About induced orthogonality and generalized reflections of affine coordinate plane $A(K)$ of odd order

Sunčica Blažev and Vlado Cigić

Abstract

The points of the affine coordinate plane $A(K)$ are identified with the elements of the ring $K[\alpha]=\left\{x+\alpha y \mid x, y \in K^{2}\right\}$, where $-\alpha$ is a root of a polynomial of second degree over the field K of odd order. Depending on the choice of that polynomial we introduce the induced orthogonality of lines in $A(K)$. The matrix formed of generalized reflections of $A(K)$ are given. Finally, we show that generalized reflections of $A(K)$ have entirely analogous properties to the ones of the reflections of the Euclidean plane.

M.S.C. 2000: 51F15, 51F20, 14R10.

Key words: affine coordinate plane, squared length, orthogonality, isometry, reflection.

1 Introduction

Let K be a field. A point is defined as any ordered pair $(x, y) \in K^{2}$. A line is defined as a set of the points of the form $\left\{(x, y) \in K^{2} \mid y=k x+l\right\}$ or $\left\{\left(x_{0}, y\right) \in K^{2} \mid y \in K\right\}$, where k, l, x_{0} are fixed elements of K. The line of the form $\left\{(x, y) \in K^{2} \mid y=k x+l\right\}$ will be called "the line $y=k x+l$ ", and the line of the form $\left\{\left(x_{0}, y\right) \in K^{2} \mid y \in K\right\}$ will be called "the line $x=x_{0}$ ".

Let \mathcal{G} be the set of all lines. We shall say that a point $P \in K^{2}$ is incident to a line $g \in \mathcal{G}$ if $P \in g$. The incidence structure $A(K):=\left(K^{2}, \mathcal{G}, \in\right)$ will be called the affine coordinate plane over K. From now on, suppose K is a field of odd order.

Let $\lambda(x)=x^{2}-e x-f \in K[x]$ be a polynomial with the discriminant $\Delta=e^{2}+4 f \neq$ 0.

The points of $A(K)$ can be identified with the elements of the ring $K[\alpha]=\{x+\alpha y \mid$ $x, y \in K\}$, where $K[\alpha] \cong K[x] /(\lambda(x))$ and $-\alpha$ is a root of a polynomial $\lambda(x)(\alpha \notin K)$. So, we identify the element $x+\alpha y$ of $K[\alpha]$ with the point (x, y).

Moreover, we define the squared length of the vector $z=(x, y) \in K[\alpha]$ by

[^0]$$
d^{(2)}((x, y))=\|(x, y)\|^{2}=\|z\|^{2}:=z \bar{z}=(x+\alpha y)(x+\beta y)
$$
where $-\alpha$ and $-\beta$ are the roots of $\lambda(x)$ and $\bar{z}=x+\beta y$ is the conjugated vector of $z=x+\alpha y$. It is easy to show that
$$
d^{(2)}((x, y))=\|(x, y)\|^{2}=\|z\|^{2}=z \bar{z}=x^{2}-e x y-f y^{2} .
$$

The squared distance of the points $z_{1}=x_{1}+\alpha y_{1}$ and $z_{2}=x_{2}+\alpha y_{2}$ is defined by

$$
\begin{aligned}
d^{(2)}\left(z_{1}, z_{2}\right) & =d^{(2)}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\|z_{2}-z_{1}\right\|^{2}= \\
& =\left(x_{2}-x_{1}\right)^{2}-e\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)-f\left(y_{2}-y_{1}\right)^{2} .
\end{aligned}
$$

The automorphisms of $A(K)$ preserving the squared distance of any two points are called isometries.

From now on, we suppose that the coefficients of $\lambda(x)=x^{2}-e x-f$ are the elements of the prime subfield of the field K.

The matrix and the vector forms of isometries of $A(K)=A G(2, q)$, where K is the finite field $G F(q)$, are given in [2]. It can be shown that the following theorem, proven in [2] for the finite field K, holds for an arbitrary field K.

Theorem 1. An automorphism of $A(K)$ is an isometry if and only if for each $(x, y) \in$ $K[\alpha]$ its matrix form is one of the following

$$
\begin{align*}
(x, y) & \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
f l & k-e l
\end{array}\right]+(r, s) \tag{1.1}\\
\text { or } & \\
(x, y) & \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
-f l-e k & -k
\end{array}\right]+(r, s) \tag{1.2}
\end{align*}
$$

where $r, s, k, l \in K$, satisfying $k^{2}-e k l-f l^{2}=1$.
It is obvious that all isometries of $A(K)$ form the subgroup $\mathcal{I}(A(K))$ of the group of all automorphisms of $A(K)$. An isometry different from the identity and fixes all the points belonging to some line (the axis) will be called the generalized reflection of $A(K)$. Also, an isometry of the form (1.1) will be called the generalized rotation of $A(K)$, and it can be easily proven that all generalized rotations of $A(K)$ form a subgroup of $\mathcal{I}(A(K))$.

From Theorem 1 it easily follows that the group $\mathcal{I}(A(K))$ is a semidirect product of subgroups \mathcal{T} and $(\mathcal{I}(A(K)))_{0}$, where \mathcal{T} is a group of all translations $(x, y) \mapsto$ $(x+r, y+s)$ of $A(K)$ and $(\mathcal{I}(A(K)))_{0}$ is the stabilizer of the point $0=(0,0)$.

Theorem 1 leads to the following characterization of the $\operatorname{group}(\mathcal{I}(A(K)))_{0}$.
Corollary 2. The group $(\mathcal{I}(A(K)))_{0}$ consists exactly of mappings

$$
\begin{align*}
&(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
f l & k-e l
\end{array}\right] \tag{1.3}\\
& \text { or } \\
&(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
-f l-e k & -k
\end{array}\right], \tag{1.4}
\end{align*}
$$

where $k, l \in K$, satisfying $k^{2}-e k l-f l^{2}=1$.

2 Generalized orthogonality

Let K be a field of odd order.
The squared length of the vector $u=\left(x_{1}, x_{2}\right)$ of K^{2} is defined by

$$
d^{(2)}(u)=Q(u)=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2},
$$

where Q is a quadratic form $Q: K^{2} \rightarrow K$. The corresponding polar bilinear (symmetric) form $\bar{f}: K^{2} \times K^{2} \rightarrow K$ is defined by

$$
\bar{f}(u, v)=\frac{1}{2}[Q(u+v)-Q(u)-Q(v)],
$$

where $u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right)$ and $u+v=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$. We obtain

$$
\bar{f}(u, v)=a_{11} x_{1} y_{1}+a_{12}\left(x_{1} y_{2}+x_{2} y_{1}\right)+a_{22} x_{2} y_{2}
$$

and $\bar{f}(u, u)=Q(u)$.
We say that the vectors $u, v \in K^{2}$ are \bar{f}-orthogonal if $\bar{f}(u, v)=0$. In this case, we write $u \perp v$.

Let p_{1}, p_{2} be the lines of $A(K)$ containing the point $S \equiv\left(x_{S}, y_{S}\right)$ and let $M_{i} \equiv$ $\left(x_{i}, y_{i}\right) \neq S$ be arbitrary points from p_{i}, where $i=1,2$. Hence, $\overrightarrow{S M_{i}} \equiv\left(x_{i}-x_{S}, y_{i}-y_{S}\right)$, for $i=1,2$. We say that the lines p_{1}, p_{2} are $\bar{f}-$ orthogonal if $\bar{f}\left(\overrightarrow{S M_{1}}, \overrightarrow{S M_{2}}\right)=0$.

Proposition 3. If $p_{1} \equiv y-y_{S}=k_{1}\left(x-x_{S}\right)$ and $p_{2} \equiv y-y_{S}=k_{2}\left(x-x_{S}\right)$, then

$$
\begin{equation*}
\bar{f}\left(\overrightarrow{S M_{1}}, \overrightarrow{S M_{2}}\right)=0 \Leftrightarrow a_{11}+a_{12}\left(k_{1}+k_{2}\right)+a_{22} k_{1} k_{2}=0 . \tag{2.1}
\end{equation*}
$$

Proof. Note that

$$
\begin{aligned}
& \bar{f}\left(\overrightarrow{S M_{1}}, \overrightarrow{S M_{2}}\right)=a_{11}\left(x_{1}-x_{S}\right)\left(x_{2}-x_{S}\right)+a_{12}\left[\left(x_{1}-x_{S}\right) k_{2}\left(x_{2}-x_{S}\right)+\right. \\
& \left.+\left(x_{2}-x_{S}\right) k_{1}\left(x_{1}-x_{S}\right)\right]+a_{22} k_{1} k_{2}\left(x_{1}-x_{S}\right)\left(x_{2}-x_{S}\right)= \\
& =\left(x_{1}-x_{S}\right)\left(x_{2}-x_{S}\right)\left[a_{11}+a_{12}\left(k_{1}+k_{2}\right)+a_{22} k_{1} k_{2}\right] .
\end{aligned}
$$

So, we have $\bar{f}\left(\overrightarrow{S M_{1}}, \overrightarrow{S M_{2}}\right)=0$ if and only if $a_{11}+a_{12}\left(k_{1}+k_{2}\right)+a_{22} k_{1} k_{2}=0$.
In this way the "condition of the orthogonality" (2.1) is obtained. I°. t can be easily proven that the condition of orthogonality of the lines $p_{1} \equiv y-y_{S}=k_{1}\left(x-x_{S}\right)$ and $p_{2} \equiv x=x_{S}$ is $a_{12}+a_{22} k_{1}=0$. Furthermore, we find the lines $y=y_{0}$ and $x=x_{0}$ to be \bar{f}-orthogonal if and only if $a_{12}=0 . I^{\circ}$. n this paper we consider the case when the points of $A(K) \equiv K[\alpha]$ are $u=\left(x_{1}, x_{2}\right)=z=x_{1}+x_{2} \alpha$, where $-\alpha$ is a root of polynomial $\lambda(x)=x^{2}-e x-f \in K[x]\left(e^{2}+4 f \neq 0\right)$. Therefore we have $d^{(2)}(u)=Q(u)=\|z\|^{2}=x_{1}^{2}-e x_{1} x_{2}-f x_{2}^{2}$. If $\lambda(x)$ is an irreducible polynomial over the field K, then $d^{(2)}=Q$ is the squared Euclidean length, since ker $Q=\{0\}$. If $\lambda(x)$ is a reducible polynomial over K, then $\operatorname{ker} Q$ consists of two different lines from $A(K)$ and $d^{(2)}=Q$ is the squared Minkowskian length. For both cases, the condition of the orthogonality is

$$
p_{1} \perp p_{2} \Leftrightarrow 1-\frac{e}{2}\left(k_{1}+k_{2}\right)-f k_{1} k_{2}=0 .
$$

This is regarded as "induced orthogonality" in $A(K)$.

Example 4. a) For all $u \in A(K)$, let us take the squared Euclidean length $\underline{d}^{(2)}(u)=Q(u)=Q_{E}(u)=x_{1}^{2}+x_{2}^{2}$. The corresponding bilinear form \bar{f} is $\bar{f}(u, v)=\bar{f}_{E}(u, v)=x_{1} y_{1}+x_{2} y_{2}$, where $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$. Note that this is the standard scalar product by coordinates. In this case, the condition of the orthogonality is $p_{1} \perp p_{2} \Leftrightarrow k_{1} k_{2}=-1$ which is well known for the real affine coordinate plane.
b) For all $u \in A(K)$, let us take the squared Minkowskian length $d^{(2)}(u)=Q(u)=$ $Q_{M}(u)=x_{1}^{2}-x_{2}^{2}$. The corresponding bilinear form \bar{f} is $\bar{f}(u, v)=\bar{f}_{M}(u, v)=$ $x_{1} y_{1}-x_{2} y_{2}$. The condition of the orthogonality is $p_{1} \perp p_{2} \Leftrightarrow k_{1} k_{2}=1$.

3 Generalized reflections of $A(K)$

Our intention is to find all generalized reflections of $A(K)$ and to establish their properties.

Theorem 5. An isometry of $A(K)$ is a generalized reflection if and only if for each $(x, y) \in K[\alpha]$ it is an involution of the form

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \tag{2}\\
-f l-e k & -k
\end{array}\right]+(r, s)
$$

where $r, s, k, l \in K$, satisfying $k^{2}-e k l-f l^{2}=1$.
Proof. Suppose $A=\left[\begin{array}{cc}k & l \\ -f l-e k & -k\end{array}\right]$ and $(k, l) \neq(1,0)$.
If ω is an involution of the form (1.2), i.e. $\omega((x, y))=(x, y) A+(r, s)$, we obtain $(1-k) s+l r=0$. Also, by Theorem $1, \omega$ is an isometry. From $(x, y) A+(r, s)=$ (x, y) follows that the isometry ω fixes all the points of some line in $A(K)$. In case $(k, l)=(-1,0)$ this line is $e y=2 x-r$, otherwise the line is $(k+1) y=l x+s$ (we use $(1-k) s+l r=0)$. Hence, ω is a generalized reflection.
To prove the reverse, suppose ω_{1} is a generalized reflection. Since ω_{1} is an isometry, by Theorem $1, \omega_{1}$ has the form (1.1) or (1.2). It can be obtained that isometries of the form (1.1) (rotations), which are different from identity, fix only one single point of $A(K)$. So we can conclude ω_{1} is of the form (1.2), i.e. $\omega_{1}((x, y))=(x, y) A+(r, s)$. Since, ω_{1} fixes all the points belonging to some line (axis), then from $(x, y) A+(r, s)=(x, y)$ follows $(1-k) s+l r=0$. Also, if $(k, l)=(-1,0)$ the axis is the line $e y=2 x-r$, otherwise the axis is the line $(k+1) y=l x+s$. It can be verified that ω_{1} is an involution (we use $(1-k) s+l r=0)$.
The proof in the case $(k, l)=(1,0)$ is similar to the previous proof.
From the proof of Theorem 5, it follows
Proposition 6. Let ω be a generalized reflection of the form (1.2). If $(k, l)=(-1,0)$ the corresponding axis is the line ey $=2 x-r$, otherwise the axis is the line $(1+k) y=$ $l x+s$.
A°. ll the properties of the generalized reflections of $A(K)$ are entirely analogous to the properties of reflections of the Euclidean plane. Here the orthogonality is the
"induced orthogonality".
For example, if we take the generalized reflection $(x, y) \rightarrow(x, y) A+(r, s)$, where $A=\left[\begin{array}{cc}k & l \\ -f l-e k & -k\end{array}\right]$ and $(k, l) \neq(\pm 1,0)$, then by Proposition 6 and the proof of Theorem 5 , the axis is the line $y=\frac{l}{k+1} x+\frac{s}{k+1}$ and $r=\frac{k-1}{l} s$. Let us denote $K_{1}=\frac{l}{k+1}$. The axis contains the midpoint of the segment with the end points $(x, y) A+(r, s)$ and (x, y). The slope of the line containing the point (x, y) and its picture $(x, y) A+(r, s)$, is

$$
K_{2}=\frac{l x-(k+1) y+s}{(k-1) x+(f l-e k) y+\frac{k-1}{l} s}=\cdots=\frac{l}{k-1}
$$

It is seen that the condition of orthogonality $1-\frac{e}{2}\left(K_{1}+K_{2}\right)-f K_{1} K_{2}=0$ is fulfilled.

4 The elements of $(\mathcal{I}(A(K)))_{0}$

Finally, for some choices of $\lambda(x)=x^{2}-e x-f$, we will find the elements of the group $(\mathcal{I}(A(K)))_{0}$. Also, the Lorentz transformations of $A(K)$ will be obtained.

Corollary 7. Generalized reflections of $(\mathcal{I}(A(K)))_{0}$ are exactly all isometries of the form

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \tag{1.4}\\
-f l-e k & -k
\end{array}\right]
$$

where $k, l \in K$ satisfying $k^{2}-e k l-f l^{2}=1$.
Proof. The claim follows from Theorem 5, since each isometry of the form (1.4) is an involution.

Corollary 8. If $(k, l)=(-1,0)$ the axis of the generalized reflection

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
-f l-e k & -k
\end{array}\right]
$$

is the line ey $=2 x$, otherwise the axis is the line $(1+k) y=l x$, where $k, l \in K$, satisfying $k^{2}-e k l-f l^{2}=1$.

Proof. The assertion follows from Corollary 7 and Proposition 6.
Isometries of the form (1.3) are the generalized rotations around 0 .
Proposition 9. The generalized rotations (around 0) form a subgroup of $(\mathcal{I}(A(K)))_{0}$. The product of two generalized reflections in lines through 0 is a generalized rotation (around 0). The product of a generalized rotation (around 0) and a generalized reflection in a line through 0 is a generalized reflection in a line through 0.

Proof. The assertion is trivial to prove.
Example 10. (A) Let $\lambda(x)=x^{2}+1$, i.e. $d^{(2)}(u)=Q_{E}(u)=x_{1}^{2}+x_{2}^{2}$, where $u=$ $\left(x_{1}, x_{2}\right) \in A(K), e=0$ and $f=-1$.
In this case, isometries of the Euclidean plane $A(K)$ are

$$
\begin{aligned}
(x, y) & \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
-l & k
\end{array}\right]+(r, s) \\
\text { or } & \\
(x, y) & \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
l & -k
\end{array}\right]+(r, s)
\end{aligned}
$$

where $k, l, r, s \in K$, satisfying $k^{2}+l^{2}=1$. Also, the isometries

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
-l & k
\end{array}\right]
$$

are the "Euclidean" rotations around 0 and the isometries

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
l & -k
\end{array}\right]
$$

are the "Euclidean" reflections in the lines through 0 . If $k \neq-1$ the corresponding axis is the line $y=\frac{l}{k+1} x$ and if $k=-1$ the axis is y-axis.
(B) Let $\lambda(x)=x^{2}-1$, i.e. $d^{(2)}(u)=Q_{M}(u)=x_{1}^{2}-x_{2}^{2}$, where $u=\left(x_{1}, x_{2}\right) \in A(K)$, $e=0$ and $f=1$.
In this case, the elements of $(\mathcal{I}(A(K)))_{0}$ are the Lorentz rotations around 0

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
l & k
\end{array}\right]
$$

or the Lorentz reflections in the lines through 0

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
k & l \\
-l & -k
\end{array}\right]
$$

where $k, l \in K$, satisfying $k^{2}-l^{2}=1$. If $k \neq-1$ the corresponding axis is $y=\frac{l}{k+1} x$ and if $k=-1$ the axis is y-axis. I°. n case of the real affine coordinate plane $A(\mathbb{R})$, the elements of $(\mathcal{I}(A(K)))_{0}$ are the Lorentz rotations

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{ll}
\frac{1}{ \pm \sqrt{1-\frac{v^{2}}{c^{2}}}} & \frac{-v}{ \pm c \sqrt{1-\frac{v^{2}}{c^{2}}}} \\
\frac{-\sqrt{1-\frac{v^{2}}{c^{2}}}}{ \pm \sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{array}\right]
$$

($\operatorname{det}=k^{2}-l^{2}=1$; where $k=\frac{1}{ \pm \sqrt{1-\frac{v^{2}}{c^{2}}}}, l=\frac{-v}{ \pm c \sqrt{1-\frac{v^{2}}{c^{2}}}}$) and the involutions

$$
(x, y) \rightarrow(x, y)\left[\begin{array}{cc}
\frac{1}{ \pm \sqrt{1-\frac{v^{2}}{c^{2}}}} & \frac{-v}{ \pm c \sqrt{1-\frac{v^{2}}{c^{2}}}} \\
\frac{v \sqrt{1-\frac{v^{2}}{c^{2}}}}{} & \frac{-1}{ \pm \sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{array}\right] ; \quad(\operatorname{det}=-1)
$$

which are the Lorentz reflections in the lines $y=\frac{-v}{c \pm \sqrt{c^{2}-v^{2}}} x$.

References

[1] W. Benz, Vorlesungen über Geometrie der Algebren, Springer V., Berlin - Heidelberg - New York, 1973.
[2] S. Blažev, Isometries of affine plane $A G(2, q)$, sent to publisher.
[3] I. Gunaltili, Z. Akca and S. Olgun, On finite circular spaces, Applied Sciences 8 (2006), 85-90.
[4] E. Hartmann, Planar Circle Geometries, lecture notes, Darmstadt, 2004.
[5] E. M. Schröder, Metric geometry, in: F. Buekenhout, ed., Handbook of incidence geometry, Elsevier, Amsterdam, 1995, 945-1013.
[6] E. Snapper and R.J. Troyer, Metric affine geometry, Academic Press, New York, 1971.

Authors' addresses:
Sunčica Blažev
Hrvatskih žrtava 85, 21210 Solin, Croatia.
e-mail: susa7777@yahoo.com
Vlado Cigić
Fakultet strojarstva i računarstva,
University of Mostar, Matice hrvatske bb., 88000 Mostar, BiH

[^0]: Balkan Journal of Geometry and Its Applications, Vol.12, No.1, 2007, pp. 9-15.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2007.

