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Abstract. In this paper we proof that the Holomorphic angle for compact
minimal surfaces in the sphere S5 with constant Contact angle and with
a parallel normal vector field must be constant.

M.S.C. 2000: 53C42, 53D10, 53D35.
Key words: contact angle, holomorphic angle, Clifford torus, parallel field.

1 Introduction

The notion of Kähler angle was introduced by Chern and Wolfson in [3] and [12]; it is
a fundamental invariant for minimal surfaces in complex manifolds. Using the tech-
nique of moving frames, Wolfson obtained equations for the Laplacian and Gaussian
curvature for an immersed minimal surface in CPn. Later, Kenmotsu in [7], Ohnita in
[10] and Ogata in [11] classified minimal surfaces with constant Gaussian curvature
and constant Kähler angle.
A few years ago, Li in [14] gave a counterexample to the conjecture of Bolton, Jensen
and Rigoli (see [2]), according to which a minimal immersion (non-holomorphic, non
anti-holomorphic, non totally real) of a two-sphere in CPn with constant Kähler angle
would have constant Gaussian curvature.
In [8] we introduced the notion of Contact angle, that can be considered as a new
geometric invariant useful to investigate the geometry of immersed surfaces in S3.
Geometrically, the Contact angle (β) is the complementary angle between the con-
tact distribution and the tangent space of the surface. Also in [8], we deduced formulas
for the Gaussian curvature and the Laplacian of an immersed minimal surface in S3,
and we gave a characterization of the Clifford Torus as the only minimal surface in
S3 with constant Contact angle.
We define α to be the angle given by cos α = 〈ie1, v〉, where e1 and v are defined in
section 2. The Holomorphic angle α is the analogue of the Kähler angle introduced
by Chern and Wolfson in [3].
Recently, in [9], we construct a family of minimal tori in S5 with constant Contact
and Holomorphic angle. These tori are parametrized by the following circle equation
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a2 +
(

b− cosβ

1 + sin2 β

)2

= 2
sin4 β

(1 + sin2 β)2
,(1.1)

where a and b are given in Section 3 (equation (3.7)). In particular, when a = 0
in (1.1), we recover the examples found by Kenmotsu, in [6]. These examples are
defined for 0 < β < π

2 . Also, when b = 0 in (1.1), we find a new family of minimal
tori in S5, and these tori are defined for π

4 < β < π
2 . Also, in [9], when β = π

2 , we
give an alternative proof of this classification of a Theorem from Blair in [1], and
Yamaguchi, Kon and Miyahara in [13] for Legendrian minimal surfaces in S5 with
constant Gaussian curvature.
In this paper, we will classify minimal surfaces in S5 with constant Contact angle
and with a parallel normal vector field. We suppose that e3 (in equation (3.1)) is a
parallel normal vector field, and we get the following

Theorem 1. The Holomorphic angle (0 < α < π
2 ) is constant for compact minimal

surfaces in S5 with constant Contact angle β and null principal curvatures a, b

Remark 1. The Theorem 1 implies a more general classification in [9] that gives a
family of minimal flat tori in S5 with constant Contact angle and constant Holomor-
phic angle

2 Contact Angle for Immersed Surfaces in S2n+1

Consider in Cn+1 the following objects:

• the Hermitian product: (z, w) =
∑n

j=0 zjw̄j ;

• the inner product: 〈z, w〉 = Re(z, w);

• the unit sphere: S2n+1 =
{
z ∈ Cn+1|(z, z) = 1

}
;

• the Reeb vector field in S2n+1, given by: ξ(z) = iz;

• the contact distribution in S2n+1, which is orthogonal to ξ:

∆z =
{
v ∈ TzS

2n+1|〈ξ, v〉 = 0
}
.

We observe that ∆ is invariant by the complex structure of Cn+1.
Let now S be an immersed orientable surface in S2n+1.

Definition 1. The Contact angle β is the complementary angle between the contact
distribution ∆ and the tangent space TS of the surface.

Let (e1, e2) be a local frame of TS, where e1 ∈ TS ∩ ∆. Then cos β = 〈ξ, e2〉.
Finally, let v be the unit vector in the direction of the orthogonal projection of e2 on
∆, defined by the following relation

e2 = sin βv + cosβξ.(2.1)
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3 Equations for Gaussian curvature and Laplacian
of a minimal surface in S5

In this section, we deduce the equations for the Gaussian curvature and for the Lapla-
cian of a minimal surface in S5 in terms of the Contact angle and the Holomorphic
angle. Consider the normal vector fields

e3 = i csc αe1 − cot αv

e4 = cot αe1 + i csc αv(3.1)
e5 = csc βξ − cot βe2

where β 6= 0, π and α 6= 0, π. We will call (ej)1≤ j≤5 an adapted frame.

Using (2.1) and (3.1), we get

v = sinβe2 − cos βe5, iv = sin αe4 − cos αe1(3.2)
ξ = cos βe2 + sin βe5

It follows from (3.1) and (3.2) that

ie1 = cos α sin βe2 + sin αe3 − cosα cosβe5(3.3)
ie2 = − cosβz − cos α sin βe1 + sin α sin βe4

Consider now the dual basis (θj) of (ej). The connection forms (θj
k) are given by

Dej = θk
j ek,

and the second fundamental form with respect to this frame are given by

IIj = θj
1θ

1 + θj
2θ

2; j = 3, ..., 5.

Using (3.3) and differentiating v and ξ on the surface S, we get

Dξ = − cos α sin βθ2e1 + cos α sin βθ1e2 + sin αθ1e3 + sin α sin βθ2e4

− cos α cos βθ1e5,(3.4)
Dv = (sin βθ1

2 − cosβθ1
5)e1 + cos β(dβ − θ2

5)e2 + (sin βθ3
2 − cosβθ3

5)e3

+(sin βθ2
4 − cosβθ4

5)e4 + sin β(dβ + θ5
2)e5.

Differentiating e3, e4 and e5, we have
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θ1
3 = −θ3

1

θ2
3 = sin β(dα + θ1

4)− cosβ sin αθ1

θ4
3 = csc βθ2

1 − cot α(θ3
1 + csc βθ4

2)
θ5
3 = cot βθ3

2 − csc β sin αθ1

θ1
4 = −dα− csc βθ3

2 + sin α cot βθ1

θ2
4 = −θ4

2

θ3
4 = csc βθ1

2 + cot α(θ3
1 + csc βθ4

2)
θ5
4 = cot βθ4

2 − sin αθ2

θ1
5 = − cos αθ2 − cot βθ1

2

θ2
5 = dβ + cos αθ1(3.5)

θ3
5 = − cot βθ3

2 + csc β sin αθ1

θ4
5 = − cot βθ4

2 + sin αθ2

The conditions of minimality and of symmetry are equivalent to the following equa-
tions:

θλ
1 ∧ θ1 + θλ

2 ∧ θ2 = 0 = θλ
1 ∧ θ2 − θλ

2 ∧ θ1.(3.6)

On the surface S, we consider

θ3
1 = aθ1 + bθ2

It follows from (3.6) that

θ3
1 = aθ1 + bθ2

θ3
2 = bθ1 − aθ2

θ4
1 = dα + (b csc β − sin α cot β)θ1 − a csc βθ2

θ4
2 = dα ◦ J − a csc βθ1 − (b csc β − sin α cot β)θ2(3.7)

θ5
1 = dβ ◦ J − cosαθ2

θ5
2 = −dβ − cos αθ1

where J is the complex structure of S is given by Je1 = e2 and Je2 = −e1. Moreover,
the normal connection forms are given by:

θ4
3 = − sec βdβ ◦ J − cot α csc βdα ◦ J + a cot α cot2 βθ1

+(b cot α cot2 β − cosα cot β csc β + 2 sec β cosα)θ2

θ5
3 = (b cot β − csc β sin α)θ1 − a cot βθ2(3.8)

θ5
4 = cot β(dα ◦ J)− a cot β csc βθ1 +

(−b csc β cot β + sin α(cot2 β − 1))θ2,

while the Gauss equation is equivalent to the equation:

dθ1
2 + θ1

k ∧ θk
2 = θ1 ∧ θ2.(3.9)

Therefore, using equations (3.7) and (3.9), we have
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K = 1− |∇β|2 − 2 cos αβ1 − cos2 α− (1 + csc2 β)(a2 + b2)
+2b sin α csc β cot β + 2 sin α cot βα1 − |∇α|2
+2a csc βα2 − 2b csc βα1 − sin2 α cot2 β

= 1− (1 + csc2β)(a2 + b2)− 2b csc β(α1 − sin α cot β) + 2a csc βα2(3.10)
−|∇β + cos αe1|2 − |∇α− sin α cot βe1|2

Using (3.5) and the complex structure of S, we get

θ1
2 = tan β(dβ ◦ J − 2 cos αθ2)(3.11)

Differentiating (3.11), we conclude that

dθ1
2 = (−(1 + tan2 β)|∇β|2 − tan β∆β − 2 cos α(1 + 2 tan2 β)β1

+2 tan β sinαα1 − 4 tan2 β cos2 α)θ1 ∧ θ2

where ∆ = tr∇2 is the Laplacian of S. The Gaussian curvature is therefore given by:

K = −(1 + tan2 β)|∇β|2 − tanβ∆β − 2 cos α(1 + 2 tan2 β)β1

+2 tan β sinαα1 − 4 tan2 β cos2 α.(3.12)

From (3.10) and (3.12), we obtain the following formula for the Laplacian of S:

tanβ∆β = (1 + csc2 β)(a2 + b2) + 2b csc β(α1 − sin α cot β)− 2a csc βα2

− tan2 β(|∇β + 2 cos αe1|2 − | cotβ∇α + sin α(1− cot2 β)e1|2)
+ sin2 α(1− tan2 β)(3.13)

4 Gauss-Codazzi-Ricci equations for a minimal sur-
face in S5 with constant Contact angle β

In this section, we will compute Gauss-Codazzi-Ricci equations for a minimal surface
in S5 with constant Contact angle β.
Using the connection form (3.7) and (3.8) in the Codazzi-Ricci equations, we have

dθ3
1 + θ3

2 ∧ θ2
1 + θ3

4 ∧ θ4
1 + θ3

5 ∧ θ5
1 = 0

This implies that

(b1 − a2) + (a2 + b2) cot α csc β cot2 β − a cot α(csc2 β + cot2 β)α2(4.1)
+b(cotα(csc2 β + cot2 β)α1 − cosα cot β(csc2 β + cot2 β − 3 sec2 β(1 + sin2 β)))
− cosα csc β(2(cot β − tan β)α1 − sin α(cot2 β − 3)) + cot α csc β|∇α|2 = 0

Replacing the following (3.8) in the Codazzi-Ricci equations

dθ3
2 + θ3

1 ∧ θ1
2 + θ3

4 ∧ θ4
2 + θ3

5 ∧ θ5
2 = 0

dθ4
1 + θ4

2 ∧ θ2
1 + θ4

3 ∧ θ3
1 + θ4

5 ∧ θ5
1 = 0

dθ5
3 + θ5

1 ∧ θ1
3 + θ5

2 ∧ θ2
3 + θ5

4 ∧ θ4
3 = 0
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We get

(a1 + b2) + b cot αα2 + a(cotαα1 + 6 tan β cosα)
−2 sec β cosαα2 = 0(4.2)

Using the connection form (3.8) in the Codazzi-Ricci equations

dθ4
2 + θ4

1 ∧ θ1
2 + θ4

3 ∧ θ3
2 + θ4

5 ∧ θ5
2 = 0

dθ5
4 + θ5

1 ∧ θ1
4 + θ5

2 ∧ θ2
4 + θ5

3 ∧ θ3
4 = 0

dθ4
3 + θ4

1 ∧ θ1
3 + θ4

2 ∧ θ2
3 + θ4

5 ∧ θ5
3 = 0

We have

(a2 − b1)− (a2 + b2) cot α sin β cot2 β + a cot αα2(4.3)
+b(−cotαα1 + 2 cos α(cotβ − 3 tan β)) + 2 cos α sin β(cotβ − tan β)α1

+sin α cos α sin β(5− cot2 β) + sin β∆α = 0

Codazzi-Ricci equations

dθ2
1 + θ2

3 ∧ θ3
1 + θ2

4 ∧ θ4
1 + θ2

5 ∧ θ5
1 = θ2 ∧ θ1

dθ5
1 + θ5

2 ∧ θ2
1 + θ5

3 ∧ θ3
1 + θ5

4 ∧ θ4
1 = 0

give the following equation

(a2 + b2)(1 + csc2 β) + 2b csc β(α1 − cot β sin α)− 2a csc βα2

+|∇α|2 + 2 sin α(tan β − cot β)α1 − 4 tan2 β cos2 α

− sin2 α(1− cot2 β) = 0(4.4)

The following Codazzi equation is automatically verified

dθ5
2 + θ5

1 ∧ θ1
2 + θ5

3 ∧ θ3
2 + θ5

4 ∧ θ4
2 = 0

5 Proof of the Theorem 1

In this section, we will give a proof of the theorem, using Gauss-Codazzi-Ricci
equations for a minimal surface in S5 with constant Contact angle and null principal
curvatures a, b.
Suppose that a, b are nulls and the Contact angle β is constant, then using the Codazzi
equation (4.1), we have

cos α(2(cot β − tan β)α1 − sin α(cot2 β − 3))− cot α|∇α|2 = 0(5.1)

On the other hand, Codazzi equation (4.3) with a, b nulls and constant Contact angle
implies

2 cos α(cotβ − tanβ)α1 + sin α cos α(5− cot2 β) + ∆α = 0(5.2)
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Using equations (5.1) and (5.2), we obtain a new Laplacian equation of α

∆α = − sin(2α)− cot α|∇α|2(5.3)

Now suppose that (0 < α < π
2 ). Using the Hopf’s Lemma, we get the Theorem 1. ¤
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