A characterization of minimal surfaces in S^{5} with parallel normal vector field

Rodrigo Ristow Montes

Abstract

In this paper we proof that the Holomorphic angle for compact minimal surfaces in the sphere S^{5} with constant Contact angle and with a parallel normal vector field must be constant.

M.S.C. 2000: 53C42, 53D10, 53D35.

Key words: contact angle, holomorphic angle, Clifford torus, parallel field.

1 Introduction

The notion of Kähler angle was introduced by Chern and Wolfson in [3] and [12]; it is a fundamental invariant for minimal surfaces in complex manifolds. Using the technique of moving frames, Wolfson obtained equations for the Laplacian and Gaussian curvature for an immersed minimal surface in $\mathbb{C P}^{n}$. Later, Kenmotsu in [7], Ohnita in [10] and Ogata in [11] classified minimal surfaces with constant Gaussian curvature and constant Kähler angle.
A few years ago, Li in [14] gave a counterexample to the conjecture of Bolton, Jensen and Rigoli (see [2]), according to which a minimal immersion (non-holomorphic, non anti-holomorphic, non totally real) of a two-sphere in $\mathbb{C P}^{n}$ with constant Kähler angle would have constant Gaussian curvature.
In [8] we introduced the notion of Contact angle, that can be considered as a new geometric invariant useful to investigate the geometry of immersed surfaces in S^{3}. Geometrically, the Contact angle (β) is the complementary angle between the contact distribution and the tangent space of the surface. Also in [8], we deduced formulas for the Gaussian curvature and the Laplacian of an immersed minimal surface in S^{3}, and we gave a characterization of the Clifford Torus as the only minimal surface in S^{3} with constant Contact angle.
We define α to be the angle given by $\cos \alpha=\left\langle i e_{1}, v\right\rangle$, where e_{1} and v are defined in section 2. The Holomorphic angle α is the analogue of the Kähler angle introduced by Chern and Wolfson in [3].
Recently, in [9], we construct a family of minimal tori in S^{5} with constant Contact and Holomorphic angle. These tori are parametrized by the following circle equation

[^0]\[

$$
\begin{equation*}
a^{2}+\left(b-\frac{\cos \beta}{1+\sin ^{2} \beta}\right)^{2}=2 \frac{\sin ^{4} \beta}{\left(1+\sin ^{2} \beta\right)^{2}} \tag{1.1}
\end{equation*}
$$

\]

where a and b are given in Section 3 (equation (3.7)). In particular, when $a=0$ in (1.1), we recover the examples found by Kenmotsu, in [6]. These examples are defined for $0<\beta<\frac{\pi}{2}$. Also, when $b=0$ in (1.1), we find a new family of minimal tori in S^{5}, and these tori are defined for $\frac{\pi}{4}<\beta<\frac{\pi}{2}$. Also, in [9], when $\beta=\frac{\pi}{2}$, we give an alternative proof of this classification of a Theorem from Blair in [1], and Yamaguchi, Kon and Miyahara in [13] for Legendrian minimal surfaces in S^{5} with constant Gaussian curvature.
In this paper, we will classify minimal surfaces in S^{5} with constant Contact angle and with a parallel normal vector field. We suppose that e_{3} (in equation (3.1)) is a parallel normal vector field, and we get the following

Theorem 1. The Holomorphic angle $\left(0<\alpha<\frac{\pi}{2}\right)$ is constant for compact minimal surfaces in S^{5} with constant Contact angle β and null principal curvatures a, b

Remark 1. The Theorem 1 implies a more general classification in [9] that gives a family of minimal flat tori in S^{5} with constant Contact angle and constant Holomorphic angle

2 Contact Angle for Immersed Surfaces in $S^{2 n+1}$

Consider in \mathbb{C}^{n+1} the following objects:

- the Hermitian product: $(z, w)=\sum_{j=0}^{n} z^{j} \bar{w}^{j} ;$
- the inner product: $\langle z, w\rangle=\operatorname{Re}(z, w)$;
- the unit sphere: $S^{2 n+1}=\left\{z \in \mathbb{C}^{n+1} \mid(z, z)=1\right\}$;
- the Reeb vector field in $S^{2 n+1}$, given by: $\xi(z)=i z$;
- the contact distribution in $S^{2 n+1}$, which is orthogonal to ξ :

$$
\Delta_{z}=\left\{v \in T_{z} S^{2 n+1} \mid\langle\xi, v\rangle=0\right\} .
$$

We observe that Δ is invariant by the complex structure of \mathbb{C}^{n+1}.
Let now S be an immersed orientable surface in $S^{2 n+1}$.
Definition 1. The Contact angle β is the complementary angle between the contact distribution Δ and the tangent space $T S$ of the surface.

Let $\left(e_{1}, e_{2}\right)$ be a local frame of $T S$, where $e_{1} \in T S \cap \Delta$. Then $\cos \beta=\left\langle\xi, e_{2}\right\rangle$. Finally, let v be the unit vector in the direction of the orthogonal projection of e_{2} on Δ, defined by the following relation

$$
\begin{equation*}
e_{2}=\sin \beta v+\cos \beta \xi \tag{2.1}
\end{equation*}
$$

3 Equations for Gaussian curvature and Laplacian of a minimal surface in S^{5}

In this section, we deduce the equations for the Gaussian curvature and for the Laplacian of a minimal surface in S^{5} in terms of the Contact angle and the Holomorphic angle. Consider the normal vector fields

$$
\begin{align*}
& e_{3}=i \csc \alpha e_{1}-\cot \alpha v \\
& e_{4}=\cot \alpha e_{1}+i \csc \alpha v \tag{3.1}\\
& e_{5}=\csc \beta \xi-\cot \beta e_{2}
\end{align*}
$$

where $\beta \neq 0, \pi$ and $\alpha \neq 0, \pi$. We will call $\left(e_{j}\right)_{1 \leq j \leq 5}$ an adapted frame.
Using (2.1) and (3.1), we get

$$
\begin{align*}
v=\sin \beta e_{2}-\cos \beta e_{5}, \quad i v & =\sin \alpha e_{4}-\cos \alpha e_{1} \tag{3.2}\\
\xi & =\cos \beta e_{2}+\sin \beta e_{5}
\end{align*}
$$

It follows from (3.1) and (3.2) that

$$
\begin{align*}
& i e_{1}=\cos \alpha \sin \beta e_{2}+\sin \alpha e_{3}-\cos \alpha \cos \beta e_{5} \tag{3.3}\\
& i e_{2}=-\cos \beta z-\cos \alpha \sin \beta e_{1}+\sin \alpha \sin \beta e_{4}
\end{align*}
$$

Consider now the dual basis $\left(\theta^{j}\right)$ of $\left(e_{j}\right)$. The connection forms $\left(\theta_{k}^{j}\right)$ are given by

$$
D e_{j}=\theta_{j}^{k} e_{k}
$$

and the second fundamental form with respect to this frame are given by

$$
I I^{j}=\theta_{1}^{j} \theta^{1}+\theta_{2}^{j} \theta^{2} ; \quad j=3, \ldots, 5 .
$$

Using (3.3) and differentiating v and ξ on the surface S, we get

$$
\begin{align*}
D \xi= & -\cos \alpha \sin \beta \theta^{2} e_{1}+\cos \alpha \sin \beta \theta^{1} e_{2}+\sin \alpha \theta^{1} e_{3}+\sin \alpha \sin \beta \theta^{2} e_{4} \\
& -\cos \alpha \cos \beta \theta^{1} e_{5} \tag{3.4}\\
D v= & \left(\sin \beta \theta_{2}^{1}-\cos \beta \theta_{5}^{1}\right) e_{1}+\cos \beta\left(d \beta-\theta_{5}^{2}\right) e_{2}+\left(\sin \beta \theta_{2}^{3}-\cos \beta \theta_{5}^{3}\right) e_{3} \\
& +\left(\sin \beta \theta_{4}^{2}-\cos \beta \theta_{5}^{4}\right) e_{4}+\sin \beta\left(d \beta+\theta_{2}^{5}\right) e_{5}
\end{align*}
$$

Differentiating e_{3}, e_{4} and e_{5}, we have

$$
\begin{aligned}
\theta_{3}^{1} & =-\theta_{1}^{3} \\
\theta_{3}^{2} & =\sin \beta\left(d \alpha+\theta_{4}^{1}\right)-\cos \beta \sin \alpha \theta^{1} \\
\theta_{3}^{4} & =\csc \beta \theta_{1}^{2}-\cot \alpha\left(\theta_{1}^{3}+\csc \beta \theta_{2}^{4}\right) \\
\theta_{3}^{5} & =\cot \beta \theta_{2}^{3}-\csc \beta \sin \alpha \theta^{1} \\
\theta_{4}^{1} & =-d \alpha-\csc \beta \theta_{2}^{3}+\sin \alpha \cot \beta \theta^{1} \\
\theta_{4}^{2} & =-\theta_{2}^{4} \\
\theta_{4}^{3} & =\csc \beta \theta_{2}^{1}+\cot \alpha\left(\theta_{1}^{3}+\csc \beta \theta_{2}^{4}\right) \\
\theta_{4}^{5} & =\cot \beta \theta_{2}^{4}-\sin \alpha \theta^{2} \\
\theta_{5}^{1} & =-\cos \alpha \theta^{2}-\cot \beta \theta_{2}^{1} \\
\theta_{5}^{2} & =d \beta+\cos \alpha \theta^{1} \\
\theta_{5}^{3} & =-\cot \beta \theta_{2}^{3}+\csc \beta \sin \alpha \theta^{1} \\
\theta_{5}^{4} & =-\cot \beta \theta_{2}^{4}+\sin \alpha \theta^{2}
\end{aligned}
$$

The conditions of minimality and of symmetry are equivalent to the following equations:

$$
\begin{equation*}
\theta_{1}^{\lambda} \wedge \theta^{1}+\theta_{2}^{\lambda} \wedge \theta^{2}=0=\theta_{1}^{\lambda} \wedge \theta^{2}-\theta_{2}^{\lambda} \wedge \theta^{1} \tag{3.6}
\end{equation*}
$$

On the surface S, we consider

$$
\theta_{1}^{3}=a \theta^{1}+b \theta^{2}
$$

It follows from (3.6) that

$$
\begin{align*}
\theta_{1}^{3} & =a \theta^{1}+b \theta^{2} \\
\theta_{2}^{3} & =b \theta^{1}-a \theta^{2} \\
\theta_{1}^{4} & =d \alpha+(b \csc \beta-\sin \alpha \cot \beta) \theta^{1}-a \csc \beta \theta^{2} \\
\theta_{2}^{4} & =d \alpha \circ J-a \csc \beta \theta^{1}-(b \csc \beta-\sin \alpha \cot \beta) \theta^{2} \tag{3.7}\\
\theta_{1}^{5} & =d \beta \circ J-\cos \alpha \theta^{2} \\
\theta_{2}^{5} & =-d \beta-\cos \alpha \theta^{1}
\end{align*}
$$

where J is the complex structure of S is given by $J e_{1}=e_{2}$ and $J e_{2}=-e_{1}$. Moreover, the normal connection forms are given by:

$$
\begin{align*}
\theta_{3}^{4}= & -\sec \beta d \beta \circ J-\cot \alpha \csc \beta d \alpha \circ J+a \cot \alpha \cot ^{2} \beta \theta^{1} \\
& +\left(b \cot \alpha \cot ^{2} \beta-\cos \alpha \cot \beta \csc \beta+2 \sec \beta \cos \alpha\right) \theta^{2} \\
\theta_{3}^{5}= & (b \cot \beta-\csc \beta \sin \alpha) \theta^{1}-a \cot \beta \theta^{2} \tag{3.8}\\
\theta_{4}^{5}= & \cot \beta(d \alpha \circ J)-a \cot \beta \csc \beta \theta^{1}+ \\
& \left(-b \csc \beta \cot \beta+\sin \alpha\left(\cot ^{2} \beta-1\right) \theta^{2}\right.
\end{align*}
$$

while the Gauss equation is equivalent to the equation:

$$
\begin{equation*}
d \theta_{2}^{1}+\theta_{k}^{1} \wedge \theta_{2}^{k}=\theta^{1} \wedge \theta^{2} \tag{3.9}
\end{equation*}
$$

Therefore, using equations (3.7) and (3.9), we have

$$
\begin{aligned}
K= & 1-|\nabla \beta|^{2}-2 \cos \alpha \beta_{1}-\cos ^{2} \alpha-\left(1+\csc ^{2} \beta\right)\left(a^{2}+b^{2}\right) \\
& +2 b \sin \alpha \csc \beta \cot \beta+2 \sin \alpha \cot \beta \alpha_{1}-|\nabla \alpha|^{2} \\
& +2 a \csc \beta \alpha_{2}-2 b \csc \beta \alpha_{1}-\sin ^{2} \alpha \cot ^{2} \beta \\
& =1-\left(1+\csc ^{2} \beta\right)\left(a^{2}+b^{2}\right)-2 b \csc \beta\left(\alpha_{1}-\sin \alpha \cot \beta\right)+2 a \csc \beta \alpha_{2} \\
& -\left|\nabla \beta+\cos \alpha e_{1}\right|^{2}-\left|\nabla \alpha-\sin \alpha \cot \beta e_{1}\right|^{2}
\end{aligned}
$$

Using (3.5) and the complex structure of S, we get

$$
\begin{equation*}
\theta_{2}^{1}=\tan \beta\left(d \beta \circ J-2 \cos \alpha \theta^{2}\right) \tag{3.11}
\end{equation*}
$$

Differentiating (3.11), we conclude that

$$
\begin{aligned}
d \theta_{2}^{1}= & \left(-\left(1+\tan ^{2} \beta\right)|\nabla \beta|^{2}-\tan \beta \Delta \beta-2 \cos \alpha\left(1+2 \tan ^{2} \beta\right) \beta_{1}\right. \\
& \left.+2 \tan \beta \sin \alpha \alpha_{1}-4 \tan ^{2} \beta \cos ^{2} \alpha\right) \theta^{1} \wedge \theta^{2}
\end{aligned}
$$

where $\Delta=\operatorname{tr} \nabla^{2}$ is the Laplacian of S. The Gaussian curvature is therefore given by:

$$
\begin{align*}
K= & -\left(1+\tan ^{2} \beta\right)|\nabla \beta|^{2}-\tan \beta \Delta \beta-2 \cos \alpha\left(1+2 \tan ^{2} \beta\right) \beta_{1} \\
& +2 \tan \beta \sin \alpha \alpha_{1}-4 \tan ^{2} \beta \cos ^{2} \alpha . \tag{3.12}
\end{align*}
$$

From (3.10) and (3.12), we obtain the following formula for the Laplacian of S :

$$
\begin{aligned}
\tan \beta \Delta \beta= & \left(1+\csc ^{2} \beta\right)\left(a^{2}+b^{2}\right)+2 b \csc \beta\left(\alpha_{1}-\sin \alpha \cot \beta\right)-2 a \csc \beta \alpha_{2} \\
& -\tan ^{2} \beta\left(\left|\nabla \beta+2 \cos \alpha e_{1}\right|^{2}-\left|\cot \beta \nabla \alpha+\sin \alpha\left(1-\cot ^{2} \beta\right) e_{1}\right|^{2}\right) \\
& +\sin ^{2} \alpha\left(1-\tan ^{2} \beta\right)
\end{aligned}
$$

4 Gauss-Codazzi-Ricci equations for a minimal surface in S^{5} with constant Contact angle β

In this section, we will compute Gauss-Codazzi-Ricci equations for a minimal surface in S^{5} with constant Contact angle β.
Using the connection form (3.7) and (3.8) in the Codazzi-Ricci equations, we have

$$
d \theta_{1}^{3}+\theta_{2}^{3} \wedge \theta_{1}^{2}+\theta_{4}^{3} \wedge \theta_{1}^{4}+\theta_{5}^{3} \wedge \theta_{1}^{5}=0
$$

This implies that
(4.1) $\left(b_{1}-a_{2}\right)+\left(a^{2}+b^{2}\right) \cot \alpha \csc \beta \cot ^{2} \beta-a \cot \alpha\left(\csc ^{2} \beta+\cot ^{2} \beta\right) \alpha_{2}$

$$
\begin{aligned}
& +b\left(\cot \alpha\left(\csc ^{2} \beta+\cot ^{2} \beta\right) \alpha_{1}-\cos \alpha \cot \beta\left(\csc ^{2} \beta+\cot ^{2} \beta-3 \sec ^{2} \beta\left(1+\sin ^{2} \beta\right)\right)\right) \\
& -\cos \alpha \csc \beta\left(2(\cot \beta-\tan \beta) \alpha_{1}-\sin \alpha\left(\cot ^{2} \beta-3\right)\right)+\cot \alpha \csc \beta|\nabla \alpha|^{2}=0
\end{aligned}
$$

Replacing the following (3.8) in the Codazzi-Ricci equations

$$
\begin{aligned}
& d \theta_{2}^{3}+\theta_{1}^{3} \wedge \theta_{2}^{1}+\theta_{4}^{3} \wedge \theta_{2}^{4}+\theta_{5}^{3} \wedge \theta_{2}^{5}=0 \\
& d \theta_{1}^{4}+\theta_{2}^{4} \wedge \theta_{1}^{2}+\theta_{3}^{4} \wedge \theta_{1}^{3}+\theta_{5}^{4} \wedge \theta_{1}^{5}=0 \\
& d \theta_{3}^{5}+\theta_{1}^{5} \wedge \theta_{3}^{1}+\theta_{2}^{5} \wedge \theta_{3}^{2}+\theta_{4}^{5} \wedge \theta_{3}^{4}=0
\end{aligned}
$$

We get

$$
\begin{align*}
& \left(a_{1}+b_{2}\right)+b \cot \alpha \alpha_{2}+a\left(\cot \alpha \alpha_{1}+6 \tan \beta \cos \alpha\right) \\
& -2 \sec \beta \cos \alpha \alpha_{2}=0 \tag{4.2}
\end{align*}
$$

Using the connection form (3.8) in the Codazzi-Ricci equations

$$
\begin{aligned}
d \theta_{2}^{4}+\theta_{1}^{4} \wedge \theta_{2}^{1}+\theta_{3}^{4} \wedge \theta_{2}^{3}+\theta_{5}^{4} \wedge \theta_{2}^{5} & =0 \\
d \theta_{4}^{5}+\theta_{1}^{5} \wedge \theta_{4}^{1}+\theta_{2}^{5} \wedge \theta_{4}^{2}+\theta_{3}^{5} \wedge \theta_{4}^{3} & =0 \\
d \theta_{3}^{4}+\theta_{1}^{4} \wedge \theta_{3}^{1}+\theta_{2}^{4} \wedge \theta_{3}^{2}+\theta_{5}^{4} \wedge \theta_{3}^{5} & =0
\end{aligned}
$$

We have

$$
\begin{align*}
& \left(a_{2}-b_{1}\right)-\left(a^{2}+b^{2}\right) \cot \alpha \sin \beta \cot ^{2} \beta+a \cot \alpha \alpha_{2} \tag{4.3}\\
& +b\left(-\cot \alpha \alpha_{1}+2 \cos \alpha(\cot \beta-3 \tan \beta)\right)+2 \cos \alpha \sin \beta(\cot \beta-\tan \beta) \alpha_{1} \\
& +\sin \alpha \cos \alpha \sin \beta\left(5-\cot ^{2} \beta\right)+\sin \beta \Delta \alpha=0
\end{align*}
$$

Codazzi-Ricci equations

$$
\begin{aligned}
d \theta_{1}^{2}+\theta_{3}^{2} \wedge \theta_{1}^{3}+\theta_{4}^{2} \wedge \theta_{1}^{4}+\theta_{5}^{2} \wedge \theta_{1}^{5} & =\theta^{2} \wedge \theta^{1} \\
d \theta_{1}^{5}+\theta_{2}^{5} \wedge \theta_{1}^{2}+\theta_{3}^{5} \wedge \theta_{1}^{3}+\theta_{4}^{5} \wedge \theta_{1}^{4} & =0
\end{aligned}
$$

give the following equation

$$
\begin{align*}
& \left(a^{2}+b^{2}\right)\left(1+\csc ^{2} \beta\right)+2 b \csc \beta\left(\alpha_{1}-\cot \beta \sin \alpha\right)-2 a \csc \beta \alpha_{2} \\
& +|\nabla \alpha|^{2}+2 \sin \alpha(\tan \beta-\cot \beta) \alpha_{1}-4 \tan ^{2} \beta \cos ^{2} \alpha \\
& -\sin ^{2} \alpha\left(1-\cot ^{2} \beta\right)=0 \tag{4.4}
\end{align*}
$$

The following Codazzi equation is automatically verified

$$
d \theta_{2}^{5}+\theta_{1}^{5} \wedge \theta_{2}^{1}+\theta_{3}^{5} \wedge \theta_{2}^{3}+\theta_{4}^{5} \wedge \theta_{2}^{4}=0
$$

5 Proof of the Theorem 1

In this section, we will give a proof of the theorem, using Gauss-Codazzi-Ricci equations for a minimal surface in S^{5} with constant Contact angle and null principal curvatures a, b.
Suppose that a, b are nulls and the Contact angle β is constant, then using the Codazzi equation (4.1), we have

$$
\begin{equation*}
\cos \alpha\left(2(\cot \beta-\tan \beta) \alpha_{1}-\sin \alpha\left(\cot ^{2} \beta-3\right)\right)-\cot \alpha|\nabla \alpha|^{2}=0 \tag{5.1}
\end{equation*}
$$

On the other hand, Codazzi equation (4.3) with a, b nulls and constant Contact angle implies

$$
\begin{equation*}
2 \cos \alpha(\cot \beta-\tan \beta) \alpha_{1}+\sin \alpha \cos \alpha\left(5-\cot ^{2} \beta\right)+\Delta \alpha=0 \tag{5.2}
\end{equation*}
$$

Using equations (5.1) and (5.2), we obtain a new Laplacian equation of α

$$
\begin{equation*}
\Delta \alpha=-\sin (2 \alpha)-\cot \alpha|\nabla \alpha|^{2} \tag{5.3}
\end{equation*}
$$

Now suppose that $\left(0<\alpha<\frac{\pi}{2}\right)$. Using the Hopf's Lemma, we get the Theorem 1.
Acknowledgement: I want to express my sincere thanks to department of mathematics at Washington University in Saint Louis for the hospitality during my PostDoc. Also, I want to thanks the brasilian agency CNPq for the financial support.

References

[1] D. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Berlin-Heidelberg-New York, Springer 1976.
[2] J. Bolton, G.R. Jensen , M. Rigoli, L.M. Woodward, On conformal minimal immersions of S^{2} into $\mathbb{C P}^{n}$, Math. Ann. 279 (1988), 599-620.
[3] S.S. Chern and J.G. Wolfson, Minimal surfaces by moving frames, American J. Math. 105 (1983), 59-83.
[4] J. Eschenburg, I.V. Guadalupe and R. Tribuzy, The fundamental equations of minimal surfaces in $\mathbb{C P}^{2}$, Math Ann. 270 (1985), 571-598.
[5] K. Kenmotsu, On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature I,II, Tohoku Math. J. 25 (1973), 469-479, Tohoku Math. J. 27 (1975), 291-301.
[6] K. Kenmotsu, On a parametrization of minimal immersions R^{2} into S^{5}, Tohoku Math. J. 27 (1975), 83-90.
[7] K. Kenmotsu, On minimal immersion of R^{2} into $C P^{n}$, J. Math Soc. Japan 37 (1985), 665-682.
[8] R.R. Montes and J.A. Verderesi, A new characterization of the Clifford Torus, Report Ime-Usp, July 2002.
[9] R.R. Montes and J.A. Verderesi, Contact Angle for Immersed Surfaces in $S^{2 n+1}$, to appear in Differential Geometry and its Applications, 2007.
[10] Y. Ohnita , Minimal surfaces with constant curvature and Kähler angle in complex spaces forms, Tsukuba J. Math 13 (1989), 191-207.
[11] T. Ogata, Curvature pinching theorem for minimal surfaces with constant Kähler angle in complex projective spaces, Tohoku Math J. 43 (1991), 361-374.
[12] J.G. Wolfson, Minimal surfaces in complex manifolds, Ph.D. Thesis, University of California Berkeley, 1982.
[13] S. Yamaguchi, M. Kon, Y. Miyahara, A theorem on C-totally real minimal surface, Proc. American Math. Soc. 54 (1976), 276-280.
[14] Z. Li , Counterexamples to the conjecture on minimal S^{2} into $C P^{n}$ with constant Kähler angle, Manuscripta math. 88 (1995), 417-431.

Author's address:
Rodrigo Ristow Montes
Departamento de Matemática, Universidade Federal da Paraíba
BR-58.051-900 João Pessoa, P.B., Brazil.
email: ristow@mat.ufpb.br, ristow@math.wustl.edu

[^0]: Balkan Journal of Geometry and Its Applications, Vol.12, No.1, 2007, pp. 100-106.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2007.

