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Abstract

In this paper, we investigate n-dimensional complete space-like submanifolds
Mn with constant normalized scalar curvature R in a de Sitter space Sn+p

p (c).
Suppose that the normalized mean curvature vector field is parallel. We prove
that if the norm square ‖h‖2 of the second fundamental form of Mn satisfies
nR̄ ≤ ‖h‖2 ≤ min{α(n, R̄), β(n, R̄)}, then Mn is a totally umbilical submani-
fold; or n = 3 and M3 is a hyperbolic cylinder H1(c−λ2)×S2(c−µ2) in S4

1(c),
where R̄ = c− R ≥ 0, α(n, R̄) and β(n, R̄) are constants only depend on n and
R̄.

Mathematics Subject Classification: 53C42,53A10.
Key words: space-like submanifolds, de Sitter space, totally umbilical manifolds,

hyperbolic cylinder.

1. Introduction

A de Sitter space Sn+p
p (c) is an (n + p)-dimensional connected complete pseudo-

Riemannian manifold of index p with constant curvature c > 0. Goddard [7] conjec-
tured that a complete space-like hypersurface in Sn+1

1 (c) with constant mean cur-
vature H must be totally umbilical. Akutagawa [2] and Ramanathan [11] proved
independently that the conjecture is true if H2 ≤ c when n = 2 and n2H2 < 4(n−1)c
when n ≥ 3. Cheng [4] generalized this result to complete space-like submanifolds in
Sn+p

p (c) with parallel mean curvature vector. For the study of space-like hypersur-
faces with constant scalar curvature in a de Sitter space, Zheng ([15], [16]) proved that
the compact space-like hypersurface Mn in a de Sitter space Sn+1

1 (c) with constant
scalar curvature is totally umbilical if k(M) > 0 and R < c, where k(M) and R are
the sectional curvature and the normalized scalar curvature of Mn. Later, Cheng and
Ishikawa [5] showed that if the condition K(M) > 0 is deleted, then Zheng’s result in
[15], [16] is also true. Recently, Liu [8] proved the following theorem

Theorem 1. Let Mn be an n-dimensional (n ≥ 3) complete space-like hypersurface
with constant normalized scalar curvature R in an (n+1)-dimensional de Sitter space
Sn+1

1 and denote R̄ = 1 − R. If the norm square ‖h‖2 of the second fundamental
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form of Mn satisfies nR̄ ≤ sup ‖h‖2 ≤ D(n, R̄), then either (i) sup ‖h‖2 = nR̄ and
Mn is totally umbilical; or (ii) sup ‖h‖2 = D(n, R̄) and Mn is a hyperbolic cylinder
H1(1−coth2r)× Sn−1(1−tanh2r), where

D(n, R̄) =
n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n].

On the other hand, it is natural and very important to study n-dimensional sub-
manifolds with constant scalar curvature and higher codimension in a de Sitter space
Sn+p

p (c). But there are few results about it. In this paper, we shall prove the following

Theorem 2. Let Mn be an n-dimensional (n ≥ 3) complete space-like submanifold
with constant normalized scalar curvature R in an (n+p)-dimensional de Sitter space
Sn+p

p (c). Suppose that the normalized mean curvature vector field is parallel and R̄ =
c − R ≥ 0. If the norm square ‖h‖2 of the second fundamental form of Mn satisfies
nR̄ ≤ ‖h‖2 ≤ min{α(n, R̄), β(n, R̄)}, then Mn is a totally umbilical submanifold; or
n = 3 and M3 is a hyperbolic cylinder H1(c− λ2)× S2(c− µ2) in S4

1(c), where

α(n, R̄) =
n

n− 2
(n− 1)(n− 2)2R̄2 + [nc− (n− 1)R̄]2

(n− 2)2R̄ + 2[nc− (n− 1)R̄]
, β(n, R̄) =

n

n− 2
[nc−(n−1)R̄].

λ and µ are the two distinct principal curvatures of M3 such that one has the multi-
plicity 1 and the other the multiplicity 2.

2 Preliminaries

Let Sn+p
p (c) be an (n + p)-dimensional de Sitter space with index p. Let Mn be

an n-dimensional connected space-like submanifold immersed in Sn+p
p (c). We choose

a local field of semi-Riemannian orthonormal frames e1, · · · , en+p in Sn+p
p (c) such

that at each point of Mn, e1, · · · , en span the tangent space of Mn and form an
orthonormal frame there. We use the following convention on the range of indices:
1 ≤ A,B, C, · · · ≤ n+p; 1 ≤ i, j, k, · · · ≤ n; n+1 ≤ α, β, γ, · · · ≤ n+p. Let ω1, · · · , ωn+p

be its dual frame field so that the semi-Riemannian metric of Sn+p
p (c) is given by

ds̄2 =
∑
i

ω2
i −

∑
α

ω2
α =

∑
A

εAω2
A, where εi = 1 and εα = −1. Then the structure

equations of Sn+p
p (c) are given by

dωA =
∑

B

εBωAB ∧ ωB , ωAB + ωBA = 0,(1)

dωAB =
∑

C

εCωAC ∧ ωCB − 1
2

∑

C,D

KABCDωC ∧ ωD,(2)

KABCD = cεAεB(δACδBD − δADδBC).(3)

Restrict these form to Mn. Then we have

ωα = 0, n + 1 ≤ α ≤ n + p.(4)

From Cartan’s Lemma we have
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ωαi
=

∑

j

hα
ijωj , hα

ij = hα
ji.(5)

The connection forms of Mn are characterized by the structure equations

dωi =
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0,(6)

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωl,(7)

Rijkl = c(δikδjl − δilδjk)−
∑
α

(hα
ikhα

jl − hα
ilh

α
jk),(8)

where Rijkl are the components of the curvature tensor of Mn.
Denote by h the second fundamental form of Mn. Then

h =
∑

i,j,α

hα
ijωi ⊗ ωj ⊗ eα.(9)

Denote by ξ, H and ‖h‖2 the mean curvature vector field, the mean curvature and
the norm square of the second fundamental form of Mn. Then they are defined by

ξ =
1
n

∑
α

(
∑

i

hα
ii)eα, H = ‖ξ‖ =

1
n

√∑
α

(
∑

i

hα
ii)2, ‖h‖2 =

∑

i,j,α

(hα
ij)

2.(10)

Moreover, the normal curvature tensor {Rαβkl}, the Ricci curvature tensor {Rik} and
the scalar curvature n(n− 1)R are expressed as

Rαβkl =
∑
m

(hα
kmhβ

ml − hα
lmhβ

mk),(11)

Rik = (n− 1)cδik − n
∑
α

(
∑

l

hα
ll)h

α
ik +

∑

α,j

hα
ijh

α
jk,(12)

n(n− 1)(R− c) = ‖h‖2 − n2H2,(13)

where R is the normalized scalar curvature.
Define the first and the second covariant derivatives of {hα

ij}, say {hα
ijk} and {hα

ijkl}
by ∑

k

hα
ijkωk = dhα

ij +
∑

k

hα
kjωkj +

∑

k

hα
ikωkj +

∑

β

hβ
ijωβα,(14)

∑

l

hα
ijklωl = dhα

ijk +
∑
m

hα
mjkωmi +

∑
m

hα
imkωmj +

∑
m

hα
ijmωmk +

∑

β

hβ
ijkωβα.

We obtain the Codazzi equation by straightforward computations

hα
ijk = hα

ikj .(15)

It follows that the Ricci identities hold
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hα
ijkl − hα

ijlk =
∑
m

hα
mjRmjkl +

∑
m

hα
imRmjkl +

∑

β

hβ
ijRβαkl.(16)

The Laplacian of hα
ij is defined by ∆hα

ij =
∑
k

hα
ijkk. From (16) we obtain for any

α, n + 1 ≤ α ≤ n + p,

∆hα
ij =

∑

k

hα
kkij +

∑

k,m

hα
kmRmijk +

∑

k,m

hα
imRmkjk +

∑

k,β

hβ
ikRβαjk.(17)

In the case of the mean curvature vector ξ 6= 0, we know that en+1 = ξ/H is a normal
vector field defined globally on Mn. We define ‖µ‖2 and ‖τ‖2 by

‖µ‖2 =
∑

i,j

(hn+1
ij −Hδij)2, ‖τ‖2 =

∑
α>n+1

∑

i,j

(hα
ij)

2,(18)

respectively. Then ‖µ‖2 and ‖τ‖2 are functions defined on Mn globally, which do not
depend on the choice of the orthonormal frame {e1, · · · , en}. And we have

‖h‖2 = nH2 + ‖µ‖2 + ‖τ‖2.(19)

From the definition of the mean curvature vector ξ, we know nH =
∑
i

hn+1
ii and

∑
i

hα
ii = 0 for n + 2 ≤ α ≤ n + p on Mn.

From (13),(18) and (19), we have

∆(n2H2) = ∆‖h‖2 = ∆(trH2
n+1) + ∆‖τ‖2.(20)

Hence, from (8),(11) and (17) and by a direct calculation we conclude

1
2∆(trH2

n+1) =
∑

i,j,k

(hn+1
ijk )2 +

∑
i,j

hn+1
ij ∆hn+1

ij

=
∑

i,j,k

(hn+1
ijk )2 +

∑
i,j

hn+1
ij (nH)ij + nctrH2

n+1 − n2H2c

−nHtr(H3
n+1) + [tr(H2

n+1)]
2 +

∑
β>n+1

[tr(Hn+1Hβ)]2,

(21)

1
2∆‖τ‖2 =

∑
i,j,k,α>n+1

(hα
ijk)2 +

∑
i,j,α>n+1

hα
ij∆hα

ij

=
∑

i,j,k,α>n+1

(hα
ijk)2 + nc‖τ‖2 − nH

∑
α>n+1

tr(H2
αHn+1)

+
∑

α>n+1
[tr(Hn+1Hα)]2 +

∑
α,β>n+1

[tr(HαHβ)]2,

(22)

where Hα denote the matrix (hα
ij) for all α.

We need the following Lemmas.

Lemma 1( [3]). Let {µi}n
i=1 be a set of real numbers satisfying

∑
i

µi = 0 and
∑
i

µ2
i = β2, where β ≥ 0. Then

|
∑

i

µ3
i | ≤

n− 2√
n(n− 1)

β3,(23)
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and the equalities hold if and only if at least n − 1 of the µi’s are equal with each
other.

Lemma 2 ([10], [13])). Let Mn be a complete Riemannian manifold whose Ricci
curvature is bounded from below. If F is a C2-function bounded from above on Mn,
then for any ε > 0, there is a point x ∈ Mn such that

sup F − ε < F (x), ‖∇F‖(x) < ε, ∆F (x) < ε.(24)

Lemma 3( [12]). Let A,B be symmetric n × n matrices satisfying AB = BA and
trA =trB = 0. Then

|trA2B| ≤ n− 2√
n(n− 1)

(trA2)(trB2)1/2.(25)

3 Proof of Theorem 2

For a C2-function f defined on Mn, we defined its gradient and Hessian (fij) by
the following formulas

df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji.(26)

Let T =
∑
i,j

Tijωi ⊗ ωj be a symmetric tensor on Mn defined by

Tij = nHδij − hn+1
ij .(27)

Following Cheng-Yau [6], we introduce an operator 2 associated to T acting on f by

2f =
∑

i,j

Tijfij =
∑

i,j

(nHδij − hn+1
ij )fij .(28)

By a simple calculation and from (20), we obtain

2(nH) =
∑
i,j

(nHδij − hn+1
ij )(nH)ij

= 1
2∆(n2H2)− ‖grad(nH)‖2 −∑

i,j

hn+1
ij (nH)ij

= 1
2∆(trH2

n+1) + 1
2∆‖τ‖2 − ‖grad(nH)‖2 −∑

i,j

hn+1
ij (nH)ij .

(29)

We choose a local orthonormal frame field {e1, · · · , en} such that hn+1
ij = λiδij . Since∑

i

(λi −H) = 0, then

∑

i

(λi −H)2 =
∑

i

λ2
i − nH2 = tr H2

n+1 − nH2 = ‖µ‖2.

Then by Lemma 1

−nHtr(H3
n+1) = −nH

∑
i

λ3
i

= −3nH2‖µ‖2 − n2H4 − nH
∑
i

(λi −H)3

≥ −3nH2‖µ‖2 − n2H4 − n(n−2)√
n(n−1)

H‖µ‖3.
(30)
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From (21),(30) and trH2
n+1 = ‖µ‖2 + nH2,we have

1
2∆(trH2

n+1) ≥ ∑
i,j,k

(hn+1
ijk )2 +

∑
i,j

hn+1
ij (nH)ij

+‖µ‖2{‖µ‖2 − n(n−2)√
n(n−1)

H‖µ‖+ nc− nH2}
≥ ∑

i,j,k

(hn+1
ijk )2 +

∑
i,j

hn+1
ij (nH)ij

+‖µ‖2{nc− nH2 − n(n−2)√
n(n−1)

H‖µ‖}.

(31)

Let Mn be a compele connected submanifold in Sn+p
p (c) with nowhere zero mean

curvature H. Suppose that the normalized mean curvature vector ξ/H is parallel in
T⊥Mn and choose en+1 = ξ/H. Then ωαn+1 = 0 for all α. Consequently Rαn+1jk = 0.
From (11) we have ∑

i

hα
ijh

n+1
ik =

∑

i

hα
ikhn+1

ij ,(32)

i.e.,
HαHn+1 = Hn+1Hα.(33)

If we set B = Hn+1 −HI, then trB = 0. By means of (33) we get HαB = BHα for
α > n + 1.By virtue of Lemma 3

|tr(H2
αB)| ≤ n− 2√

n(n− 1)
trH2

α

√
trB2, (α > n + 1).(34)

Since
tr(H2

αB) = tr(H2
αHn+1)−HtrH2

α, (α > n + 1),(35)

trB2 = trH2
n+1 − nH2 = ‖µ‖2,

by (34),(35) we conclude

tr(H2
αHn+1) ≤ (H +

n− 2√
n(n− 1)

‖µ‖)trH2
α, (α > n + 1).(36)

From (22),(36) we get

1
2
∆‖τ‖2 ≥

∑

i,j,k,α>n+1

(hα
ijk)2 + ‖τ‖2{nc− nH2 − n(n− 2)√

n(n− 1)
H‖µ‖}.(37)

We need the following Lemma 4.

Lemma 4. Let Mn be an n-dimensional space-like submanifold in an (n + p)-
dimensional de Sitter space Sn+p

p (c). Suppose that the normalized scalar curvature R
is constant and R ≤ c. Then

∑

i,j,k,α

(hα
ijk)2 ≥ ‖grad(nH)‖2.

Proof. According to (13) and R ≤ c, ‖h‖2 ≤ n2H2 and
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nH∇k(nH) =
∑

i,j,α

hα
ijh

α
ijk.

Therefore we get

n2H2‖grad(nH)‖2 =
∑

k

(
∑

i,j,α

hα
ijh

α
ijk)2 ≤ ‖h‖2

∑

i,j,k,α

(hα
ijk)2.

Thus the Lemma 4 is true.
Since we have

‖µ‖2 ≤ ‖h‖2 − nH2,(38)

from (29),(31),(37),(38) and Lemma 4 we have

2(nH) ≥ (‖µ‖2 + ‖τ‖2){nc− nH2 − n(n−2)√
n(n−1)

H‖µ‖}
≥ (‖h‖2 − nH2){nc− nH2 − n(n−2)√

n(n−1)
H

√
‖h‖2 − nH2}.(39)

Denote R̄ = c−R. By (13) we have

‖h‖2 − nH2 =
n− 1

n
(‖h‖2 − nR̄).(40)

By (39),(40) we have

2(nH) ≥ n−1
n (‖h‖2 − nR̄){nc− (n− 1)R̄− 1

n‖h‖2
−n−2

n

√
(‖h‖2 + n(n− 1)R̄)(‖h‖2 − nR̄)}.(41)

Since n ≥ 3, then 1
n ≤ n−2

n . Hence we have

2(nH) ≥ n− 1
n

(‖h‖2 − nR̄)P (R̄, ‖h‖2),(42)

where
P (R̄, ‖h‖2) = nc− (n− 1)R̄− n−2

n ‖h‖2
−n−2

n

√
(‖h‖2 + n(n− 1)R̄)(‖h‖2 − nR̄).

(43)

(1). If nR̄ ≤ ‖h‖2 < min{α(n, R̄), β(n, R̄)},then

nR̄ ≤ sup ‖h‖2 < min{α(n, R̄), β(n, R̄)}.(44)

It is directly checked that sup ‖h‖2 < α(n, R̄) is equivalent to

[nc− (n− 1)R̄− n−2
n sup ‖h‖2]2

> (n−2)2

n2 [sup ‖h‖2 + n(n− 1)R̄](sup ‖h‖2 − nR̄).
(45)

But it is clear from (44) that (45) is equivalent to

nc− (n− 1)R̄− n−2
n sup ‖h‖2

> n−2
n

√
[sup ‖h‖2 + n(n− 1)R̄](sup ‖h‖2 − nR̄).

(46)

Hence we have
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P (R̄, sup ‖h‖2) > 0.(47)

On the other hand,

2(nH) =
∑
i,j

(nHδij − hn+1
ij )(nH)ij =

∑
i

(nH − hn+1
ii )(nH)ii

= n
∑
i

H(nH)ii −
∑
i

λi(nH)ii ≤ (n|H|max − C)∆(nH),
(48)

where |H|max is the maximum of the mean curvature H and C is the minimum of the
principal curvatures {λi}n

i=1 of Mn.
Now we consider the following smooth function on Mn defined by F = −(f2 +

a)−1/2, where a(> 0) is a real number and f is a non-negative C2-function on Mn.
From the hypothesis of the Theorem 2 and the Gauss equation which implies Ricci
curvature Ric ≥ n − 1 − n2H2

4 , we know that the Ricci curvature is bounded below.
Obviously, F is bounded, so we can apply Lemma 2 to F . For any ε > 0, there is a
point x ∈ Mn, such that at which F satisfies the properties (24) in Lemma 2. By a
simple and direct calculation, we have

F4F = 3‖dF‖2 − 1
2
F 4∆f2.(49)

From (24),(49)

1
2
F 4(x)4f2(x) = 3‖dF‖2(x)− F (x)4F (x) < 3ε2 − εF (x).(50)

Thus, for any convergent sequence {εm} with εm > 0 and limm→∞ εm = 0, there exists
a point sequence {xm} such that the sequence {F (xm)} converges to F0 (we can take
a subsequence if necessary) and satisfies (24), hence, limm→∞ εm[3εm − F (xm)] = 0.
From the definition of supremum and (24), we have limm→∞ F (xm) = F0 = sup F
and hence the definition of F gives rise to limm→∞ f(xm) = f0 = sup f .

Now we set f =
√

nH, so limm→∞(nH)(xm) = sup(nH), thus by (13)
limm→∞ ‖h‖2(xm) = sup ‖h‖. Under the hypothesis of the Theorem 2, by (42), (48)
and (50) we have

0 ≤ 1
2F 4(xm)n−1

n [‖h‖2(xm)− nR̄]P (R̄, ‖h‖2(xm)) ≤ 1
2F 4(xm)2[nH(xm)]

≤ (n|H|max − C)1
2F 4(xm)∆(nH)(xm)

< (n|H|max − C)(3ε2
m − εmF (xm)).

(51)

Let m →∞ in (51). Then we have

[sup ‖h‖2 − nR̄]P (R̄, sup ‖h‖2) = 0.(52)

By (47), we have sup ‖h‖2 = nR̄. From (40) and sup(‖h‖2−nH2) = 0 we get ‖h‖2 =
nH2, and so Mn is totally umbilical.

(2). If ‖h‖2 = min{α(n, R̄), β(n, R̄)}, then we have

‖h‖2 = α(n, R̄); or ‖h‖2 = β(n, R̄).

(i). If ‖h‖2 = β(n, R̄), then ‖h‖2 ≤ α(n, R̄). This is equivalent to
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[nc− (n− 1)R̄− n− 2
n

‖h‖2]2 ≥ (n− 2)2

n2
[‖h‖2 + n(n− 1)R̄](‖h‖2 − nR̄).(53)

Hence, we have

0 ≥ (n− 2)2

n2
[‖h‖2 + n(n− 1)R̄](‖h‖2 − nR̄) ≥ 0,

which means ‖h‖2 = nR̄. By (40) ‖h‖2 = nH2, i.e., M is totally umbilical.
(ii). If ‖h‖2 = α(n, R̄), then the equality in (53) holds. Since ‖h‖2 ≤ β(n, R̄), we

have

nc− (n− 1)R̄− n− 2
n

‖h‖2 =
n− 2

n

√
[‖h‖2 + n(n− 1)R̄](‖h‖2 − nR̄),

i.e., P (R̄, ‖h‖2) = 0. Since ‖h‖2 = α(n, R̄) = const., from (13) we have H = const..
Therefore we know that ∆(nH) = 0. By (48) we have 2(nH) ≤ 0. From (42) we get
2(nH) = 0. Thus the equalities in (42),(41),(39),(38) and (23) in Lemma 1 hold. When
the equalities in (42),(41) hold, we have − 1

n‖h‖2 = n−2
n ‖h‖2, i.e., n = 3. When the

equality in (38) holds, we have ‖µ‖2 = ‖h‖2 − nH2. Hence by (19), we have ‖τ‖ = 0.
Since en+1 is parallel on the normal bundle T⊥(Mn) of Mn, using the method of Yau
[14], we know M3 lies in a totally geodesic submanifold S4

1(c) of S3+p
p (c). When the

equalities in (23) of Lemma1 hold, after renumberation if necessary, we can assume
that λ = λ1 6= λ2 = λ3 = µ, i.e., M3 has two distinct principal curvatures, one with
the multiplicity 1 and the other with the multiplicity 2. Therefore by [9] or [1], M3 is
a hyperbolic cylinder H1(c − λ2) × S2(c − µ2) in S4

1(c). This completes the proof of
the Theorem 2.
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