
Ordinary differential equations on infinite

dimensional manifolds

M. Aghasi and A. Suri

Abstract. By using the Tangent bundle of a finite or infinite dimensional
manifold we provide an alternative way to study the first and second order
ordinary differential equations on M . We apply the vector fields with their
integral curves, autoparallel curves and a new technique in the sense of [2],
[6], [7], to introduce a new way to study ordinary differential equations on
Banach manifolds and also a certain type of Fréchet manifolds obtained
as projective limits of Banach manifolds. Moreover we extend the concept
of completeness for Banach and Fréchet manifolds. In the other words we
will prove that if M is a compact Banach (Fréchet) manifold then it is
complete ie it’s autoparallel curves are defined on the whole of real line R.
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Introduction.
The study of infinite dimensional manifolds have received an increasing interest

by its interaction with the modern differential geometry and theoretical physics. (see
for example, [4], [13])
The main problems related to the manifolds modelled on non-Banach spaces and
specially Fréchet spaces, are the pathological structure of general linear group GL(F)
and the lack of a general solvability for differential equations. (see [9]) These obstacles
can be overcomes if we restrict ourselves to the category of Fréchet manifolds obtained
as projective limits of Banach manifolds.

In [8] G.N. Galanis successfully generalized a vector bundle structure for TM by
replacing the pathological structure of GL(E) by H0(F ).
In the present work we study the first and second order ordinary differential equa-
tions on infinite dimensional manifolds. These equations assigned to vector fields and
their integral curves and also autoparallel curves. First we investigate these equations
for Banach modelled manifolds and in the further step for a wide class of Fréchet
manifolds. Furthermore we develop interesting problems related to the completeness
of vector fields from Banach to Fréchet case. Consequently we develop the concept of
completeness for Banach manifolds and in the next step for Fréchet manifolds.
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1 Preliminaries

In this section we introduce some of the basic notions for the rest of the paper. Let M
be a smooth manifold modelled on the Banach space E with the atlas {(Uα, ψα)}α∈I

and let {(π−1(Uα), Ψα)}α∈I and {(π−1
TM (π−1

M (Uα)), Ψ̃α)}α∈I be the corresponding triv-
ialization for TM and T (TM) respectively.
A connection on M is a vector bundle morphism

∇ : T (TM) −→ TM.

According to the formalism of [14] the connection ∇ is fully characterized by its family
of Christoffel symbols {Γα}α∈I where;

Γα : ψα(Uα) → L(E,L(E,E)) ; α ∈ I,

and the local expression of ∇, i.e. ∇α = Ψα ◦ ∇ ◦ Ψ̃−1
α is as follows:

∇α : ψα(Uα)× E× E× E −→ ψα(Uα)× E
(y, u, v, w) 7−→ (y, w + Γα(y)(u, v)).

2 Ordinary differential equations on Banach mani-
folds

2.1 Integral curves of vector fields

Let M be a smooth Banach manifold and ξ ∈ C∞(TM). An integral curve of ξ is a
smooth curve θ : J −→ M such that Ttθ(∂t) = ξ(θ(t)) where J is an open interval of
R containing 0 and ∂t is the tangent vector of TtR produced by c : R −→ R, ċ(0) = 1.

Theorem 2.1. Let M be a smooth manifold modelled on the Banach space E. The
existence of an integral curve for ξ ∈ C∞(TM) is equivalent to the existence of
solution for a system of differential equations on E.

Proof : Let {(Uα, ψα)}α∈I be an atlas for the smooth manifold M . Considering the
corresponding atlas for TM , we find out that the local expression of Ttθ(∂t) = ξ(θ(t))
is as follows;

Ψα(Tt(θ(∂t))) = Ψα([θ ◦ c, θ(t)]) = ((ψα ◦ θ)(t), (ψα ◦ θ ◦ c)′(0))
= ((ψα ◦ θ)(t), Tt(ψα ◦ θ)(1))
= ((ψα ◦ θ)(t), (ψα ◦ θ)′(t)); α ∈ I.

Hence (ψα ◦ θ)′(t) = Ψ2
α(ξ(θ(t))), where Ψ2

α states the projection of Ψα onto its
second factor. ¤

So the existence of integral curves for vector fields generalizes the concept of
differential equations on manifolds.

Theorem 2.2. For any vector field ξ and any x ∈ M , there exists a unique integral
curve θ satisfying the initial condition θ(0) = x.



Ordinary differential equations 3

Recall that a vector field ξ is said to be complete if every integral curve of ξ
is defined on the whole of real line R. As it is stated in [10] we have the following
criterion for the characterization of manifolds with complete vector fields.

Lemma 2.3. Suppose that M is a compact manifold modelled on the Banach space
E, then every vector field of M is complete.

2.2 Autoparallel curves

We know that if M is an n-dimensional Riemannian manifold with the Levi-Civita
connection, then the existence of geodesics is equivalent to having solution of a system
of second order differential equations on the model space i.e. Rn.
In the case of non-Riemannian manifolds we have no metric and hence no geodesic,
but still there exist autoparallel curves. Here we characterize the system of differential
equations assigned to an autoparallel curve γ : J 7−→ M .
According to [14] ∇TγTγ = ∇T (Tγ), and the local expression of ∇T (Tγ) = 0 is as
follows;

∇TγTγ = Ψ−1
α ◦ ∇α ◦ Ψ̃α(Tt(Tt(γ(∂t))))

= Ψ−1
α ◦ ∇α((ψα ◦ γ)(t), (ψα ◦ γ)′(t), (ψα ◦ γ)′(t), (ψα ◦ γ)′′(t))

= Ψ−1
α ((ψα ◦ γ)(t), (ψα ◦ γ)′′(t)

+Γα((ψα ◦ γ)(t))[(ψα ◦ γ)′(t), (ψα ◦ γ)′(t)])
= 0,

that is ∇TγTγ = 0 iff

(1) (ψα ◦ γ)′′(t) + Γα((ψα ◦ γ)(t))[(ψα ◦ γ)′(t), (ψα ◦ γ)′(t)] = 0, α ∈ I.

So we can state the following theorem.

Theorem 2.4. Let M be a smooth manifold modelled on the Banach space E. If
x ∈ M and y ∈ TxM , then there exists a unique autoparallel curve γ : J −→ M such
that γ(0) = x and Ttγ(∂t) = y.

Now we probe the relations between autoparallel curves and conjugate connections
on a smooth manifold M . For a smooth mapping g : M −→ N the linear connections
∇M and ∇N on M and N (respectively), are g-conjugate if Tg ◦ ∇M = ∇N ◦ T (Tg).

Corollary 2.5. let γ be an autoparallel curve in (M,∇) and g : M −→ M be a
diffeomorphism. Then g ◦ γ is an autoparallel curve of (M,∇′) where ∇′ is a g-
conjugate connection on M .

Proof : g ◦ γ is an autoparallel curve in (M,∇′) if and only if:

(ψβ ◦ g ◦ γ)′′(t) + Γ′β((ψβ ◦ g ◦ γ)(t))[(ψβ ◦ g ◦ γ)′(t), (ψβ ◦ g ◦ γ)′(t)] = 0.

If G = ψβ ◦ g ◦ ψ−1
α then;
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(ψβ ◦ g ◦ γ)′′(t) + Γ′β((ψβ ◦ g ◦ γ)(t))[(ψβ ◦ g ◦ γ)′(t), (ψβ ◦ g ◦ γ)′(t)]

= (G ◦ ψα ◦ γ)′′(t) + DG((ψα ◦ γ)(t))
(
Γα((ψα ◦ γ)(t))[(ψα ◦ γ)′(t)

, (ψα ◦ γ)(t)]
)
−D(DG)((ψα ◦ γ)(t))[(ψα ◦ γ)′(t), (ψα ◦ γ)′(t)]

= DG((ψα ◦ γ)(t))((ψα ◦ γ)′′(t)) + D(DG)((ψα ◦ γ)(t))[(ψα ◦ γ)′(t)

, (ψα ◦ γ)′(t)] + DG((ψα ◦ γ)(t))
(
Γα((ψα ◦ γ)(t))[(ψα ◦ γ)′(t)

, (ψα ◦ γ)′(t)]
)
−D(DG)((ψα ◦ γ)(t))[(ψα ◦ γ)′(t), (ψα ◦ γ)′(t)] = 0

Hence ∇′Tg◦γTg ◦ γ = 0. ¤
In the following lemma we study about the concept of completeness for Banach

manifolds. On the other hand we will investigate that under which conditions the
autoparallel curves are defined on the whole of real line R. (or simply M is complete)

In the case that M is a finite dimensional Riemannian manifold we know that if
M is complete as a metric space then it is geodetically complete. Also in the case of
Finsler-Cartan-Hadamard, the geodesics of a Banach manifold M with spray F are
complete iff M is complete as a metric space. (for more details see [12])

Here in spite of this difficulty that we have no metric or even a Finsler manifold,
we will obtain an analogous result for the Banach and in the further for Fréchet
manifolds.

Lemma 2.6. Let M be a compact smooth manifold modelled on Banach space E.
Then M is complete.

As it is shown in [2] either in the frame works of tangent bundles and second order
tangent bundles (bundle of accelerations), the autoparallel curves are defined with a
same system of ordinary differential equations . Thus for the complete proof of the
last lemma we refer to [3].

3 Fréchet case

Here we focus on those Fréchet manifolds which can be obtained as projective limits
of Banach manifolds.
Let {M i, ϕji}i,j∈N be a projective system of manifolds modelled on the projective
system of Banach spaces {Ei, ρji}i,j∈N respectively. Furthermore suppose that for x =
(xi)i∈N ∈ M = lim←−M i there exists a projective system of local charts {(U i, ψi)}i∈N
such that xi ∈ U i and lim←−U i is open in M . Then we can endow M = lim←−M i with a
Fréchet manifold structure modelled on the Fréchet space F = lim←−Ei.
Furthermore suppose that for each i ∈ N, ∇i be a linear connection on M i such that
∇ = lim←−∇i exists.

The intrinsic problems related to pathological structure of GL(E) overcome if we
replace it with the generalized Lie group;

H0(F) = {(li)i∈N ∈
∞∏

i=1

GL(Ei) : ρji ◦ lj = lk ◦ ρjk; for k ≤ j ≤ i}.



Ordinary differential equations 5

In fact H0(F) is isomorphic to the projective limit of Banach Lie groups

Hi
0(F) = {(l1, l2, ..., li) ∈

i∏

k=1

GL(Ek) : ρjk ◦ lj = lk ◦ ρjk; for k ≤ j ≤ i}.

By these notations we can endow the tangent bundle of M = lim←−M i with a vector
bundle structure with fibres of type F = lim←−Ei and the structure group H0(F). (for
more details see [8]).

TM = lim←−TM i provides an alternative way to study the first and second order
ordinary differential equations on Fréchet modelled manifolds. Moreover we can over-
come the difficulties related to the existence and uniqueness of solutions of differential
equations on Fréchet manifolds which obtain as projective limits of Banach manifolds.
Our results about the existence and uniqueness of solutions will be compatible with
the Banach case.

Theorem 3.1. Let ξ be a vector field on the Fréchet manifold M = lim←−M i which can
be considered as the projective limit of vector fields {ξi}i∈N of {M i}i∈N respectively.
Then ξ admits locally a unique integral curve θ, satisfying an initial condition of the
form θ(0) = x for x ∈ M .

Proof : Since for each i ∈ N, ξi is a vector field of the Banach manifold M i, by
theorem 2.1 there exists a unique integral curve θi such that

(ψi
α ◦ θi)′ = Ψ2,i

α (ξi(θi(t))); α ∈ I,

and θi(0) = xi = ϕi(x) where ϕi : M −→ M i is the canonical projection. we claim
that θ = lim←− θi exists and satisfies the conditions of the theorem. For this aim we have
to prove that ϕji ◦ θj = θi for j ≥ i. We prove that ϕji ◦ θj is also an integral curve
of ξi.

(ψi
α ◦ (ϕji ◦ θj))′(t) = (ρji ◦ (ψj

α ◦ θj))′(t) = ρji(ψj
α ◦ θj)′(t)

= ρji(Ψ2,j
α (ξj(θj(t)))) = Ψ2,j

α (Tϕji(ξj(θj(t)))
= Ψ2,j

α (ξj(ϕji ◦ θj(t))).

Furthermore ϕji ◦ θj(xj) = xi, hence by theorem 2.1 ϕji ◦ θj = θi i.e. {θi}i∈N is
a projective system of curves and θ = lim←− θi exists. θ fulfils the conditions of the
theorem, in fact

(ψα ◦ θ)′(t) = ((ψi
α ◦ θi)′(t))i∈N = (Ψ2,i

α (ξi(θi(t))))i∈N = Ψ2
α(ξ(θ(t))).

For the uniqueness of θ, suppose that γ is another curve satisfying the conditions of
the theorem, then ϕi◦γ is an integral curve of ξi which ϕi◦γ(0) = xi. By the theorem
3, ϕi ◦ γ = θi and consequently θ = γ. ¤

Here we generalize lemma 2.3 for projective limit manifolds.

Lemma 3.2. Let M = lim←−M i be a compact manifold modelled on the Fréchet space
F = lim←−Ei. If M is compact, then every vector field of M obtained as projective limit
of Banach vector fields {ξi}i∈N is complete.
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Proof : The proof is a direct result of this note that for any i ∈ N, the projection
map ϕ : M −→ M i is continuous and surjective. So M i is compact and by applying
lemma 2.3 for any i ∈ N, ξi is complete. Hence ξ = lim←− ξi is a complete vector field.¤

Theorem 3.3. Let M = lim←−M i be a smooth manifold modelled on the Fréchet space
F = lim←−Ei. For x ∈ M and y ∈ TxM there exists a unique autoparallel curve γ :
J −→ M such that γ(0) = x and Ttγ(∂t) = y.

Proof : Let ∇ = lim←−∇i be a connection on M = lim←−M i, then by the theorem 2.4
for each i ∈ N, there exists a unique autoparallel curve γi such that γi(0) = ϕi(x) = xi

and Ttγ
i(∂t) = Tϕi(y) = yi.

We claim that γ = lim←− γi exists and fulfils the equations (1). We show that for j ≥ i,
ϕji ◦ θj is also an autoparallel curve of M i with respect to ∇i. In fact;

(ψi
α ◦ (ϕji ◦ θj))′′(t) + Γi

α((ψi
α ◦ (ϕji ◦ θj))(t))

[(ψi
α ◦ (ϕji ◦ θj))′(t), (ψi

α ◦ (ϕji ◦ θj))′′(t)]
= (ρji ◦ (ψj

α ◦ θj))′′(t) + Γi
α((ρji ◦ (ψj

α ◦ θj))(t))
[(ρji ◦ (ψj

α ◦ θj))′(t), (ρji ◦ (ψj
α ◦ θj))′(t)

= ρji((ψj
α ◦ θj))′′(t) + Γi

α((ρji ◦ (ψj
α ◦ θj))(t))

[(ρji ◦ (ψj
α ◦ θj))′(t), (ρji ◦ (ψj

α ◦ θj))′(t)]
= ρji ◦ {(ψj

α ◦ θj)′′(t) + Γj
α((ψj

α ◦ θj)(t))[(ψj
α ◦ θj)′(t), (ψj

α ◦ θj)′(t)]}
= 0.

Furthermore ϕji ◦ γj(0) = ϕji(xj) = xi and Ttϕ
ji ◦ γj(∂t) = Tϕji(yj) = yi, hence

ϕji ◦ γj = γi i.e. γ = lim←− γi exists. On the other hand;

(ψα ◦ γ)′′(t) + Γα((ψα ◦ γ)(t))[(ψα ◦ γ)′(t), (ψα ◦ γ)′(t)]
= ((ψi

α ◦ γi)′′(t) + γi
α((ψi

α ◦ γi)(t))[(ψi
α ◦ γi)′(t), (ψi

α ◦ γi)′(t)])i∈N
= 0.

Let γ̄ be another autoparallel curve such that γ̄(0) = x and Ttγ̄(0) = y, then because
of the following equations, ϕi ◦ γ̄ is an autoparallel of M i with respect to ∇i.

(ψi
α ◦ ϕi ◦ γ̄)′′(t) + Γi

α((ψi
α ◦ ϕi ◦ γ̄)(t))[(ψi

α ◦ ϕi ◦ γ̄)′(t), (ψi
α ◦ ϕi ◦ γ̄)′(t)]

= (ρi ◦ ψα ◦ γ̄)′′(t) + Γi
α((ρi ◦ ψα ◦ γ̄)(t))[(ρi ◦ ψα ◦ γ̄)′(t), (ρi ◦ ψα ◦ γ̄)′(t)]

= ρi((ψα ◦ γ̄)′′(t) + Γα((ψα ◦ γ̄)(t))[(ψα ◦ γ̄)′(t), (ψα ◦ γ̄)′(t)])
= 0.

Moreover ϕi ◦ γ̄(0) = ϕi(x) = xi and Ttϕ
i ◦ γ̄(∂t) = yi. Hence according to theorem

2.4 ϕi ◦ γ̄ = θi i.e. θ is unique. ¤
At the sequel we state the following lemma which is an extension of lemma 2.6.

Lemma 3.4. Suppose that M = lim←−M i is a compact Fréchet manifold modelled on
the Fréchet space F = lim←−Fi. Then M is complete.
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Proof : For any i ∈ N the projection ϕi : M −→ M i; (xi)i∈N 7−→ xi is a continuous
surjection. So the compactness of M implies that for any i ∈ N, M i is a compact
Banach manifold modelled on the Banach space Ei. Let γ be an autoparallel on M
then ϕi ◦ γ is an autoparallel curve on M i. Using lemma 2.6 yields that γi is defined
on the whole of real line R and consequently γ = lim←− γi. ¤

Example 3.5. Consider E as a smooth manifold with the total chart (E, idE). If we
endow M = E with the canonical flat connection i.e. the connection on M such that its
Christoffel symbol vanishes everywhere, then the equations related to integral curves
of vector fields will reduce to;

θ′(t) = Ψ2
α(ξ(θ(t))).

Also the equation (1) takes the form

θ′′(t) = 0,

i.e. θ(t) = at+b. (Note that in the Riemannian case autoparallel curves coincide with
geodesics.)

As we mentioned earlier, the assigned equations are ordinary differential equations
on the Fréchet space F = lim←−Ei where the first one can be solved if we assume that
the vector field ξ is a projective limit vector field, and for the second equation if
∇ = lim←−∇i.
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