h}^{s} \quad i=1,2, \ldots, 6 . \tag{5.13}
\end{equation*}
$$

Formulae (5.13) give

$$
\begin{equation*}
\stackrel{i}{\omega}_{k h}=\frac{1}{2(n+2)} K_{k s} \stackrel{i}{J}_{h}^{s} \quad i=1,2, \ldots, 6 \tag{5.14}
\end{equation*}
$$

Substituting (5.14) in (5.9) we get

Since $\stackrel{\omega}{\omega s}_{i}^{(i=1,2, \ldots, 6)}$ are all skew-symmetric, using (5.15) we find

$$
\begin{equation*}
K_{t s} \stackrel{i}{J_{k}^{t}} \stackrel{i}{J_{j}^{s}}=K_{k j} \quad i=1,2, \ldots, 6 \tag{5.16}
\end{equation*}
$$

Using (5.3) we get the identities
(5.1) gives

$$
\nabla_{k}\left(K_{j s} \stackrel{1}{J}_{i}^{s}\right)=\left(\nabla_{k} K_{j s}\right) \stackrel{1}{J_{i}^{s}}+K_{j s}\left(\stackrel{4}{\eta_{k} J_{i}^{s}}+\stackrel{5}{\eta_{k}} \stackrel{3}{J}_{i}^{s}-\stackrel{2}{\eta_{k}} \stackrel{4}{J}_{i}^{s}-\stackrel{3}{\eta_{k} J_{i}^{s}}\right)
$$

taking into account that $\left(\nabla_{k} K_{j s}\right) \stackrel{1}{J_{i}^{s}}+\left(\nabla_{k} K_{i s}\right) \stackrel{1}{J}{ }_{j}^{s}=0$, one gets

$$
\nabla_{k} K_{i j}=\left(\nabla_{k} K_{t s}\right) \stackrel{1}{J_{i}^{t} J_{j}^{s}}
$$

The following identity holds:

$$
\begin{equation*}
\nabla_{k} K_{i j}=\left(\nabla_{k} K_{t s}\right) \stackrel{p}{J_{i}^{t} J_{j}^{s} .} \quad p=1,2, \ldots, 6 . \tag{5.18}
\end{equation*}
$$

6 Some Theorems

Lemma 6.1. For any Clifford-Kähler manifold (M, V, g) the Ricci tensor is parallel.

Proof. By means of formulae (4.1) and (5.14) and the first identity (5.17) it follows

$$
\begin{equation*}
\left.\left.\left(\nabla_{k} K_{j s}\right){\stackrel{p}{ } J_{i}^{s}}_{J_{i}}+\left(\nabla_{j} K_{i s}\right)\right)_{J^{s}}^{J_{k}}+\left(\nabla_{i} K_{k s}\right)\right)_{j}^{J^{s}}=0, \quad p=1,2, \ldots, 6 \tag{6.1}
\end{equation*}
$$

Transvecting (4.1) with $\stackrel{1}{J}_{h}^{i}$ one gets

$$
\left(\nabla_{k} K_{j s}\right) \stackrel{1^{s} J_{i}{ }^{1} J_{h}}{ }+\left(\nabla_{j} K_{i s}\right){\stackrel{1}{J} J_{k}^{s} \stackrel{1}{1}^{i}}_{h}+\left(\nabla_{i} K_{k s}\right){\stackrel{1}{J^{s}}{ }_{j} J_{h}^{i}}_{J_{h}}=0
$$

i.e.

$$
-\nabla_{k} K_{j h}+\left(\nabla_{j} K_{t s}\right) \stackrel{1_{J}^{s}}{J_{k}{ }_{1} J_{h}^{t}}+\left(\nabla_{t} K_{k s}\right) \stackrel{1^{t}{ }^{t} \stackrel{1}{s}^{s} J_{j}}{ }=0
$$

Substituting in this equation $\left(\nabla_{j} K_{t s}\right) \stackrel{1}{J}_{h}^{t} \stackrel{1}{J}_{k}^{s}=\nabla_{j} K_{k h}$ (which is a consequence of (5.18)), one obtains

$$
-\nabla_{k} K_{j h}+\nabla_{j} K_{k h}=-\left(\nabla_{t} K_{k s}\right) \stackrel{1^{t}}{J_{h}} \stackrel{1}{J}_{j}^{s}
$$

If we substitute in this equation $\left.\nabla_{t} K_{k s}=\left(\nabla_{t} K_{b a}\right)\right)_{2^{b}}^{2^{2}} J_{s}$ (which is obtained in a similar way as (5.18)), then we find

$$
\nabla_{j} K_{k h}-\nabla_{k} K_{j h}=\left(\nabla_{c} K_{b a}\right) \stackrel{\left.1^{c}\right)_{h} \stackrel{2}{2}^{b} J_{k} \stackrel{4}{4}_{j}^{a}}{ }
$$

Similarly, we get

$$
\nabla_{j} K_{k h}-\nabla_{k} K_{j h}=-\left(\nabla_{c} K_{b a}\right) \stackrel{2}{J}_{h}^{c} 4^{b} J_{k}^{b} J_{j}^{a}=-\left(\nabla_{c} K_{b a}\right) \stackrel{4}{J}_{h}^{c} J^{b} J_{k} J_{j}^{a}
$$

Combining the last two equations gives

In particular, one gets
from which, by transvecting with $\stackrel{4}{J}_{J_{r}} \stackrel{1}{1}^{j} \stackrel{2}{2}^{i}{ }^{i}$ p it follows

Thus, by combining (6.2) and (6.3) it follows

$$
\left(\nabla_{c} K_{b a}\right) \stackrel{\left.1^{c}\right)_{k}^{c} \stackrel{2}{b}^{b} J_{j}^{a} J_{i}}{ }=0
$$

which implies

$$
\begin{equation*}
\nabla_{c} K_{b a}=0 \tag{6.4}
\end{equation*}
$$

Lemma 6.1 allow us to prove:
Theorem 6.2. Any Clifford-Kähler manifold is an Einstein space.
Theorem 6.3. The restricted holonomy group of a Clifford-Kähler 8m-dimensional manifold is a subgroup of $O p(m)$ if and only if the Ricci tensor vanishes identically.

Proof. From (5.10) and (5.14) we get

$$
\begin{equation*}
K_{k j i h} \stackrel{p^{i h}}{J}=\frac{4 m}{2(m+2)} K_{k s} \stackrel{p^{s}}{J} j, \quad p=1,2, \ldots, 6 \tag{6.5}
\end{equation*}
$$

If Ricci tensor vanish identically, then we obtain for successive covariant derivatives of the curvature tensor the identities

$$
\begin{align*}
& K_{k j i h}^{p^{i h}}=0, \quad p=1,2, \ldots, 6 \\
& \left(\nabla_{\ell} K_{k j i h}\right)^{p i h}=0, \quad p=1,2, \ldots, 6 \tag{6.6}\\
& \ldots \\
& \left(\nabla_{s} \ldots \nabla_{\ell} K_{k j i h}\right)^{p^{i h}}=0, \quad p=1,2, \ldots, 6
\end{align*}
$$

Therefore, by Ambrose-Singer theorem, the restricted holonomy group of (M, g, V) is a subgroup of $O p(m)$. Conversely, if the restricted holonomy group is a subgroup of $O p(m)$, then (6.6) hold and hence $K_{i j}=0$ (by taking account of (6.4)).

Taking into account of Lemma 5.1, we have:
Theorem 6.4. For a Clifford-Kähler manifold (M, V, g) the bundle V is locally paralelizable if and only if the Ricci tensor vanishes identically.

References

[1] D. V. Alekseevsky, S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Annali di Mat. Pura a Appl. 171 (1996), 205-273.
[2] D. V. Alekseevsky, S. Marchiafava, Hypercomplex structures on Quaternionic manifolds, New Developments in Diff. Geom., Proceed. of the Colloquium on Diff. Geom., Debrecen, Hungary, July 26-30, 1994, Kluwer Acad. Publ., 1-19.
[3] I. Burdujan, On Clifford-like manifolds, Studii şi Cercetări Ştiinţifice, Univ. Bacău 10 (2000), 84-102.
[4] I. Burdujan, On Clifford-like structures, Bull. Math. Soc. Sc. Math. Roumanie, T. 45(93), no. 3-4 (2002), 145-170.
[5] I. Burdujan, On almost Cliffordian manifolds, J. of Pure and Appl. Math., 13 (2003), 129-144.
[6] D. D. Joyce, Manifolds with many complex structures, Quart. J. Math. Oxford 46 (1995), 169-184.
[7] I. R. Porteous, Topological Geometry, Van Nostrand Reinhold Company, 1969.
Author's address:
Burdujan Ilie
Dept of Math. of U.A.S.V.M., Iaşi 700496
M. Sadoveanu Lane, 3, Romania.

E-mail: burdujan_ilie@yahoo.com

[^0]: Balkan Journal of Geometry and Its Applications, Vol.13, No.2, 2008, pp. 12-23.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2008.

