A basic inequality of submanifolds in quaternionic space forms

Dae Won Yoon

Abstract

In this article, we establish a sharp inequality involving δ-invariant introduced by Chen for submanifolds in quaternionic space forms of constant quaternionic sectional curvature with arbitrary codimension.

Mathematics Subject Classification: 53B25, 53B35.
Key words: δ-invariant, scalar curvature, mean curvature, quaternionic space form.

1 Introduction

Let \tilde{M} be a $4 m$-dimensional Riemannian manifold with metric $g . \tilde{M}$ is called a quaternionic Kaehler manifold if there exists a 3 -dimensional vector space V of tensors of type $(1,1)$ with local basis of almost Hermitian structure ϕ_{1}, ϕ_{2} and ϕ_{3} such that for all $i \in\{1,2,3\}$:
(a) $\phi_{i} \phi_{i+1}=\phi_{i+2}=-\phi_{i+1} \phi_{i}$ and $\phi_{i}^{2}=-1(i \bmod 3)$,
(b) for any local cross-section ξ of $V, \tilde{\nabla}_{X} \xi$ is also a cross-section of V, where X is an arbitrary vector field on \tilde{M} and $\tilde{\nabla}$ the Riemannian connection on \tilde{M}. In fact, condition (b) is equivalent to the following condition:
(b^{\prime}) there exist local 1-forms q_{1}, q_{2}, q_{3} such that

$$
\tilde{\nabla}_{X} \phi_{i}=q_{i+2}(X) \phi_{i+1}-q_{i+1}(X) \phi_{i+2} \quad(i \bmod 3) .
$$

Now, let X be a unit vector on \tilde{M}, then $X, \phi_{1}(X), \phi_{2}(X)$ and $\phi_{3}(X)$ form an orthonormal frame on \tilde{M}. We denote by $Q(X)$ the 4 -plane spanned by them, and denote by $\pi(X, Y)$ the plane spanned by X, Y. Any 2 -plane in $Q(X)$ is called a quaternionic plane. The sectional curvature of a quaternionic
plane π is called the quaternionic sectional curvature of π. A quaternionic Kaehler manifold is a quaternionic space form if its quaternionic sectional curvatures are equal to a constant, say $4 c$. A quaternionic space form will be denoted by $\tilde{M}(4 c)$. It is well-known that a quaternionic Kaehler manifold \tilde{M} is a quaternionic space form if and only if its curvature tensor \tilde{R} is of the following ([4]):

$$
\begin{aligned}
\tilde{R}(X, Y) Z & =c\{g(Y, Z) X-g(X, Z) Y \\
& \left.+\sum_{i=1}^{3}\left(g\left(\phi_{i} Y, Z\right) \phi_{i} X-g\left(\phi_{i} X, Z\right) \phi_{i} Y-2 g\left(\phi_{i} X, Y\right) \phi_{i} Z\right)\right\}
\end{aligned}
$$

for vectors X, Y, Z tangent to \tilde{M}.
An n-dimensional Riemannian manifold M isometrically immersed in $\tilde{M}(4 c)$ is called invariant if $\phi_{i}(i=1,2,3)$ maps the tangent space $T_{p} M$ into $T_{p} M$ for each point $p \in M$. Also, M is called totally real or anti-invariant if ϕ_{i} maps the tangent space $T_{p} M$ into $T_{p}^{\perp} M$ for each point $p \in M$, that is, $\phi_{i}\left(T_{p} M\right) \subset T_{p}^{\perp} M$, where $T_{p}^{\perp} M$ is the normal space of M in $\tilde{M}(4 c)$. A submanifold M is said to admit a quasi anti-invariant structure of rank k in $\tilde{M}(4 c)$ if the tangent bundle $T M$ of M is decomposed as $T M=\mathcal{D} \oplus \mathcal{D}^{\perp}$ satisfying ([6]):
(i) \mathcal{D} and \mathcal{D}^{\perp} are mutually orthogonal.
(ii) \mathcal{D}^{\perp} is anti-invariant under the action of ϕ_{i} for every point p of M.
(iii) $\operatorname{dim} \mathcal{D}^{\perp}=k$.

Let ∇ be the induced Levi-Civita connection on M. Then the Gauss and Weingarten formulas are given respectively by

$$
\begin{gathered}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \\
\tilde{\nabla}_{X} V=-A_{V} X+D_{X} V
\end{gathered}
$$

for vector fields X, Y tangent to M and a vector field V normal to M, where h denotes the second fundamental form, D the normal connection and A_{V} the shape operator in the direction of V. The second fundamental form and the shape operator are related by

$$
g(h(X, Y), V)=g\left(A_{V} X, Y\right)
$$

We also use g for the induced Riemannian metric on M as well as the quaternionic space form $\tilde{M}(4 c)$. The mean curvature vector H on M in $\tilde{M}(4 c)$ plays an important role in determining our basic inequality later that is defined by

$$
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)=\operatorname{tr} h
$$

where $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a local orthonormal frame of tangent bundle $T M$ of M. A submanifold M in $\tilde{M}(4 c)$ is called minimal if the mean curvature vector H vanishes identically over M.

2 Riemannian invariants

Riemannian invariants of a Riemannian manifold are the intrinsic characteristic of the Riemannian manifold. In this section, we recall a string of Riemannian invariants on a Riemannian manifold ([3]).

For an n-dimensional Riemannian manifold M, we denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$. For any orthornormal basis e_{1}, \cdots, e_{n} of the tangent space $T_{p} M$, the scalar curvature τ at p is defined by to be

$$
\begin{equation*}
\tau(p)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right) . \tag{2.1}
\end{equation*}
$$

Chen introduced an invariant δ_{M} on M by using

$$
(\inf K)(p)=\inf \left\{K(\pi) \mid \pi \text { is a plane section } \subset T_{p} M\right\}
$$

in the following manner:

$$
\begin{equation*}
\delta_{M}=\tau-\inf K \tag{2.2}
\end{equation*}
$$

Let L be a subspace of $T_{p} M$ of dimension $r \geq 2$ and $\left\{e_{1}, \cdots, e_{r}\right\}$ an orthonormal basis of L. We define the scalar curvature $\tau(L)$ of the r-plane section L by

$$
\begin{equation*}
\tau(L)=\sum_{\alpha<\beta} K\left(e_{\alpha} \wedge e_{\beta}\right), \quad 1 \leq \alpha, \beta \leq r . \tag{2.3}
\end{equation*}
$$

Given an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of the tangent space $T_{p} M$, we simply denote by $\tau_{1 \ldots r}$ the scalar curvature of the r-plane section spanned by e_{1}, \cdots, e_{r}. The scalar curvature $\tau(p)$ of M at p is nothing but the scalar curvature of the tangent space of M at p, and if L is a 2 -plane section, $\tau(L)$ is nothing but the sectional curvature $K(L)$ of L. Geometrically, $\tau(L)$ is nothing but the scalar curvature of the image $\exp _{p}(L)$ of L at p under the exponential map at p. For an integer $k \geq 0$ denote by $\mathcal{S}(n, k)$ the finite set consisting of unordered k-tuples $\left(n_{1}, \cdots, n_{k}\right)$ of integers ≥ 2 satisfying $n_{1}<n$ and $n_{1}+\cdots+n_{k} \leq n$. Denote by $\mathcal{S}(n)$ the set of unordered k-tuples with $k \geq 0$ for a fixed n. For each k-tuple $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$ the sequence of Riemannian invariant $\mathcal{S}\left(n_{1}, \cdots, n_{k}\right)(p)$ is defined by

$$
\mathcal{S}\left(n_{1}, \ldots, n_{k}\right)(p)=\inf \left\{\tau\left(L_{1}\right)+\cdots+\tau\left(L_{k}\right)\right\},
$$

where L_{1}, \cdots, L_{k} run over all k mutually orthogonal subspaces of $T_{p} M$ such that $\operatorname{dim} L_{j}=n_{j}, j=1, \cdots, k$. The string of Riemannian curvature invariant $\delta\left(n_{1}, \cdots, n_{k}\right)$ is given by

$$
\begin{equation*}
\delta\left(n_{1}, \ldots, n_{k}\right)(p)=\tau(p)-\mathcal{S}\left(n_{1}, \ldots, n_{k}\right)(p) \tag{2.4}
\end{equation*}
$$

For each $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$, let $c\left(n_{1}, \cdots, n_{k}\right)$ and $b\left(n_{1}, \cdots, n_{k}\right)$ denote the positive constants given by

$$
\begin{gathered}
c\left(n_{1}, \cdots, n_{k}\right)=\frac{n^{2}\left(n+k-1-\sum n_{j}\right)}{2\left(n+k-\sum n_{j}\right)} \\
b\left(n_{1}, \cdots, n_{k}\right)=\frac{1}{2}\left(n(n-1)-\sum_{j=1}^{k} n_{j}\left(n_{j}-1\right)\right) .
\end{gathered}
$$

3 An inequality for submanifolds in quaternionic space form

Let M be an n-dimensional Riemannian manifold isometrically immersed in a $4 m$-dimensional quaternionic space form $\tilde{M}(4 c)$ of constant quaternionic sectional curvature $4 c$. Then, the Gauss equation on M is given by

$$
\begin{align*}
& g(R(X, Y) Z, W)=c\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)+ \tag{3.1}\\
& \left.\quad+\sum_{i=1}^{3}\left[g\left(\phi_{i} Y, Z\right) g\left(\phi_{i} X, W\right)-g\left(\phi_{i} X, Z\right) g\left(\phi_{i} Y, W\right)-2 g\left(\phi_{i} X, Y\right) g\left(\phi_{i} Z, W\right)\right]\right\}
\end{align*}
$$

for vectors X, Y, Z tangent to \tilde{M}. For any $p \in M$ and for any $X \in T_{p} M$, we have $\phi_{i} X=P_{i} X+F_{i} X, P_{i} \in T_{p} M, F_{i} \in T_{p}^{\perp} M, i=1,2,3$. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis of $T_{p} M$. We put

$$
\left\|P_{k}\right\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P_{k} e_{i}, e_{j}\right), \quad k=1,2,3
$$

On the other hand, the scalar curvature τ satisfies

$$
\begin{equation*}
2 \tau=n(n-1) c+3 c \sum_{i=1}^{3}\left\|P_{i}\right\|^{2}+n^{2}\|H\|^{2}-\|h\|^{2} . \tag{3.2}
\end{equation*}
$$

Let $L \subset T_{p} M$ be a subspace of $T_{p} M, \operatorname{dim} L=r$. We put

$$
\alpha_{k}(L)=\sum_{1 \leq i \leq j \leq r} g^{2}\left(P_{k} e_{i}, e_{j}\right), \quad k=1,2,3,
$$

where $\left\{e_{1}, \cdots, e_{r}\right\}$ is an orthonormal basis of L.
We now recall Chen's lemma:

Lemma 3.1.([2]) Let a_{1}, \cdots, a_{n}, c be $n+1(n \geq 2)$ real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+c\right)
$$

Then, $2 a_{1} a_{2} \geq c$, with the equality holding if and only if $a_{1}+a_{2}=a_{3}=\cdots=$ a_{n}.

Theorem 3.2. Let M be an n-dimensional submanifold of a 4m-dimensional quaternionic space form $\tilde{M}(4 c)$ of constant quaternionic sectional curvature $4 c$. Then, for any point $p \in M$ and any plane section π in $T_{p} M$, we have

$$
\begin{align*}
\tau-K(\pi) \leq & \frac{(n-2)(n+1)}{2} c+\frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2} \\
& -3 c \sum_{i=1}^{3} \alpha_{i}(\pi)+\frac{3 c}{2} \sum_{i=1}^{3}\left\|P_{i}\right\|^{2} . \tag{3.3}
\end{align*}
$$

The equality holds at $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{n+1}, \cdots, e_{4 m}\right\}$ for $T_{p}^{\perp} M$ such that (a) $\pi=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ (b) the shape operator $A_{r}=A_{e_{r}}, r=n+1, \cdots, 4 m$, take the following forms:

$$
\begin{align*}
& A_{n+1}=\left(\begin{array}{ccccc}
a & 0 & 0 & \ldots & 0 \\
0 & b & 0 & \ldots & 0 \\
0 & 0 & c & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & c
\end{array}\right), \tag{3.4}\\
& A_{r}=\left(\begin{array}{ccccc}
c_{r} & d_{r} & 0 & \ldots & 0 \\
d_{r} & -c_{r} & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right), \tag{3.5}
\end{align*}
$$

where $a+b=c$ and $c_{r}, d_{r} \in \mathbb{R}$.
Proof. Let p be a point of M and π be a plane section contained in the tangent space $T_{p} M$ of M at p. We choose an orthonormal basis $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ for $T_{p} M$ and $\left\{e_{n+1}, \cdots, e_{4 m}\right\}$ for the normal space $T_{p}^{\perp} M$ at p such that e_{1} and e_{2} generator the plane section π and the normal vector e_{n+1} is in the driction of the mean curvature vector H. Then the Gauss equation (3.1) gives

$$
\begin{aligned}
K(\pi)=K\left(e_{1} \wedge e_{2}\right) & =c+3 c \sum_{i=1}^{3} \alpha_{i}(\pi)+h_{11}^{n+1} h_{22}^{n+1} \\
& +\sum_{r \geq n+2} h_{11}^{r} h_{22}^{r}-\left(h_{12}^{n+1}\right)^{2}-\sum_{r \geq n+2}\left(h_{12}^{r}\right)^{2} .
\end{aligned}
$$

We put

$$
\begin{equation*}
\rho=2 \tau-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}-3 c \sum_{i=1}^{3}\left\|P_{i}\right\|^{2}-n(n-1) c . \tag{3.6}
\end{equation*}
$$

Substituting (3.2) into (3.6), we have

$$
n^{2}\|H\|^{2}=(n-1)\left(\rho+\|h\|^{2}\right),
$$

in other words,

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left(\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r \geq n+2} \sum_{i, j}\left(h_{i j}^{r}\right)^{2}+\rho\right) .
$$

Applying Lemma 3.1, we get

$$
h_{11}^{n+1} h_{22}^{n+1} \geq \frac{1}{2}\left(\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j}\left(h_{i j}^{r}\right)^{2}+\rho\right) .
$$

Thus, we have

$$
\begin{align*}
K(\pi) \geq & c+3 c \sum_{i=1}^{3} \alpha_{i}(\pi)+\frac{1}{2} \rho+\sum_{r=n+1}^{4 m} \sum_{j>2}\left\{\left(h_{1 j}^{r}\right)^{2}+\left(h_{2 j}^{r}\right)^{2}\right\} \tag{3.7}\\
& +\frac{1}{2} \sum_{i \neq j>2}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{4 m} \sum_{i, j>2}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{4 m}\left(h_{11}^{r}+h_{22}^{r}\right)^{2} .
\end{align*}
$$

Making use of (3.6), we get (3.3).
Suppose the equality of (3.3) holds. Then, the terms involving $h_{i j}^{r}$'s in (3.7) vanish at the same time and thus

$$
\begin{aligned}
& h_{1 j}^{n+1}=h_{2 j}^{n+1}=0, \quad h_{i j}^{n+1}=0, \quad i \neq j>2, \\
& h_{1 j}^{r}=h_{2 j}^{r}=h_{i j}^{r}=0, \quad r=n+2, \cdots, 4 m ; \quad i, j \geq 3, \\
& h_{11}^{r}+h_{22}^{r}=0, \quad r=n+2, \cdots, 4 m .
\end{aligned}
$$

Moreover, we may choose e_{1} and e_{2} such that $h_{12}^{n+1}=0$. Also, Lemma 3.1 implies that

$$
h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\cdots=h_{n n}^{n+1} .
$$

Therefore, the shape operator $A_{r}(r=n+1, \cdots, 4 m)$ take the form (3.4) and (3.5). The converse is obvious.

Theorem 3.3. Let M be an n-dimensional submanifold of a $4 m$-dimensional quaternionic projective space $\tilde{M}(4 c)(c>0)$ of constant quaternionic sectional curvature $4 c$. Then, for any point $p \in M$ and any plane section π in $T_{p} M$, we have

$$
\begin{equation*}
\delta_{M} \leq \frac{1}{2}\left(n^{2}+8 n-2\right) c+\frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2} \tag{3.8}
\end{equation*}
$$

with equality holding if and only if M is invariant.
Proof. We suppose that $c>0$, we must maximize the term $\sum_{i=1}^{3}\left\|P_{i}\right\|^{2}-$ $2 \sum_{i=1}^{3} \alpha_{i}(\pi)$ in (3.3). The maximum value is reached for $\left\|P_{i}\right\|^{2}=n, \alpha_{i}(\pi)=0$ ($i=1,2,3$), that is, M is invariant and we can also obtain (3.8).

Theorem 3.4. Let M be an n-dimensional submanifold of a 4m-dimensional quaternionic hyperbolic space $\tilde{M}(4 c)(c<0)$ of constant quaternionic sectional curvature $4 c$. Then, for any point $p \in M$ and any plane section π in $T_{p} M$, we have

$$
\begin{equation*}
\delta_{M} \leq \frac{(n-2)(n+1)}{2} c+\frac{n^{2}(n-2)}{2(n-1)}\|H\|^{2} \tag{3.9}
\end{equation*}
$$

with equality holding if and only if M admits a quasi anti- invariant structure of rank $n-2$.
Proof. Assume that $c<0$. We must minimize the last term $\sum_{i=1}^{3}\left\|P_{i}\right\|^{2}-$ $2 \sum_{i=1}^{3} \alpha_{i}(\pi)$ in (3.3) in order to estimate δ_{M}. For an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of $T_{p} M$ with $\pi=\operatorname{span}\left\{e_{1}, e_{2}\right\}$, we can write
$\sum_{i=1}^{3}\left\|P_{i}\right\|^{2}-2 \sum_{i=1}^{3} \alpha_{i}(\pi)=\sum_{k=1}^{3}\left(\sum_{i, j=3}^{n} g^{2}\left(\phi_{k} e_{i}, e_{j}\right)+2 \sum_{j=3}^{n}\left(g^{2}\left(\phi_{k} e_{1}, e_{j}\right)+g^{2}\left(\phi_{k} e_{2}, e_{j}\right)\right)\right)$.
Thus, the minimum vale is zero. This occurs only when $\pi=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ is orthogonal to $\operatorname{span}\left\{\phi_{k} e_{i} \mid i=3, \cdots, n, \quad k=1,2,3\right\}$. Furthermore, $\operatorname{span}\left\{\phi_{k} e_{i} \mid i=\right.$ $3, \cdots, n, \quad k=1,2,3\}$ is orthogonal to the tangent space $T_{p} M$. Thus, we have (3.9) with equality holding if and only if M admits a quasi anti-invariant structure of rank $(n-2)$.

Theorem 3.5. Let M be an n-dimensional submanifold of a 4m-dimensional quaternionic projective space $\tilde{M}(4 c)(c>0)$ of constant quaternionic sectional curvature 4c. Then, we have

$$
\begin{equation*}
\delta\left(n_{1}, \cdots, n_{k}\right) \leq c\left(n_{1}, \cdots, n_{k}\right)\|H\|^{2}+b\left(n_{1}, \cdots, n_{k}\right) c+\frac{9 n}{2} c \tag{3.10}
\end{equation*}
$$

for any k-tuple $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$.
The equality case of inequality (3.10) holds at a point $p \in M$ if and only if there exists an orthonormal basis $e_{1}, \cdots e_{4 m}$ at p such that the shape operators of M in $\tilde{M}(4 c)(c>0)$ at p take the following forms:

$$
A_{r}=\left(\begin{array}{cccc}
A_{1}^{r} & \ldots & 0 & \tag{3.11}\\
\vdots & \ddots & \vdots & \mathbf{0} \\
0 & \ldots & A_{k}^{r} & \\
& \mathbf{0} & & \mu_{r} I
\end{array}\right), \quad r=n+1, \cdots, 4 m
$$

where I is an identity matrix and each A_{j}^{r} are symmetric $n_{j} \times n_{j}$ submatrices such that

$$
\operatorname{trace}\left(A_{1}^{r}\right)=\cdots=\operatorname{trace}\left(A_{k}^{r}\right)=\mu_{r}
$$

Proof. Let M be a submanifold of a quaternionic projective space $\tilde{M}(4 c)(c>$ 0) of constant quaternionic sectional curvature $4 c$.

If $k=1$, this was done in Theorem 3.3. Hence, we assume $k>1$.
Let $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$. Put

$$
\begin{equation*}
\eta=2 \tau-n(n-1) c-\frac{n^{2}\left(n+k-1-\sum n_{j}\right)}{\left(n+k-\sum n_{j}\right)}\|H\|^{2}-3 c \sum_{i=1}^{3}\left\|P_{i}\right\|^{2} \tag{3.12}
\end{equation*}
$$

Substituting (3.2) into (3.12), we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=\gamma\left(\eta+\|h\|^{2}\right), \quad \gamma=n+k-\sum n_{j} \tag{3.13}
\end{equation*}
$$

Let L_{1}, \cdots, L_{k} be mutually orthogonal subspaces of $T_{p} M$ with $\operatorname{dim} L_{j}=$ $n_{j}, j=1, \cdots, k$. By choosing an orthonormal basis $e_{1}, \cdots, e_{4 m}$ at p such that

$$
L_{j}=\operatorname{Span}\left\{e_{n_{1}+\cdots+n_{j-1}+1}, \ldots, e_{n_{1}+\cdots+n_{j}}\right\}, \quad j=1, \cdots, k
$$

and e_{n+1} is in the direction of the mean curvature vector, we obtain from (3.13) that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\gamma\left(\eta+\sum_{i=1}^{n}\left(a_{i}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right) \tag{3.14}
\end{equation*}
$$

where $a_{i}=h_{i i}^{n+1}, i=1, \cdots, n$, and $\gamma=n+k-\sum n_{j}$.
We set

$$
\begin{equation*}
\Delta_{1}=\left\{1, \ldots, n_{1}\right\}, \cdots, \Delta_{k}=\left\{n_{1}+\cdots+n_{k-1}+1, \cdots, n_{1}+\cdots+n_{k}\right\} . \tag{3.15}
\end{equation*}
$$

In other words, the equation (3.14) can be rewritten in the form

$$
\begin{align*}
& \left(\sum_{i=1}^{\gamma+1} \bar{a}_{i}\right)^{2}=\gamma\left(\eta+\sum_{i=1}^{\gamma+1}\left(\bar{a}_{i}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right. \\
& \left.-\sum_{2 \leq \alpha_{1} \neq \beta_{1} \leq n_{1}} a_{\alpha_{1}} a_{\beta_{1}}-\sum_{\alpha_{2} \neq \beta_{2}} a_{\alpha_{2}} a_{\beta_{2}}-\cdots-\sum_{\alpha_{k} \neq \beta_{k}} a_{\alpha_{k}} a_{\beta_{k}}\right), \tag{3.16}\\
& \alpha_{2}, \beta_{2} \in \Delta_{2}, \ldots, \alpha_{k}, \beta_{k} \in \Delta_{k}
\end{align*}
$$

where we put

$$
\begin{aligned}
\bar{a}_{1} & =a_{1}, \bar{a}_{2}=a_{2}+\cdots+a_{n_{1}}, \\
\bar{a}_{3} & =a_{n_{1}+1}+\cdots+a_{n_{1}+n_{2}}, \ldots, \bar{a}_{k+1}=a_{n_{1}+\cdots+n_{k-1}+1}+\cdots+a_{n_{1}+\cdots+n_{k}}, \\
\bar{a}_{k+2} & =a_{n_{1}+\cdots+n_{k}+1}, \ldots, \bar{a}_{\gamma+1}=a_{n} .
\end{aligned}
$$

Applying Lemma 3.1 to (3.15), we can obtain the following inequality

$$
\begin{gather*}
\sum_{\alpha_{1}<\beta_{1}} a_{\alpha_{1}} a_{\beta_{1}}+\sum_{\alpha_{2}<\beta_{2}} a_{\alpha_{2}} a_{\beta_{2}}+\cdots+\sum_{\alpha_{k}<\beta_{k}} a_{\alpha_{k}} a_{\beta_{k}} \\
\geq \frac{\eta}{2}+\sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}, \tag{3.17}\\
\alpha_{j}, \beta_{j} \in \Delta_{j}, \quad j=1, \ldots, k .
\end{gather*}
$$

Furthermore, from (2.3) and Gauss' equation we see that

$$
\begin{align*}
\tau\left(L_{j}\right) & =\frac{n_{j}\left(n_{j}-1\right)}{2} c+3 c \sum_{l=1}^{3} \alpha_{l}\left(L_{j}\right) \tag{3.18}\\
& +\sum_{r=n+1}^{4 m} \sum_{\alpha_{j}<\beta_{j}}\left(h_{\alpha_{j} \alpha_{j}}^{r} h_{\beta_{j} \beta_{j}}^{r}-\left(h_{\alpha_{j} \beta_{j}}^{r}\right)^{2}\right), \quad \alpha_{j}, \beta_{j} \in \Delta_{j}, \quad j=1, \cdots, k .
\end{align*}
$$

Thus, combining (3.16) and (3.17) we get

$$
\begin{align*}
\tau\left(L_{1}\right)+\cdots & +\tau\left(L_{k}\right) \geq \frac{\eta}{2}+\sum_{j=1}^{k}\left(\frac{n_{j}\left(n_{j}-1\right)}{2} c+3 c \sum_{l=1}^{3} \alpha_{l}\left(L_{j}\right)\right) \\
& +\frac{1}{2} \sum_{r=n+1}^{4 m} \sum_{(\alpha, \beta) \notin \Delta^{2}}\left(h_{\alpha \beta}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{4 m} \sum_{j=1}^{k}\left(\sum_{\alpha_{j} \in \Delta_{j}} h_{\alpha_{j} \alpha_{j}}^{r}\right)^{2} \tag{3.19}\\
& \geq \frac{\eta}{2}+\sum_{j=1}^{k}\left(\frac{n_{j}\left(n_{j}-1\right)}{2} c+3 c \sum_{l=1}^{3} \alpha_{l}\left(L_{j}\right)\right)
\end{align*}
$$

where $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{k}, \quad \Delta^{2}=\left(\Delta_{1} \times \Delta_{1}\right) \cup \cdots \cup\left(\Delta_{k} \times \Delta_{k}\right)$.
Substituting (3.2) into (3.18), it follows that

$$
\begin{align*}
\tau-\sum_{j=1}^{k} \tau\left(L_{j}\right) & \leq c\left(n_{1}, \cdots, n_{k}\right)\|H\|^{2}+b\left(n_{1}, \cdots, n_{k}\right) c \\
& +\frac{3}{2} c\left(\sum_{i=1}^{3}\left\|P_{i}\right\|^{2}+2 \sum_{l=1}^{3} \sum_{j=1}^{k} \alpha_{l}\left(L_{j}\right)\right) \tag{3.20}
\end{align*}
$$

Since $c>0$, inequality (3.10) thus follows.
If the equality in (3.10) holds at a point p, then the inequalities in (3.16) and (3.18) are actually equalities at p. In this case, by applying Lemma 3.1 and (3.15)-(3.18), we also obtain (3.11). The converse can be verified by a straight-forward computation.

Corollary 3.6. Let M be an n-dimensional Riemannian manifold and $p \in M$. If there exists a k-tuple $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$ and a point $p \in M$ such that

$$
\begin{equation*}
\delta\left(n_{1}, \ldots, n_{k}\right)>\frac{1}{2}\left(n(n-1)-\sum_{j=1}^{k} n_{j}\left(n_{j}-1\right)+9 n\right) c \tag{3.21}
\end{equation*}
$$

then M admits no minimal submanifold into any $4 m$-dimensional quaternionic projective space $\bar{M}(4 c) \quad(c>0)$.

Theorem 3.7. Let M be an n-dimensional submanifold of a $4 m$-dimensional quaternionic hyperbolic space $\tilde{M}(4 c)(c<0)$ of constant quaternionic sectional curvature 4c. Then, we have

$$
\begin{equation*}
\delta\left(n_{1}, \cdots, n_{k}\right) \leq c\left(n_{1}, \cdots, n_{k}\right)\|H\|^{2}+b\left(n_{1}, \cdots, n_{k}\right) c \tag{3.22}
\end{equation*}
$$

for any k-tuple $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$.
The equality case of inequality (3.20) holds at a point $p \in M$ if and only if there exists an orthonormal basis $e_{1}, \cdots, e_{4 m}$ at p such that the shape operators of M in $\tilde{M}(4 c)(c<0)$ at p take the forms (3.11).

Proof. By using (3.19) and $c<0$, one gets (3.20).
Corollary 3.8. Let M be an n-dimensional Riemannian manifold and $p \in M$. If there exists a k-tuple $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$ and a point $p \in M$ such that

$$
\begin{equation*}
\delta\left(n_{1}, \ldots, n_{k}\right)>\frac{1}{2}\left(n(n-1)-\sum_{j=1}^{k} n_{j}\left(n_{j}-1\right)\right) c \tag{3.23}
\end{equation*}
$$

then M admits no minimal submanifold into any m-dimensional quaternionic hyperbolic space $\bar{M}(4 c) \quad(c<0)$.

Corollary 3.9. Let M be an n-dimensional totally real submanifold of a 4mdimensional quaternionic space form $\tilde{M}(4 c)$ of constant quaternionic sectional curvature 4c. Then, we have

$$
\begin{equation*}
\delta\left(n_{1}, \cdots, n_{k}\right) \leq c\left(n_{1}, \cdots, n_{k}\right)\|H\|^{2}+b\left(n_{1}, \cdots, n_{k}\right) c \tag{3.24}
\end{equation*}
$$

for any k-tuple $\left(n_{1}, \cdots, n_{k}\right) \in \mathcal{S}(n)$.
The equality case of inequality (3.21) holds at a point $p \in M$ if and only if there exists an orthonormal basis $e_{1}, \cdots, e_{4 m}$ at p such that the shape operators of M in $\tilde{M}(4 c)$ at p take the forms (3.11).

Proof. Let M be an n-dimensional totally real submanifold of a $4 m$-dimensional quaternionic space form $\tilde{M}(4 c)$. Then we have $\left\|P_{i}\right\|^{2}=0, \alpha_{i}(L)=0, i=$ $1,2,3$. Thus, from (3.19) we obtain (3.21).

References

[1] K. Arslan, R. Ezentas,n I. Mihai, C. Murathan and C. Özgur, B. Y.Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds, Bull. Inst. Math. Acad. Sinica, 29 (2001), 231-242.
[2] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568-578.
[3] B. Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japanese J. Math., 26 (2000), 105-127.
[4] S. Ishihara, Quaternion Kählerian manifolds, J. Diff. Geometry, 9 (1974), 483-500.
[5] J.-S. Kim and J. Choi, A basic inequality for submanifolds in a cosymplectic space form, Internat. J. Math. Math. Sci. 2003 (2003), 539-547.
[6] Y. H. Kim and D.-S. Kim, A basic inequality for submanifolds in Sasakian space forms, Houst. J. Math., 25 (1999), 247-257.
[7] N. G. Kim and D. W. Yoon, An obstruction to totally real submanifolds in locally conformal Kähler space forms, Far East J. Math. Sci., 3 (2001), 645-655.
[8] A. Oiaga and I. Mihai, B. Y. Chen inequalities for slant submanifolds in complex space forms, Demonstratio Math., 32 (1999), 835-846.
[9] M. M. Tripathi, J.-S. Kim and S.-B. Kim, A basic inequality for submanifolds in locally conformal almost cosymplectic manifolds, Proc. Indian Acad. Sci.(Math. Sci.), 112 (2002), 415-423.
[10] D. W. Yoon, B.-Y. Chen inequality CR-submanifolds of locally conformal Kaehler space forms, Demonstratio Math., 36 (2003), 189-198.

Dae Won Yoon
Department of Mathematics Education and RINS,
Gyeongsang National University, Chinju 660-701, Rep. of Korea, e-mail address: dwyoon@nongae.gsnu.ac.kr

