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Abstract. Variational principles on frame bundles, given by the first
and the second order Lagrangians invariant with respect to the struc-
ture group, are considered. Noether’s currents, associated with the corre-
sponding Lepage equivalents, are obtained. It is shown that for the first
and the second order invariant variational problems, the system of the
Euler-Lagrange equations for a frame field are equivalent with the lower
order system of equations.
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1 Introduction

Let FX be the frame bundle over an n-dimensional manifold X, and let JrFX be the
r-jet prolongation of FX. We shall consider JrFX with the canonical prolongation
of the right action of the general linear group Gln(R) on FX. For foundations of the
variational theory in fibered space we refer to [5], [7], [8], [10], [14], and the notions
related to the frame bundles and invariance can be found in [6], [9], [11], [12], [15]. In
this paper we study the consequences of Gln(R)-invariance for variational problems
on J1FX and J2FX. In particular, we discuss the corresponding Noether’s currents.
The generators of invariant transformations are the fundamental vector fields of the
Gln(R)-action. Then the Noether’s theorem gives us a conservation law for each one
of n2 linearly independent fundamental vector fields. Our main object is to study how
the Noether’s currents can be used to simplify the Euler-Lagrange equations for a
frame field. We show that in case of first order invariant Lagrangian, the system of
n2 second order Euler-Lagrange equations is equivalent with the system of the same
number of first order equations. Analogously, for the second order Lagrangian, the
system of fourth order Euler-Lagrange equations is equivalent to the system of third
order equations coming from the corresponding Noether’s currents.

For variational problems on principal fiber bundles there are several different con-
cepts of invariance. Castrillón, Garćıa, Ratiu and Shkoller [3], [4] consider invariance of
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the first order Lagrangians on principal fiber bundle P , which determine constrained
variational problems on the bundle C(P ) of connections of P . Muñoz and Rosado [13]
study first order variational problems, invariant under diffeomorphisms of the base
manifold (first order natural variational problems in the sense of Krupka [7]).

2 Invariant Lagrange structures

In this section we recall basic notions of the theory of invariant Lagrangians, and
introduce our notation. For a more complete discussion we refer to [2].

If Y is a fibered manifold over an n-dimensional manifold X, of dimension n + m,
we denote by JrY the r-jet prolongation of Y , and πr,s : JrY → JsY , πr : JrY → X
are the canonical jet projections. The r-jet of a section γ of Y at a point x ∈ X, is
denoted Jr

xγ; and x → Jrγ(x) = Jr
xγ is the r-jet prolongation of γ. Any fibered chart

(V, ψ), ψ = (xi, yσ), on Y , where 1 ≤ i ≤ n, 1 ≤ σ ≤ m, induces the associated charts
on X and on JrY , (U,ϕ), ϕ = (xi), and (V r, ψr), ψr = (xi, yσ, yσ

j1
, yσ

j1j2
, . . . , yσ

j1j2...jr
),

respectively; here V r = (πr,0)−1(V ), and U = π(V ). Recall that the formal derivative
operator is defined by

di =
∂

∂xi
+ yσ

i

∂

∂yσ
+ yσ

i1i

∂

∂yσ
i1

+ . . . + yσ
i1i2...iri

∂

∂yσ
i1i2...ir

.

For any open set W ⊂ Y , Ωr
0W denotes the ring of smooth functions on W r.

The Ωr
0W -module of differential q-forms on W r is denoted by Ωr

qW , and the exterior
algebra of forms on W r is denoted by ΩrW . The module of πr,0-horizontal (πr-
horizontal) q-forms is denoted by Ωr

q,Y W (Ωr
q,XW , respectively).

The horizontalization is the exterior algebra morphism h : ΩrW → Ωr+1W , de-
fined, in any fibered chart (V, ψ), ψ = (xi, yσ), by

hf = f ◦ πr+1,r, hdxi = dxi, hdyσ
j1j2...jp

= yσ
j1j2...jpkdxk,

where f : W r → R is a function, and 0 ≤ p ≤ r. A form η ∈ Ωr
kW is contact, if

hη = 0. For any fibered chart (V, ψ), ψ = (xi, yσ), the 1-forms

ωσ
j1j2...jp

= dyσ
j1j2...jp

− yσ
j1j2...jpkdxk,

where 0 ≤ p ≤ r − 1, are examples of contact 1-forms. η is πr-horizontal if and only
if (πr+1,r)∗η = hη.

A Lagrangian (of order r) for Y is any πr-horizontal n-form on some W r. A
differential form ρ ∈ Ωs

nW , where n = dim X, is called a Lepage form, if p1dρ is
πs+1,0-horizontal, i.e. p1dρ ∈ Ωs+1

n+1,Y W . A Lepage form ρ is a Lepage equivalent of a
Lagrangian λ ∈ Ωr

n,XW , if hρ = λ (possibly up to a jet projection).
In a fibered chart (V, ψ), ψ = (xi, yσ), denote

ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn, ωk = i∂/∂xkω0.

In this fibered chart, a Lagrangian, defined on V r = (πr,0)−1(V ), has an expression

(2.1) λ = Lω0,
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where L : V r → R is the Lagrange function associated with λ and (V, ψ). A pair
(Y, λ), consisting of a fibered manifold Y and a Lagrangian λ of order r for Y is called
a Lagrange structure (of order r).

For our purpose we give the following examples of Lepage equivalents.
(1) Every first order Lagrangian λ ∈ Ω1

n,XW has a unique Lepage equivalent
Θλ ∈ Ω1

n,Y W whose order of contactness is ≤ 1. If λ is expressed by (2.1), then

(2.2) Θλ = Lω0 +
∂L
∂yσ

i

ωσ ∧ ωi.

Θλ is the Poincaré-Cartan equivalent of λ, or the Poincaré-Cartan form.
(2) Formula

(2.3) Θλ = Lω0 +

(
∂L
∂yσ

i

− dp
∂L
∂yσ

pi

)
ωσ ∧ ωi +

∂L
∂yσ

ji

ωσ
j ∧ ωi

generalizes the Poincaré-Cartan form to second order Lagrangians λ ∈ Ω2
n,XW .

If ρ is a Lepage equivalent of a Lagrangian λ ∈ Ωr
n,XW , λ = Lω0, then by a direct

calculation p1dρ = Eσ(L)ωσ ∧ ω0, where

Eσ(L) =
r∑

k=0

(−1)kdi1di2 . . . dik

∂L
∂yσ

i1i2...ik

are the Euler-Lagrange expressions. The (n + 1)-form

Eλ = p1dρ

is the Euler-Lagrange form associated with λ.
By an automorphism of Y we mean a diffeomorphism α : W → Y , where W ⊂ Y

is an open set, such that there exists a diffeomorphism α0 : π(W ) → X such that
πα = α0π. If α0 exists, it is unique, and is called the π-projection of α. The r-jet
prolongation of α is an automorphism Jrα : W r → JrY of JrY , defined by

Jrα(Jr
xγ) = Jr

α0(x)(αγα−1
0 ).

If ξ is a π-projectable vector field on Y , and αt is the local one-parameter group
of ξ with projection α(0)t, we define the r-jet prolongation of ξ to be the vector field
Jrξ on JrY whose local one-parameter group is Jr

αt
. Thus,

Jrξ(Jr
xγ) =

{
d

dt
Jr

α(0)t(x)(αtγα−1
(0)t)

}

0

.

The chart expression for Jrξ can be found in [8] or [9].
We now compute the Lie derivative ∂Jrξλ. Choose to this purpose a Lepage equiv-

alent ρ of λ, and denote by s the order of ρ. Since λ = hρ, or, which is the same,
Jrγ∗λ = Jsγ∗ρ for all sections γ, we obtain

Jrγ∗∂Jrξλ = Jsγ∗∂Jsξρ = Jsγ∗(iJsξdρ + diJsξρ).

Omitting γ and using the Euler-Lagrange form we get
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∂Jrξλ = hiJs+1ξEλ + hdiJsξρ.

This is the differential first variation formula; the first term on the right is the Euler-
Lagrange term, and the second one is the boundary term.

An automorphism α : W → Y of Y is said to be an invariant transformation of a
form η ∈ Ωs

pW , if
Jsα∗η = η.

We say that a π-projectable vector field ξ is the generator of invariant transformations
of η, if

∂Jsξη = 0.

The following simple consequence of the first variation formula is known as the
Noether’s theorem. Let λ ∈ Ωr

n,XW be a Lagrangian, let ρ ∈ Ωs
nW be a Lepage

equivalent of λ, and let γ be an extremal. Then for any generator ξ of invariant
transformations of λ,

dJsγ∗iJsξρ = 0.

An (n− 1)-form iJsξρ is called the Noether’s current associated with a Lepage form
ρ and a vector field ξ.

3 Frame bundle and its second jet prolongation

Let X be an n-dimensional smooth manifold, and let µ : FX → X be the frame
bundle over X. FX has the structure of a right principal Gln(R)-bundle. Recall that
for every chart (U,ϕ), ϕ = (xi), on X, the associated chart on FX, (V, ψ), ψ = (xi, xi

j),
is defined by V = µ−1(U), and

xi(Ξ) = xi(µ(Ξ)), Ξj = xi
j(Ξ)

(
∂

∂xi

)

x

,

where Ξ ∈ V , x = µ(Ξ), and Ξ = (x, Ξj). We denote by yj
k the inverse matrix of xi

j .
The right action FX × Gln(R) 3 (Ξ, A) → RA(Ξ) = Ξ · A ∈ FX is given by the
equations

x̄i = xi ◦RA = xi, x̄i
j = xi

j ◦RA = xi
kak

j ,

where A = ai
j is an element of the group Gln(R).

For the formulation of variational principles on the frame bundles in this paper
we need the r-jet prolongations of FX, the manifolds JrFX, where r = 1, 2, 3, 4.
These manifolds are constructed from sections of the frame bundle FX in a standard
way. We introduce basic concepts for J2FX, more general description of JrFX is
available in [1]. To the charts (U,ϕ), and (V, ψ), introduced above, we associate a
chart (V 2, ψ2), ψ2 = (xi, xi

j , x
i
j,k, xi

j,kl), as follows. We denote by V 2 the set of 2-jets
of smooth frame fields U 3 x → γ(x) ∈ V ⊂ FX. If J2

xγ ∈ V 2, we set

xi(J2
xγ) = xi(x), xi

j(J
2
xγ) = xi

j(γ(x)),

xi
j,k(J2

xγ) = Dk(xi
jγϕ−1)(ϕ(x)), xi

j,kl(J
2
xγ) = DkDl(xi

jγϕ−1)(ϕ(x)).
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As usual, the 2-jets are equivalence classes of frame fields, which have the contact up
to the second order, and have the canonical jet prolongation x → J2γ(x) = J2

xγ of
any frame field γ. The general linear group acts on J2FX on the right by the formula
J2

xγ ·A = J2
x(γ ·A); the action is expressed by the equations

(3.1) x̄i = xi, x̄i
j = xi

kak
j , x̄i

j,k = xi
m,kam

j , x̄i
j,kl = xi

m,kla
m
j .

It is easy to determine the orbits of the action (J2
xγ, A) → J2

x(γ ·A). Denoting

Γi
kp = −ym

p xi
m,k, Γi

klp = −ym
p xi

m,kl,

we obtain Gln(R)-invariant functions on J2FX, and equations of Gln(R)-orbits

Γi
kp = ci

kp, Γi
klp = ci

klp,

where ci
kp, c

i
klp ∈ R are arbitrary numbers. The functions Γi

klp are symmetric in k, l.
We have the following result.

Lemma 1. Every Gln(R)-invariant function on J2FX depends on xi, Γi
kp, Γi

klp.

In other words Lemma 1 says that Gln(R)-invariant functions coincide with the
functions on the bundle of second order connections C2X = J2FX/Gln(R) over X.
From equations (3.1) we can obtain an extension of Lemma 1 to differential forms.

Lemma 2. A k-form η on J2FX is Gln(R)-invariant if and only if it has an
expression

η = ∆0 + yq1
r1

dxp1
q1
∧∆r1

p1
+ yq1

r1
yq2

r2
dxp1

q1
∧ dxp2

q2
∧∆r1r2

p1p2

+ . . . + yq1
r1

yq2
r2

. . . yqk
rk

dxp1
q1
∧ dxp2

q2
. . . ∧ dxpk

qk
∧∆r1r2...rk

p1p2...pk
,

where ∆0, ∆r1
p1

, ∆r1r2
p1p2

, . . . , ∆r1r2...rk
p1p2...pk

are arbitrary forms defined on C2X.

Let

ξ0 = ξi
j

(
∂

∂ai
j

)

e

be a vector belonging to the Lie algebra gln(R). Then the corresponding fundamental
vector field on J2FX is given by

(3.2) J2ξ = ξi
s

(
xt

i

∂

∂xt
s

+ xt
i,k

∂

∂xt
s,k

+ xt
i,kl

∂

∂xt
s,kl

)
.

4 Reduction of the Euler-Lagrange equations

Using the results of Section 3, we determine in this section Gln(R)-invariant La-
grangians on J1FX and J2FX. Then we give explicit expressions of the Euler-
Lagrange forms, and the Noether’s currents associated with the Lepage equivalents
Θλ of these Lagrangians. Then we discuss consequences of Gln(R)-invariance of these



16 J. Brajerč́ık

Lagrangians for the Euler-Lagrange equations. Our main tool is the first variation
formula (Section 2).

Let us denote by Ψλ,ξ the Noether’s current associated with the Lepage form Θλ

(2.2), (2.3) and a vector field ξ, and by ωi
j the contact forms defined by

ωi
j = dxi

j − xi
j,mdxm = dxi

j + xp
jΓ

i
mpdxm.

Lemma 3. Let λ ∈ Ω1
n,XFX be a Lagrangian expressed by λ = Lω0.

(a) λ is Gln(R)-invariant if and only if L depends on xi, Γi
kj only.

(b) The Euler-Lagrange form of a Gln(R)-invariant Lagrangian has an expression

Eλ = yj
l

(
−Γp

qi

∂L
∂Γp

ql

+ Γl
pq

∂L
∂Γi

pq

+
∂2L

∂xp∂Γi
pl

+(Γk
mpr + Γk

mqΓ
q
pr)

∂2L
∂Γk

mr∂Γi
pl

)
ωi

j ∧ ω0.

(c) If λ is Gln(R)-invariant, then the Noether’s current associated with the
Poincaré-Cartan form of λ and any fundamental vector field ξ is given by

(4.1) Ψλ,ξ = −ξm
j yj

l x
i
m

∂L
∂Γi

kl

ωk.

Let X be an n-dimensional manifold, let FX be the bundle of frames over X, and
let µ be the bundle projection. Suppose that we have a Lagrangian λ ∈ Ω1

n,XFX and
a µ-vertical vector field ξ on FX. Then in our standard notation

(4.2) ∂J1ξλ = iJ2ξEλ + hdiJ1ξΘλ,

where Θλ is the Poincaré-Cartan equivalent of λ.

Theorem 1. Let λ ∈ Ω1
n,XFX be a Gln(R)-invariant Lagrangian, let n ≥ 2, and

let γ be a section of FX. The following conditions are equivalent.
(a) γ satisfies the Euler-Lagrange equations,

Eλ ◦ J2γ = 0.

(b) For any chart (U,ϕ), ϕ = (xi), on X, and all j, k, there exist (n − 2)-forms
ηj

k such that

J1γ∗
(

yj
l x

i
k

∂L
∂Γi

ml

ωm − dηj
k

)
= 0.

Proof. By hypothesis, for any fundamental vector field ξ on FX, ∂J1ξλ = 0.
Consequently, since ξ is always µ-vertical, the first variation formula (4.2) reduces to

(4.3) iJ2ξEλ + hdΨλ,ξ = 0.
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We can write this identity in a chart (U,ϕ), ϕ = (xi), on X. Using (3.2) we have,
according to Lemma 3,

iJ2ξEλ = Ej
i (L)ξk

j xi
kω0,

where

Ej
i (L) =

(
−Γp

qi

∂L
∂Γp

ql

+ Γl
pq

∂L
∂Γi

pq

+
∂2L

∂xp∂Γi
pl

+ (Γk
mps + Γk

mqΓ
q
ps)

∂2L
∂Γk

ms∂Γi
pl

)
yj

l ,

and the Noether’s current Ψλ,ξ is given by (4.1). It is convenient to denote

ψj
m = yj

l x
i
m

∂L
∂Γi

kl

ωk.

Then Ψλ,ξ = −ξm
j ψj

m, and the first variation formula (4.3) can equivalently be written
in the form Ej

i (L)ξk
j xi

kω0− ξk
j hdψj

k = 0. But the numbers ξk
j ∈ R are arbitrary, so we

have

(4.4) Ej
i (L)xi

kω0 − hdψj
k = 0.

Suppose now that a section γ satisfies the Euler-Lagrange equations. Then the form
Ej

i (L)xi
kω0 vanishes along J2γ, so we have J2γ∗dψj

k = dJ2γ∗ψj
k = 0. Integrating we

can find an (n− 2)-form ηj
k on U such that

(4.5) J1γ∗ψj
k = dηj

k.

Conversely, if a section γ satisfies condition (4.5), then by (4.4), γ is necessarily an
extremal. 2

For second order Lagrangians on FX we have the following results.

Lemma 4. Let λ ∈ Ω2
n,XFX be a Lagrangian expressed by λ = Lω0.

(a) λ is Gln(R)-invariant if and only if L depends on xi, Γi
kj, Γi

klj only.
(b) The Euler-Lagrange form of a Gln(R)-invariant Lagrangian has an expression

Eλ = yj
l

(
−Γp

qi

∂L
∂Γp

ql

− Γp
qmi

∂L
∂Γp

qml

+ Γl
pq

∂L
∂Γi

pq

+ dp
∂L
∂Γi

pl

− Γl
pqm

∂L
∂Γi

pqm

−2Γl
pt

(
Γt

qm

∂L
∂Γi

pqm

+ dq
∂L

∂Γi
pqt

)
− dpdq

∂L
∂Γi

pql

)
dxi

j ∧ ω0.

(c) If λ is Gln(R)-invariant, then the Noether’s current associated with the Lepage
form (2.3) and any fundamental vector field ξ is given by

Ψλ,ξ = ξm
j yj

l x
i
m

(
− ∂L

∂Γi
kl

+ Γq
pi

∂L
∂Γq

pkl

+ Γl
pq

∂L
∂Γi

pkq

+ dp
∂L

∂Γi
pkl

)
ωk.

Theorem 2. Let λ ∈ Ω2
n,XFX be a Gln(R)-invariant Lagrangian, let n ≥ 2, and

let γ be a section of FX. The following conditions are equivalent.
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(a) γ satisfies the Euler-Lagrange equations,

Eλ ◦ J4γ = 0.

(b) For any chart (U,ϕ), ϕ = (xi), on X, and all j, k, there exist (n − 2)-forms
ηj

k such that

J3γ∗
(

yj
l x

i
k

(
∂L

∂Γi
ml

− Γq
pi

∂L
∂Γq

pml

− Γl
pq

∂L
∂Γi

pmq

− dp
∂L

∂Γi
pml

)
ωm − dηj

k

)
= 0.

Proof. The first variation formula for a second order Lagrangian λ has the form

(4.6) ∂J2ξλ = iJ4ξEλ + hdiJ3ξΘλ,

where Θλ is the Lepage equivalent of λ given by (2.3). Again, left hand side vanishes
and formula (4.6) reduces to

iJ4ξEλ + hdΨλ,ξ = 0,

where the forms Eλ and Ψλ,ξ are given by Lemma 4. The rest of the proof is analogous
to the Proof of Theorem 1. 2
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