Almost Kenmotsu f-manifolds

Maria Falcitelli and Anna Maria Pastore

Abstract. A class of manifolds which admit an f-structure with sdimensional parallelizable kernel is introduced and studied. Such manifolds are called almost Kenmotsu f.pk-manifolds. If s = 1, one obtains almost Kenmotsu manifolds and, if s = 2, they carry a locally conformal almost Kähler structure. Several foliations canonically associated with an almost Kenmotsu f.pk-manifold are studied. Locally conformal almost Kenmotsu f.pk-manifolds are characterized. If $s \ge 2$, they set up a class which is disjoint from that of locally conformal almost C-manifolds.

M.S.C. 2000: 53C15, 53D15, 53C25

Key words: *f*-structure, almost Kenmotsu manifold, almost Kähler manifold, conformal change of an *f*-structure.

Introduction

An f-structure on a C^{∞} m-dimensional manifold M is defined by a non-vanishing tensor field φ of type (1,1) which satisfies $\varphi^3 + \varphi = 0$ and has constant rank r. It is known that, in this case, r is even, r = 2n. Moreover, TM splits into two complementary subbundles $Im \varphi$ and $Ker \varphi$ and the restriction of φ to $Im \varphi$ determines a complex structure on such subbundle. It is also known that the existence of an f-structure on M is equivalent to a reduction of the structure group to $U(n) \times O(s)$, where s = m - 2n ([2]). An interesting case occurs when the subbundle $Ker \varphi$ is parallelizable, for which the reduced structure group is $U(n) \times \{I_s\}$, and we have an f-structure with parallelizable kernel, briefly denoted by f.pk-structure, the respective manifold being called an f.pk-manifold or a globally framed manifold ([8]). Then, there exists a global frame $\{\xi_i\}$ for the subbundle $Ker \varphi$ with dual 1-forms η^i , $1 \le i \le s$, satisfying $\varphi^2 = -I + \sum_{i=1}^s \eta^i \otimes \xi_i$. It follows that $\varphi \xi_i = 0$, $\eta^i \circ \varphi = 0$. From now on we will omit the sum symbol for repeated indexes varying in $\{1, \ldots, s\}$. It is well known that one can consider compatible Riemannian metrics q on M such that for any tangent vector fields X, Y, one has $g(X,Y) = g(\varphi X,\varphi Y) + \eta^i(X)\eta^i(Y)$ and, fixed a compatible metric g, $(\varphi, \xi_i, \eta^i, g)$ is called a metric f.pk-structure. Therefore, T(M) splits as complementary orthogonal sum of its subbundles $Im \varphi$ and $Ker \varphi$. We denote their respective differentiable distributions by \mathcal{D} and \mathcal{D}^{\perp} .

Balkan Journal of Geometry and Its Applications, Vol.12, No.1, 2007, pp. 32-43.

 $[\]textcircled{C}$ Balkan Society of Geometers, Geometry Balkan Press 2007.

A wide class of f.pk-structures was introduced in [2] by D. Blair according to the following definition. A metric f.pk-structure is said a \mathcal{K} -structure if the fundamental 2-form Φ , defined usually as $\Phi(X,Y) = g(X,\varphi Y)$, is closed and the normality condition holds, i.e. $N = [\varphi, \varphi] + 2d\eta^i \otimes \xi_i = 0$, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ . Several subclasses have been studied from different points of view ([2, 3, 4]), also dropping the normality condition and, in this case, the term *almost* precedes the name of the considered structures or manifolds. If $d\eta^1 = \ldots = d\eta^s = \Phi$, the (almost) \mathcal{K} -structure is said an (almost) \mathcal{S} -structure and M an (almost) \mathcal{S} -manifold. If $d\eta^i = 0$ for all $i \in \{1, \ldots, s\}$, then the (almost) \mathcal{K} -structure is called an (almost) \mathcal{C} -structure and M is said an (almost) \mathcal{C} -manifold.

In [6], we studied normal metric f.pk-structures and then f.pk-manifolds (called Kenmotsu f.pk-manifolds), for which the 2-form Φ verifies the condition $d\Phi = 2\eta^i \wedge \Phi$, for some $i \in \{1, \ldots, s\}$, also proving that such an index is unique and choosing i = 1.

This paper deals with almost Kenmotsu f.pk-manifolds. Firstly, we state general properties involving the coderivative of the η^i 's with respect to the Levi-Civita connection. Several foliations can be described. In particular, each leaf of the distribution $Im \varphi$ has an almost Kähler structure and we give conditions which are equivalent to the request that $Im \varphi$ has Kähler or, possibly, totally umbilical leaves. Then, we explain a procedure to construct almost Kenmotsu f.pk-manifolds, starting from almost Kähler manifolds. Furthermore, we prove that if the leaves of $Im \varphi$ in an almost Kenmotsu f.pk-manifold M^{2n+s} are totally umbilical, then M^{2n+s} is locally a warped product of an almost Kähler manifold and \mathbb{R}^s , with warping function depending on a Euclidean coordinate, only.

In section 3, we study (2n + s)-dimensional metric f.pk-manifolds admitting a structure which is locally conformal to an almost Kenmotsu one and prove that, if $s \ge 2$, each of the considered conformal changes is global. We also characterize locally conformal almost C-manifolds and prove that an almost Kenmotsu manifold M^{2n+s} , $s \ge 2$, cannot be a locally conformal almost C-manifold. Note that, when s = 1, almost Kenmotsu manifolds set up a subclass of locally conformal almost cosymplectic manifolds ([13]), whereas almost C-manifolds coincide with almost cosymplectic manifolds.

We recall that the Levi-Civita connection ∇ of a metric *f.pk*-manifold satisfies the following formula ([2],[5]):

$$2g((\nabla_X \varphi)Y, Z) = 3 d\Phi(X, \varphi Y, \varphi Z) - 3d\Phi(X, Y, Z) +g(N(Y, Z), \varphi X) + N_j^{(2)}(Y, Z)\eta^j(X) +2d\eta^j(\varphi Y, X)\eta^j(Z) - 2d\eta^j(\varphi Z, X)\eta^j(Y)$$

Each tensor field $N_j^{(2)}$ is defined by $N_j^{(2)}(X,Y) = (\mathcal{L}_{\varphi X}\eta^j)(Y) - (\mathcal{L}_{\varphi Y}\eta^j)(X)$, and can be rewritten as $N_j^{(2)}(X,Y) = 2d\eta^j(\varphi X,Y) - 2d\eta^j(\varphi Y,X)$.

1 Almost Kenmotsu *f.pk*-manifolds

In [6], a metric f.pk-manifold M of dimension 2n + s, $s \ge 1$, with f.pk-structure $(\varphi, \xi_i, \eta^i, g)$, is said to be a Kenmotsu f.pk-manifold if it is normal, the 1-forms η^i are closed and $d\Phi = 2\eta^1 \wedge \Phi$.

Definition 1.1 A metric *f.pk*-manifold *M* of dimension 2n+s, $s \ge 1$, with *f.pk*-structure $(\varphi, \xi_i, \eta^i, g)$, is said to be an almost Kenmotsu *f.pk*-manifold if the 1-forms η^i are closed and $d\Phi = 2\eta^1 \wedge \Phi$.

Obviously, a normal almost Kenmotsu f.pk-manifold is a Kenmotsu f.pk-manifold.

Let $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$ be an almost Kenmotsu f.pk-manifold. Since the distribution \mathcal{D} is integrable, we have $\mathcal{L}_{\xi_i}\eta^j = 0$, $[\xi_i, \xi_j] \in \mathcal{D}$ and $[X, \xi_i] \in \mathcal{D}$ for any $X \in \mathcal{D}$. Then, the Levi-Civita connection is given by:

(1.1)
$$2g((\nabla_X \varphi)(Y), Z) = 2g(g(\varphi X, Y)\xi_1 - \eta^1(Y)\varphi(X), Z) + g(N(Y, Z), \varphi X),$$

for any $X, Y, Z \in \mathcal{X}(M^{2n+s})$. Putting $X = \xi_i$ we obtain $\nabla_{\xi_i} \varphi = 0$ which implies $\nabla_{\xi_i} \xi_j \in \mathcal{D}^{\perp}$ and then $\nabla_{\xi_i} \xi_j = \nabla_{\xi_j} \xi_i$ since $[\xi_i, \xi_j] = 0$.

For each $i \in \{1, \ldots, s\}$ we put $A_i = -\nabla \xi_i$ and $h_i = \frac{1}{2} \mathcal{L}_{\xi_i} \varphi$.

Proposition 1.1 For any $i \in \{1, ..., s\}$ the tensor field A_i is a symmetric operator such that:

- 1) $A_i(\xi_j) = 0$, for any $j \in \{1, ..., s\}$;
- 2) $A_i \circ \varphi + \varphi \circ A_i = -2\delta_i^1 \varphi.$

Proof. $g(A_iX, Y) - g(X, A_iY) = -2d\eta^i(X, Y) = 0$ implies that A_i is symmetric. For any $i, j, k \in \{1, \ldots, s\}$ deriving $g(\xi_i, \xi_j) = \delta_{ij}$ with respect to ξ_k , using $\nabla_{\xi_k}\xi_i = \nabla_{\xi_i}\xi_k$, we get $2g(\xi_k, A_i(\xi_j)) = 0$. Since $\nabla_{\xi_j}\xi_i \in \mathcal{D}^{\perp}$, we conclude $A_i(\xi_j) = 0$. To prove 2), we notice that for any $Z \in \mathcal{X}(M^{2n+s})$ we have $\varphi(N(\xi_i, Z)) = (\mathcal{L}_{\xi_i}\varphi)(Z)$ and, on the other hand, since $\nabla_{\xi_i}\varphi = 0$,

$$\mathcal{L}_{\xi_i}\varphi = A_i \circ \varphi - \varphi \circ A_i.$$

Applying (1.1) with $Y = \xi_i$, we have

$$2g(\varphi A_i X, Z) = -2\eta^1(\xi_i)g(\varphi(X), Z) - g(\varphi(N(\xi_i, Z)), X),$$

which implies 2).

Proposition 1.2 For any $i \in \{1, ..., s\}$ the tensor field h_i is a symmetric operator and:

- 1) $h_i(\xi_j) = 0$, for any $j \in \{1, ..., s\}$;
- 2) $h_i \circ \varphi + \varphi \circ h_i = 0$.

Proof. Equation 1) is obvious. Suppose $i \geq 2$. Then, from Proposition 1.1 we get $h_i = A_i \circ \varphi = -\varphi \circ A_i$ and for any tangent vector fields $X, Y, g(h_i(X), Y) = g(\varphi X, A_i Y) = -g(X, \varphi A_i Y) = g(X, h_i(Y))$. Now, we consider i = 1 and applying Proposition 1.1 we get $h_1 = A_1 \circ \varphi + \varphi = -\varphi \circ A_1 - \varphi$, then $g(h_1(X), Y) = g(\varphi X, A_1(Y)) + g(\varphi X, Y) = g(X, h_1(Y))$. Finally, for $i \geq 2$, $h_i \circ \varphi + \varphi \circ h_i = A_i \circ \varphi^2 - \varphi^2 \circ A_i = 0$ and

$$h_1 \circ \varphi = -\varphi \circ A_1 \circ \varphi - \varphi^2, \quad \varphi \circ h_1 = \varphi \circ A_1 \circ \varphi + \varphi^2$$

so $h_1 \circ \varphi + \varphi \circ h_1 = 0$.

Proposition 1.3 Let M^{2n+s} be an almost Kenmotsu f.pk-manifold with structure $(\varphi, \xi_i, \eta^i, g)$. For any $X \in \mathcal{X}(M^{2n+s})$, we have:

- 1) $\nabla_X \xi_i = -\varphi h_i X$ for any $i \in \{2, \ldots, s\}$,
- 2) $\nabla_X \xi_1 = -\varphi^2(X) \varphi h_1 X$,
- 3) $\nabla \eta^i = g \circ (\varphi \times h_i)$ and $\delta \eta^i = 0$ for any $i \in \{2, \dots, s\}$,
- 4) $\nabla \eta^1 = g \eta^k \otimes \eta^k + g \circ (\varphi \times h_1), \quad \delta \eta^1 = -2n \text{ and } M^{2n+s} \text{ cannot be compact.}$

Proof. For $i \geq 2$, since $h_i = -\varphi \circ A_i$, we get $\varphi(\nabla_X \xi_i) = h_i(X)$ and applying φ , we obtain 1). Now, let i = 1. Then $h_1 = -\varphi \circ A_1 - \varphi$ gives $\varphi(\nabla_X \xi_1) = \varphi X + h_1(X)$ and applying φ we get 2). Finally, an easy computation gives 3) and 4).

We obtain immediately the following result.

Corollary 1.1 All the operators h_i vanish if and only if $\nabla \xi_1 = -\varphi^2$ and $\nabla \xi_i = 0$ for $i \in \{2, \ldots, s\}$. In such a case ξ_2, \ldots, ξ_s are Killing vector fields and η^2, \ldots, η^s are harmonic 1-forms.

Proposition 1.4 Let M^{2n+s} be an almost Kenmotsu f.pk-manifold with structure $(\varphi, \xi_i, \eta^i, g)$. Then for any $X, Y \in \mathcal{X}(M^{2n+s})$, we have:

- 1) $\varphi(N(X,Y)) + N(\varphi X,Y) = 2\eta^k(X)h_k(Y)$,
- 2) $(\nabla_X \varphi)Y + (\nabla_{\varphi X} \varphi)(\varphi Y) = -\eta^1(Y)\varphi X 2g(X,\varphi Y)\xi_1 \eta^k(Y)h_k(X).$

Proof. The first relation follows by direct computation, using $d\eta^i = 0$ and the definition of the h_i 's. In particular, we get

(1.2)
$$g(N(\varphi X, Y), \xi_i) = 0, \quad N(Y, \xi_i) = 2\varphi h_i(Y).$$

The second relation follows by (1.1) and 1).

Finally, we consider (2n + 2)-dimensional almost Kenmotsu f.pk-manifolds and compare them with locally conformal almost Kähler manifolds with parallel anti-Lee form, considered by Kashiwada in [9]. We recall that an almost Hermitian manifold (M, J, g) is locally conformal almost Kähler if and only if there exists a closed 1-form ω such that the Kähler 2-form Ω satisfies $d\Omega = 2\omega \wedge \Omega$. ω is the Lee form, $\bar{\omega} = -\omega \circ J$ the anti-Lee form and B, JB are the Lee and the anti-Lee vector fields.

We need a result essentially due to Goldberg and Yano ([7, 8]).

Theorem 1.1 Let M be a (2n + s)-dimensional f.pk-manifold with structure (φ, ξ_i, η^i) , and s even, s = 2p. The tensor field J defined by:

(1.3)
$$J = \varphi + \sum_{i=1}^{p} (\eta^{2i-1} \otimes \xi_{2i} - \eta^{2i} \otimes \xi_{2i-1})$$

is an almost complex structure on M and, if g is a φ -compatible metric, (M, J, g) is an almost Hermitian manifold with Kähler 2-form

Maria Falcitelli and Anna Maria Pastore

(1.4)
$$\Omega = \Phi - 2\sum_{i=1}^{p} \eta^{2i-1} \wedge \eta^{2i}$$

The previous theorem and Proposition 1.3 easily imply the following result.

Theorem 1.2 Let M^{2n+2} be an almost Kenmotsu f.pk-manifold with structure $(\varphi, \xi_1, \xi_2, \eta^1, \eta^2, g)$ and let J be the tensor field defined by:

$$J = \varphi + \eta^1 \otimes \xi_2 - \eta^2 \otimes \xi_1 \,.$$

Then, (M^{2n+2}, J, g) is a locally conformal almost Kähler manifold with Lee 1-form η^1 . The anti-Lee 1-form $\eta^2 = -\eta^1 \circ J$ is parallel if and only if $h_2 = 0$.

Theorem 1.3 Let (M^{2n+2}, J, g) be a locally conformal almost Kähler manifold with unit Lee vector field B, anti-Lee vector field J(B), Lee 1-form ω and parallel anti-Lee 1-form $\bar{\omega}$. Let φ be the tensor field defined by:

$$\varphi = J - \omega \otimes JB + \bar{\omega} \otimes B \,.$$

Then $(M^{2n+2}, \varphi, B, JB, \omega, \overline{\omega}, g)$ is an almost Kenmotsu f.pk-manifold and the operator h_2 vanishes.

Proof. Theorem 1.1 ensures that g is a compatible metric for the f.pk-structure $(\varphi, B, JB, \omega, \bar{\omega})$. Note that $\omega, \bar{\omega}$ are both closed and the fundamental form is given by $\Phi = \Omega + 2\omega \wedge \bar{\omega}$, so that $d\Phi = d\Omega = 2\omega \wedge \Omega = 2\omega \wedge \Phi$. Finally, since $\nabla \bar{\omega} = 0$, we have $h_2 = 0$.

2 Distributions

We describe some distributions on an almost Kenmotsu f.pk-manifold of dimension $2n + s, s \ge 1$, with structure $(\varphi, \xi_i, \eta^i, g)$.

Proposition 2.1 Let M^{2n+s} be an almost Kenmotsu f.pk-manifold with structure $(\varphi, \xi_i, \eta^i, g)$. The integral manifolds of \mathcal{D} are almost Kähler manifolds with mean curvature vector field $H = -\xi_1$. They are totally umbilical submanifolds of M^{2n+s} if and only if all the operators h_i 's vanish.

Proof. Let M' be an integral manifold of \mathcal{D} . The tensor fields φ and g induce an almost complex structure J and a Hermitian metric g' on M'. Then, for any $X, Y \in \mathcal{X}(M')$, we have $\Omega'(X, Y) = g'(X, JY) = g(X, \varphi Y) = \Phi(X, Y)$ and $d\Omega' = (d\Phi)_{|M'} = 0$, so M' is an almost Kähler manifold. Computing the second fundamental form, since the A_i 's are the Weingarten operators in the directions ξ_i , we get, via Proposition 1.3,

 $\begin{aligned} \alpha(X,Y) &= \sum_{i=1}^{s} g(A_i X,Y)\xi_i \\ &= g(\varphi^2(X) + \varphi h_1(X),Y)\xi_1 + \sum_{i=2}^{s} g(\varphi h_i(X),Y)\xi_i \\ &= -g(X,Y)\xi_1 + \sum_{i=1}^{s} g(\varphi h_i(X),Y)\xi_i \,. \end{aligned}$

Fixed a local orthonormal frame $(e_1, \ldots, e_n, \varphi e_1, \ldots, \varphi e_n)$ in TM', applying Proposition 1.1, we obtain $trA_i = 0$ for $i \ge 2$, while $trA_1 = -2n$. Hence we get

$$H = \frac{1}{2n} \sum_{i=1}^{s} (trA_i)\xi_i = -\xi_1.$$

Finally, M' is totally umbilical if and only if $h_i = 0$ for each $i \in \{1, \ldots, s\}$.

Proposition 2.2 In an almost Kenmotsu f.pk-manifold $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$ the distribution \mathcal{D} has Kähler leaves if and only if, for any $X, Y \in \mathcal{X}(M^{2n+s})$,

(2.1)
$$(\nabla_X \varphi)(Y) = \sum_{i=1}^s \left(\eta^i(Y) \varphi A_i(X) - g(\varphi A_i(X), Y) \xi_i \right) \,.$$

Proof. Let M' be an integral manifold of \mathcal{D} with the corresponding almost Kähler structure. By the Gauss equation $\nabla_X Y = \nabla'_X Y + \sum_{i=1}^s g(A_i(X), Y)\xi_i$, we have

(2.2)
$$(\nabla'_X J)Y = (\nabla_X \varphi)Y - \sum_{i=1}^s g(A_i(X), \varphi Y)\xi_i ,$$

so each integral manifold M' is Kähler if and only if

$$(\nabla_X \varphi) Y = \sum_{i=1}^s g(A_i(X), \varphi Y) \xi_i ,$$

for any $X, Y \in \mathcal{D}$. Therefore, if \mathcal{D} has Kähler leaves, given $X, Y \in \mathcal{X}(M^{2n+s})$, the vector fields $X - \eta^j(X)\xi_j$ and $Y - \eta^j(Y)\xi_j$ belong to \mathcal{D} and using $\nabla_{\xi_i}\varphi = 0$, we obtain

$$(\nabla_X \varphi)Y = \eta^k(Y)(\nabla_X \varphi)(\xi_k) + \sum_{i=1}^s g(A_i(X), \varphi Y)\xi_i = -\eta^k(Y)\varphi(\nabla_X \xi_k) + \sum_{i=1}^s g(A_i(X), \varphi Y)\xi_i = \sum_{i=1}^s (\eta^i(Y)\varphi A_i(X) - g(\varphi A_i(X), Y)\xi_i) .$$

Vice versa (2.1) and (2.2) imply $\nabla'_X J = 0$ on each integral manifold i.e. the Kähler condition.

Proposition 2.3 Let M^{2n+s} be an almost Kenmotsu f.pk-manifold with structure $(\varphi, \xi_i, \eta^i, g)$ such that the integral manifolds of \mathcal{D} are Kähler. Then M^{2n+s} is a Kenmotsu f.pk-manifold if and only if $\nabla \xi_1 = -\varphi^2$ and $\nabla \xi_i = 0$ for each $i \in \{2, \ldots, s\}$.

Proof. Assuming that the structure is normal, we have $\mathcal{L}_{\xi_i}\varphi = 0$ for each $i \geq 1$, which implies $A_i \circ \varphi = \varphi \circ A_i$. Combining with Proposition 1.1 we get $A_i = 0$ and then $\nabla \xi_i = 0$ for $i \geq 2$, while $A_1 \circ \varphi = -\varphi$, so that $\nabla \xi_1 = -A_1 = -\varphi^2$. Vice versa, we notice that for $i \geq 2$, $\nabla \xi_i = 0$ implies $\mathcal{L}_{\xi_i}\varphi = 0$ and from $\nabla \xi_1 = -\varphi^2$ we get $A_1 = \varphi^2$ and $\mathcal{L}_{\xi_1}\varphi = 2A_1 \circ \varphi + 2\varphi = 0$. Hence, for any $i \in \{1, \ldots, s\}$ and $Z \in \mathcal{X}(M)$ we obtain $\varphi(N(\xi_i, Z)) = 0$ and $N(\xi_i, Z) \in \mathcal{D}^{\perp}$. Thus $N(\xi_i, Z) = 0$, since $g(N(\xi_i, Z), \xi_k) = 0$ for each $k \in \{1, \ldots, s\}$. Finally, $N(\xi_i, \xi_j) = 0$ is trivial and for $X, Y \in \mathcal{D}, N(X, Y) = 0$ since $N(X, Y) = N_J(X, Y) = 0$, the leaves of \mathcal{D} being Kähler manifolds. \Box

Proposition 2.4 An almost Kenmotsu f.pk-manifold M^{2+s} such that $\nabla \xi_1 = -\varphi^2$ and $\nabla \xi_i = 0$ for $i \ge 2$ is a Kenmotsu f.pk-manifold.

Proof. When n = 1, the integral manifolds of the distribution \mathcal{D} are almost Kähler of dimension two and then they are Kähler. So we apply the previous proposition. \Box

Proposition 2.5 The distribution $\mathcal{D}^{\perp} = \langle \xi_1, \ldots, \xi_s \rangle$ is integrable, with totally geodesic flat leaves.

Proof. Just note that $[\xi_i, \xi_j] = 0$ and $\nabla_{\xi_i} \xi_j = 0$.

When $s \geq 2$, we can consider other distributions.

Proposition 2.6 The distribution $\mathcal{D}' = \mathcal{D} \oplus \langle \xi_1 \rangle$ is integrable. Its leaves are minimal almost Kenmotsu manifolds.

Proof. Since $\mathcal{D}' = \{X \in \mathcal{X}(M) \mid g(X,\xi_i) = 0, i \geq 2\}$, and $d\eta^i = 0$, the distribution is clearly involutive with (2n+1)-dimensional integral manifolds. Let M' be an integral manifold, ∇' its Levi-Civita connection and φ' the tensor field defined by $\varphi'(X) = \varphi(X)$ for any $X \in \mathcal{X}(M')$. It is easy to verify that $\varphi'^2 = -I + \eta^1 \otimes \xi_1$ and $d\Phi' = 2\eta^1 \wedge \Phi'$ so M' is an almost Kenmotsu manifold. Now, for any $X, Y \in \mathcal{X}(M')$, $(\nabla'_X \varphi')(Y) = (\nabla_X \varphi)(Y) - \alpha(X, \varphi Y)$, α being the second fundamental form. Then, since for any $i \geq 2$ the Weingarten operators are $A_i = -\varphi \circ h_i$, the mean curvature vector field is given by

$$H = \frac{1}{2n+1} \sum_{i=2}^{s} \left(\sum_{k=1}^{n} (g(\varphi e_k, h_i e_k) + g(\varphi^2 e_k, h_i \varphi e_k)) + g(\varphi \xi_1, h_i \xi_1) \right) \xi_i = 0.$$

Proposition 2.7 For any $i \in \{1, \ldots, s\}$, let $\mathcal{D}_i = Ker \eta^i$. Then:

- 1) for each $i \neq 1$, the distribution $\mathcal{D}_i = \mathcal{D} \oplus \langle \xi_1, \dots, \hat{\xi}_i, \dots, \xi_s \rangle$, where ξ_i is omitted, is integrable and the integral manifolds are minimal almost Kenmotsu f.pk-hypersurfaces;
- 2) the distribution $\mathcal{D}_1 = \mathcal{D} \oplus \langle \xi_2, \dots, \xi_s \rangle$ is integrable and its leaves are almost \mathcal{C} -manifolds with mean curvature $H = -\frac{2n}{2n+s-1}\xi_1$.

Proof. The integrability of the described distributions follows from the condition $d\eta^i = 0$, for each $i \in \{1, \ldots, s\}$. Assume $i \neq 1$ and let M' be an integral manifold of \mathcal{D}_i . Then, the unique Weingarten operator is $A_{\xi_i} = A_i$, the second fundamental form is given by $\alpha(X, Y) = g(A_i X, Y)\xi_i$ and its trace vanishes since A_i anticommutes with φ and $A_i(\xi_q) = 0$ for $q \neq i$. So M' is minimal. By restriction, the structure on M determines an almost Kenmotsu f.pk-structure $(\varphi', \xi_1, \ldots, \hat{\xi}_i, \ldots, \xi_s, \eta^1, \ldots, \hat{\eta}^i, \ldots, \eta^s, g')$ on M'. Now, suppose i = 1. The induced structure on each leaf of \mathcal{D}_1 has closed fundamental form and since $d\eta^i = 0$ for $i \geq 2$, we obtain an almost \mathcal{C} -manifold. The unique Weingarten operator A_1 verifies $A_1(X) = \varphi^2(X) + \varphi h_1(X)$ for any $X \in \mathcal{D}_1$. Hence $\alpha(X, Y) = -g(\varphi X, \varphi Y)\xi_1 - g(h_1 X, \varphi Y)\xi_1$ and $H = -\frac{2n}{2n+s-1}\xi_1$.

Example 1 Let (N^{2n}, J, \tilde{g}) , $n \geq 2$, be a strictly almost Kähler manifold and consider $\mathbb{R}^s \times N^{2n}$, with coordinates t^1, \ldots, t^s on \mathbb{R}^s . For any $i \in \{1, \ldots, s\}$, we put $\xi_i = \frac{\partial}{\partial t^i}$, $\eta^i = dt^i$ and define the tensor field φ on $\mathbb{R}^s \times N^{2n}$ such that $\varphi X = JX$, if X is a vector field on N^{2n} and $\varphi X = 0$ if X is tangent to \mathbb{R}^s .

Furthermore, we consider the metric $g = g_0 + c e^{2t^1} \tilde{g}$, where g_0 denotes the Euclidean metric on \mathbb{R}^s and $c \in \mathbb{R}^*_+$. Then, the warped product $\mathbb{R}^s \times_{f^2} N^{2n}$, $f^2 = ce^{2t^1}$, with the structure $(\varphi, \xi_i, \eta^i, g)$, is a strictly almost Kenmotsu *f.pk*-manifold. Namely, it is easy to verify that the 1-forms η^i 's are dual of the ξ_i 's with respect to g, $\varphi^2 = -I + \eta^i \otimes \xi_i$ and g is a compatible metric. Furthermore, we get $\Phi = ce^{2t^1}p_2^*(\tilde{\Omega})$, where p_2 is the projection on N^{2n} and $\tilde{\Omega}$ is the fundamental form of N^{2n} . Then, since $d\tilde{\Omega} = 0$, $d\Phi = 2ce^{2t^1}dt^1 \wedge p_2^*(\tilde{\Omega}) = 2dt^1 \wedge \Phi = 2\eta^1 \wedge \Phi$. Finally, since the torsion N_J does not vanish, N^{2n} being strictly almost Kähler, we obtain that the *f.pk*-structure is not normal.

Remark 1 In [14], Oguro and Sekigawa describe a strictly almost Kähler structure on the Riemannian product $\mathbb{H}^3 \times \mathbb{R}$. Thus the warped product $\mathbb{R}^s \times_{f^2} (\mathbb{H}^3 \times \mathbb{R})$, $f^2 = ce^{2t^1}$ is a (4 + s)-dimensional strictly almost Kenmotsu *f.pk*-manifold.

Theorem 2.1 Let $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$ be an almost Kenmotsu f.pk-manifold. Assume that $h_i = 0$ for any $i \in \{1, \ldots, s\}$. Then, M^{2n+s} is locally a warped product $B^s \times_{f^2} N^{2n}$ where N^{2n} is an almost Kähler manifold, B^s is a flat manifold with coordinates (t^1, \ldots, t^s) and $f^2 = ce^{2t^1}$, c a positive constant.

Proof. We know that $T(M^{2n+s}) = Ker \varphi \oplus Im \varphi$ and the corresponding distributions $\langle \xi_1, \ldots, \xi_s \rangle$ and \mathcal{D} are both integrable. Their integral manifolds are totally geodesic flat manifolds and totally umbilical almost Kähler manifolds with second fundamental form $\alpha = -g \otimes \xi_1$, mean curvature $H = -\xi_1$, respectively. Thus, as a manifold, M^{2n+s} is locally a product $B \times F$ with $T(B) = \langle \xi_1, \ldots, \xi_s \rangle$ and F is almost Kähler. We can choose a neighborhood with coordinates $(t^1, \ldots, t^s, x^1, \ldots, x^{2n})$ such that $\pi_*(\xi_i) = \frac{\partial}{\partial t^i}, \pi$ denoting the projection onto B. Then $\pi : B \times F \to B$ is a C^{∞} -submersion with vertical distribution $\mathcal{V} = T(F)$ and horizontal distribution $\mathcal{H} = T(B)$. Moreover, the splitting $\mathcal{V} \oplus \mathcal{H}$ is orthogonal with respect to the metric gand, since, for any $p \in B \times F$, $g_p(\xi_i, \xi_j) = \delta_{ij} = g_{\pi(p)}(\pi_*\xi_i, \pi_*\xi_j), \pi$ is a Riemannian submersion. The horizontal distribution is integrable, so the O'Neill tensor A vanishes. Moreover $N = 2nH = -2n\xi_1$ is a basic vector field. Now, computing the trace-free part T^0 of the O'Neill tensor T, for any U, V vertical vector fields, we get:

$$T_U^0 V = h(\nabla_U V) - \frac{1}{2n}g(U, V)N = \alpha(U, V) + g(U, V)\xi_1 = 0;$$

$$T_U^0 \xi_1 = T_U \xi_1 + \frac{1}{2n} g(N, \xi_1) U = v(\nabla_U \xi_1) - g(\xi_1, \xi_1) U = U - U = 0;$$

$$T_U^0 \xi_i = v(\nabla_U \xi_i) - g(\xi_1, \xi_i)U = 0, \ i \ge 2.$$

Thus $T^0 = 0$ and $B \times F$, and then M^{2n+s} , is locally a warped product and $N = -2n\xi_1$ is π -related to $-\frac{2n}{f}grad_{g_0}f$, g_0 being the flat metric on B ([1], 9.104). It follows that $\frac{1}{f}grad f = \frac{\partial}{\partial t^1}$ which implies $f = ke^{t^1}$ and $f^2 = ce^{2t^1}$, with c a positive constant. Finally, the warped metric is locally given by $\sum_{i=1}^{s} dt^i \otimes dt^i + ce^{2t_1}\tilde{g}$, \tilde{g} being an almost Kähler metric.

3 Conformal changes

Let *M* be an *f.pk*-manifold of dimension 2n + s with structure $(\varphi, \xi_i, \eta^i, g)$. A local conformal change of the structure is given by a family $(U_\alpha, \sigma_\alpha)_{\alpha \in A}$ where $(U_\alpha)_{\alpha \in A}$ is

an open covering of M and, for any $\alpha \in A$, $\sigma_{\alpha} \in \mathcal{F}(U_{\alpha})$. Putting

(3.1)
$$\varphi_{\alpha} = \varphi_{|U_{\alpha}}, \ \xi_{i}^{\alpha} = e^{\sigma_{\alpha}} \xi_{i|U_{\alpha}}, \ \eta_{\alpha}^{i} = e^{-\sigma_{\alpha}} \eta^{i}_{|U_{\alpha}}, \ g_{\alpha} = e^{-2\sigma_{\alpha}} g_{|U_{\alpha}},$$

 $(U_{\alpha}, \varphi_{\alpha}, \xi_{i}^{\alpha}, \eta_{\alpha}^{i}, g_{\alpha})$ is an *f.pk*-manifold. Note that for s = 1 this is the concept of conformal change of an almost contact metric structure.

Definition 3.1 An *f.pk*-manifold $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$ is said to be a locally conformal almost Kenmotsu *f.pk*-manifold if there exists a local conformal change $(U_{\alpha}, \sigma_{\alpha})_{\alpha \in A}$ such that for each $\alpha \in A$, $(U_{\alpha}, \varphi_{\alpha}, \xi_i^{\alpha}, \eta_{\alpha}^i, g_{\alpha})$ is an almost Kenmotsu *f.pk*-manifold.

It follows that for any $\alpha \in A$ we have $d\eta^i_{\alpha} = 0$ so that there exists a unique $k \in \{1, \ldots, s\}$, which a priori depends on α , such that $d\Phi_{\alpha} = 2\eta^k_{\alpha} \wedge \Phi_{\alpha}$, where Φ_{α} is defined by $\Phi_{\alpha}(X,Y) = g_{\alpha}(X,\varphi_{\alpha}Y) = e^{-2\sigma_{\alpha}}g(X,\varphi Y)$, for any vector fields X, Y on U_{α} . Moreover, on each U_{α} we easily obtain

(3.2)
$$2h_i^{\alpha} = \mathcal{L}_{\xi_i^{\alpha}}\varphi_{\alpha} = 2e^{\sigma_{\alpha}}h_i - (d\sigma_{\alpha} \circ \varphi_{\alpha}) \otimes \xi_i.$$

Definition 3.2 An *f.pk*-manifold $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$ is said to be a globally conformal almost Kenmotsu *f.pk*-manifold if there exists a smooth function σ on M^{2n+s} such that, putting

$$\tilde{\varphi} = \varphi, \tilde{\xi}_i = e^{\sigma} \xi_i, \tilde{\eta}^i = e^{-\sigma} \eta^i, \tilde{g} = e^{-2\sigma} g,$$

 $(M^{2n+s}, \tilde{\varphi}, \tilde{\xi}_i, \tilde{\eta}^i, \tilde{g})$ is an almost Kenmotsu *f.pk*-manifold.

Theorem 3.1 Let $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$ be a locally conformal almost Kenmotsu f.pk-manifold and $s \geq 2$. Then, up to a rearrangement of the ξ_i 's, there exists a function $\sigma \in \mathcal{F}(M^{2n+s})$ such that

(3.3)
$$d\Phi = 2(d\sigma + e^{-\sigma}\eta^1) \wedge \Phi, \\ d\eta^i = d\sigma \wedge \eta^i, \quad i \in \{1, \dots, s\}.$$

Proof. Firstly we prove that there exists a closed 1-form ω such that $d\eta^i = \omega \wedge \eta^i$ for each $i \geq 1$. Namely, considering $\alpha \in A$, since $\eta^i_{\alpha} = e^{-\sigma_{\alpha}} \eta^i_{|U_{\alpha}}, d\eta^i_{\alpha} = 0$ implies $d\eta^i_{|U_{\alpha}} = d\sigma_{\alpha} \wedge \eta^i_{|U_{\alpha}}$. Thus, for $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, for any $i \in \{1, \ldots, s\}$ we get $d\sigma_{\alpha} \wedge \eta^i = d\sigma_{\beta} \wedge \eta^i$ and so $(d\sigma_{\alpha} - d\sigma_{\beta}) \wedge \eta^i = 0$. Therefore, for any vector field X and any $j \in \{1, \ldots, s\}$ we obtain

$$(d\sigma_{\alpha} - d\sigma_{\beta})(X)\eta^{i}(\xi_{j}) = (d\sigma_{\alpha} - d\sigma_{\beta})(\xi_{j})\eta^{i}(X)$$

and choosing $X \in \mathcal{D}$ and j = i we get $(d\sigma_{\alpha} - d\sigma_{\beta})(X) = 0$. Furthermore, since $s \geq 2$, we can choose $X = \xi_k$ with $k \neq j$ obtaining $(d\sigma_{\alpha} - d\sigma_{\beta})(\xi_k) = 0$. Hence, the local 1-forms $d\sigma_{\alpha}$ give rise to the required global 1-form ω .

Now, for any $\alpha \in A$, we have $d\Phi_{\alpha} = 2\eta_{\alpha}^{t} \wedge \Phi_{\alpha}$, and, denoting by ∇^{α} the Levi-Civita connection on (U_{α}, g_{α}) , we have $\nabla^{\alpha}\xi_{i}^{\alpha} = -\delta_{i}^{t}\varphi^{2} - \varphi \circ h_{i}^{\alpha}$. Let $\beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then, $d\Phi_{\beta} = 2\eta_{\beta}^{k} \wedge \Phi_{\beta}$ and, in the intersection, $\nabla^{\alpha}\xi_{i}^{\alpha} = \nabla^{\beta}\xi_{i}^{\beta}$ implies $\delta_{i}^{t}\varphi^{2} + \varphi \circ h_{i}^{\alpha} = \delta_{i}^{k}\varphi^{2} + \varphi \circ h_{i}^{\beta}$. Now, assuming $t \neq k$, choosing i = t and then i = k, we get

Almost Kenmotsu *f*-manifolds

$$arphi^2 + arphi \circ h_i^lpha = arphi \circ h_i^eta \,, \qquad arphi \circ h_i^lpha = arphi^2 + arphi \circ h_i^eta \,,$$

which easily imply $\varphi^2 = 0$, so obtaining a contradiction. Thus we have t = k and we can suppose that, up to a rearrangement, $d\Phi_{\alpha} = 2\eta_{\alpha}^1 \wedge \Phi_{\alpha}$, for each $\alpha \in A$. Finally, differentiating $\Phi_{\alpha} = e^{-2\sigma_{\alpha}}\Phi$, we get $d\Phi = 2(e^{-\sigma_{\alpha}}\eta^1 + d\sigma_{\alpha}) \wedge \Phi$, in U_{α} and, comparing with the analogous expression in U_{β} , σ_{α} and σ_{β} coincide in $U_{\alpha} \cap U_{\beta}$. Hence there exists a function $\sigma \in \mathcal{F}(M^{2n+s})$ such that $\omega = d\sigma$ and $d\Phi = 2(e^{-\sigma}\eta^1 + d\sigma) \wedge \Phi$. \Box

Proposition 3.1 Let $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$, $s \geq 2$, be an f.pk-manifold which admits a function $\sigma \in \mathcal{F}(M^{2n+s})$ such that (3.3) holds. Then, M^{2n+s} is a globally conformal almost Kenmotsu f.pk-manifold, with function σ .

Proof. We put $\tilde{\varphi} = \varphi$, $\tilde{\xi}_i = e^{\sigma} \xi_i$, $\tilde{\eta}^i = e^{-\sigma} \eta^i$, $\tilde{g} = e^{-2\sigma} g$. Then one easily verifies that $(M^{2n+s}, \tilde{\varphi}, \tilde{\xi}_i, \tilde{\eta}, \tilde{g})$ is an *f.pk*-manifold with fundamental form $\tilde{\Phi} = e^{-2\sigma} \Phi$ and $d\tilde{\Phi} = 2\tilde{\eta}^1 \wedge \tilde{\Phi}, d\tilde{\eta}^i = 0$, for each $i \in \{1, \ldots, s\}$.

Remark 2 The previous two results allow to state that an f.pk-manifold M^{2n+s} , with $s \geq 2$, is locally conformal almost Kenmotsu if and only if it is globally conformal almost Kenmotsu or, equivalently, if and only if there exists a function $\sigma \in \mathcal{F}(M^{2n+s})$ such that (3.3) holds. Moreover, assuming that M^{2n+s} is connected, the function σ is a constant if and only if M^{2n+s} is homothetic to an almost Kenmotsu f.pk-manifold. Furthermore, since the normality condition is not involved in the previous discussion, the same equivalences hold for locally (globally) conformal Kenmotsu f.pk-manifolds.

We remark that the hypothesis $s \geq 2$ is essential in the above results. Namely, when s = 1, Olszak proved that an almost contact metric manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$ is locally conformal almost cosymplectic if and only if there exists a closed 1-form ω such that $d\Phi = 2\omega \wedge \Phi$ and $d\eta = \omega \wedge \eta$. Furthermore, M^{2n+1} is almost α -Kenmotsu if and only if it is locally conformal almost cosymplectic with $\omega = \alpha \eta$, α being a non-vanishing constant. This means that when s = 1 the almost α -Kenmotsu manifolds, with α constant, set up a subclass of the locally conformal almost cosymplectic manifolds. Now, we investigate the case $s \geq 2$ from this point of view.

We need the following characterization of locally conformal almost C-manifolds.

Proposition 3.2 Let $(M^{2n+s}, \varphi, \xi_i, \eta^i, g)$, $s \geq 2$, be an f.pk-manifold. Then, M^{2n+s} is a locally conformal almost C-manifold if and only if there exists a 1-form ω such that

(3.4)
$$d\omega = 0, \ d\Phi = 2\omega \wedge \Phi, \ d\eta^i = \omega \wedge \eta^i, \text{for each } i \in \{1, \dots, s\}.$$

Proof. Assuming that M^{2n+s} is a locally conformal almost C-manifold, we apply the same technique as at the beginning of the proof of Theorem 3.1 and determine a closed 1-form ω such that $d\eta^i = \omega \wedge \eta^i$ for each $i \in \{1, \ldots, s\}$. The condition $d\Phi = 2\omega \wedge \Phi$ is achieved since an almost C-manifold has closed fundamental form. Vice versa, ω being locally exact, we consider an open covering $(U_{\alpha})_{\alpha \in A}$ such that, for any $\alpha \in A$, $\omega_{|U_{\alpha}} = d\sigma_{\alpha}$. Then, putting

$$\varphi_{\alpha} = \varphi_{|U_{\alpha}}, \ \xi_i^{\alpha} = e^{\sigma_{\alpha}} \xi_{i|U_{\alpha}}, \ \eta_{\alpha}^i = e^{-\sigma_{\alpha}} \eta^i{}_{|U_{\alpha}}, \ g_{\alpha} = e^{-2\sigma_{\alpha}} g_{|U_{\alpha}}$$

it is easy to check that $(U_{\alpha}, \varphi_{\alpha}, \xi_i^{\alpha}, \eta_{\alpha}^i, g_{\alpha})$ is an almost \mathcal{C} -manifold.

Proposition 3.3 The class of the almost Kenmotsu f.pk-manifolds of dimension 2n + s, $s \ge 2$, is disjoint from the class of the locally conformal almost C-manifolds.

Proof. Let $(M^{2n+s}, \varphi, \xi_i, \eta^i, g), s \geq 2$, be an f.pk-manifold which is almost Kenmotsu and locally conformal almost \mathcal{C} -manifold. Then there exists a 1-form ω such that $d\Phi = 2\omega \wedge \Phi, d\eta^i = \omega \wedge \eta^i$ for each $i \in \{1, \ldots, s\}$. Furthermore, one has $d\Phi = 2\eta^1 \wedge \Phi$ and $d\eta^i = 0$. This implies $\omega \wedge \eta^i = 0$ and then, since $s \geq 2$, we get $\omega = 0$ and $\eta^1 \wedge \Phi = 0$. Choosing $X \in \mathcal{D}, ||X|| = 1$ and computing $(\eta^1 \wedge \Phi)(\xi_1, X, \varphi X)$ we get $\eta^1(\xi_1) = 0$ which is a contradiction. \Box

Remark 3 It is also easy to verify that in dimension 2n + s, $s \ge 2$, the locally conformal almost C-manifolds set up a class which is disjoint from the class of locally conformal almost Kenmotsu f.pk-manifolds.

References

- [1] A. Besse, *Einstein Manifolds*, Springer-Verlag, 1987.
- [2] D.E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differ. Geom. 4 (1970), 155–167.
- [3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
- [4] D.E. Blair, *Riemannian geometry of Contact and Symplectic Manifolds*, Birkhäuser, Boston, 2002.
- [5] M. Falcitelli, S. Ianus and A.M. Pastore, *Riemannian submersions and related topics*, World Scientific, Singapore, 2004.
- [6] M. Falcitelli and A.M. Pastore, *f-structures of Kenmotsu type*, Mediterr. J. Math. 3 No.3-4 (2006), 549–564.
- [7] S.I. Goldberg, On the existence of manifolds with an f-structure, Tensor, New Ser. 26 (1972), 323–329.
- [8] S.I. Goldberg and K. Yano, Globally framed f-manifolds, Ill. J. Math. 15 (1971), 456–474.
- T. Kashiwada, On a class of locally conformal Kähler manifolds, Tensor, New Ser. 63 (2002), 297–306.
- [10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. II Ser. 24 (1972), 93–103.
- [11] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, II, Intersciences Publishers, New-York, 1963, 1969.
- [12] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kodai Math. Semin. Rep. 24 (1972), 430–450.
- [13] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. LVII (1989), 73–87.
- [14] T. Oguro and K. Sekigawa, Almost Kähler structures on the Riemannian product of a 3-dimensional hyperbolic space and a real line, Tsukuba J. Math. 20, No.1 (1996), 151–161.
- [15] K. Yano, On a structure defined by a tensor field f satisfying $f^3 + f = 0$, Tensor, New Ser. 14 (1963), 99–109.

[16] K. Yano and M. Kon, Structures on manifolds, Series in Pure Math., Vol. 3, World Scientific, Singapore, 1984.

Authors' address:

Maria Falcitelli and Anna Maria Pastore Università degli Studi di Bari, Dipartimento di Matematica via E. Orabona 4, 70125 Bari, Italy. e-mail: falci@dm.uniba.it, pastore@dm.uniba.it