A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form

Dumitru Daniel Poroşniuc

Abstract

We obtain a class of locally symetric Kähler Einstein structures on the nonzero cotangent bundle of a Riemannian manifold of positive constant sectional curvature. The obtained class of Kähler Einstein structures depends on one essential parameter and cannot have constant holomorphic sectional curvature.

Mathematics Subject Classification: 53C07, 53C15, 53C55.
Key words: cotangent bundle, Kähler manifolds.

1 Introduction

In the study of the differential geometry of the cotangent bundle $T^{*} M$ of a Riemannian manifold (M, g) one uses several Riemannian and semi-Riemannian metrics, induced from the Riemannian metric g on M. Next, one can get from g some natural almost complex structures on $T^{*} M$. The study of the almost Hermitian structures induced from g on $T^{*} M$ is an interesting problem in the differential geometry of the cotangent bundle.

In [9] the authors have obtained a class of natural Kähler Einstein structures (G, J) of diagonal type induced on $T^{*} M$ from the Riemannian metric g. The obtained Kähler structures on $T^{*} M$ depend on two essential parameters a_{1} and λ, which are smooth functions depending on the energy density t on $T^{*} M$. In the case where the considered Kähler structures are Einstein they get several situations in which the parameters a_{1}, λ are related by some algebraic relations. In the general case, $\left(T^{*} M, G, J\right)$ has constant holomorphic curvature.

In this paper we study the singular case where the parameter $a_{1}=A t \lambda, A \in$ \mathbf{R}. The class of the natural almost complex structures J on the nonzero cotangent bundle $T_{0}^{*} M$ that interchange the vertical and horizontal distributions depends on two essential parameters λ and b_{1}. These parameters are smooth real functions depending on the energy density t on $T_{0}^{*} M$. From the integrability condition for J it follows that

[^0]the base manifold M must have constant curvature c and the second parameter b_{1} must be expressed as a rational function depending on the first parameter λ and its derivative. Of course, in the obtained formula there are involved the constant c and the energy density t.

A class of natural Riemannian metrics G of diagonal type on $T_{0}^{*} M$ is defined by four parameters $c_{1}, c_{2}, d_{1}, d_{2}$ which are smooth functions of t. From the condition for G to be Hermitian with respect to J we get two sets of proportionality relations, from which we can get the parameters $c_{1}, c_{2}, d_{1}, d_{2}$ as functions depending on one new parameter μ and the parameter λ involved in the expression of J.

In the case where the fundamental 2 -form ϕ, associated to the class of complex structures (G, J) is closed, one finds that $\mu=\lambda^{\prime}$.

Thus, we get a class of Kähler structures (G, J) on $T_{0}^{*} M$, depending on one essential parameter λ.

Finally, we prove that the obtained class of Kähler structures on $T_{0}^{*} M$ is locally symmetric, Einstein and cannot have constant holomorphic sectional curvature.

The manifolds, tensor fields and geometric objects we consider in this paper, are assumed to be differentiable of class C^{∞} (i.e. smooth). We use the computations in local coordinates but many results from this paper may be expressed in an invariant form. The well known summation convention is used throughout this paper, the range for the indices h, i, j, k, l, r, s being always $\{1, \ldots, n\}$ (see [4], [6], [7]). We shall denote by $\Gamma\left(T_{0}^{*} M\right)$ the module of smooth vector fields on $T_{0}^{*} M$.

2 Some geometric properties of $T^{*} M$

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its cotangent bundle by $\pi: T^{*} M \longrightarrow M$. Recall that there is a structure of a $2 n$-dimensional smooth manifold on $T^{*} M$, induced from the structure of smooth n-dimensional manifold of M. From every local chart $(U, \varphi)=\left(U, x^{1}, \ldots, x^{n}\right)$ on M, it is induced a local chart $\left(\pi^{-1}(U), \Phi\right)=\left(\pi^{-1}(U), q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$, on $T^{*} M$, as follows. For a cotangent vector $p \in \pi^{-1}(U) \subset T^{*} M$, the first n local coordinates q^{1}, \ldots, q^{n} are the local coordinates x^{1}, \ldots, x^{n} of its base point $x=\pi(p)$ in the local chart (U, φ) (in fact we have $\left.q^{i}=\pi^{*} x^{i}=x^{i} \circ \pi, i=1, \ldots n\right)$. The last n local coordinates p_{1}, \ldots, p_{n} of $p \in \pi^{-1}(U)$ are the vector space coordinates of p with respect to the natural basis $\left(d x_{\pi(p)}^{1}, \ldots, d x_{\pi(p)}^{n}\right)$, defined by the local chart (U, φ), i.e. $p=p_{i} d x_{\pi(p)}^{i}$.

An M-tensor field of type (r, s) on $T^{*} M$ is defined by sets of n^{r+s} components (functions depending on q^{i} and p_{i}), with r upper indices and s lower indices, assigned to induced local charts $\left(\pi^{-1}(U), \Phi\right)$ on $T^{*} M$, such that the local coordinate change rule is that of the local coordinate components of a tensor field of type (r, s) on the base manifold M (see [2] for further details in the case of the tangent bundle). An usual tensor field of type (r, s) on M may be thought of as an M-tensor field of type (r, s) on $T^{*} M$. If the considered tensor field on M is covariant only, the corresponding M-tensor field on $T^{*} M$ may be identified with the induced (pullback by π) tensor field on $T^{*} M$.

Some useful M-tensor fields on $T^{*} M$ may be obtained as follows. Let u, v : $[0, \infty) \longrightarrow \mathbf{R}$ be a smooth functions and let $\|p\|^{2}=g_{\pi(p)}^{-1}(p, p)$ be the square of the norm of the cotangent vector $p \in \pi^{-1}(U)\left(g^{-1}\right.$ is the tensor field of type $(2,0)$
having the components $\left(g^{k l}(x)\right)$ which are the entries of the inverse of the matrix $\left(g_{i j}(x)\right)$ defined by the components of g in the local chart $\left.(U, \varphi)\right)$. The components $u\left(\|p\|^{2}\right) g_{i j}(\pi(p)), p_{i}, v\left(\|p\|^{2}\right) p_{i} p_{j}$ define M-tensor fields of types $(0,2),(0,1)$, $(0,2)$ on $T^{*} M$, respectively. Similarly, the components $u\left(\|p\|^{2}\right) g^{k l}(\pi(p)), g^{0 i}=p_{h} g^{h i}$, $v\left(\|p\|^{2}\right) g^{0 k} g^{0 l}$ define M-tensor fields of type $(2,0),(1,0),(2,0)$ on $T^{*} M$, respectively. Of course, all the components considered above are in the induced local chart $\left(\pi^{-1}(U), \Phi\right)$.

The Levi Civita connection $\dot{\nabla}$ of g defines a direct sum decomposition

$$
\begin{equation*}
T T^{*} M=V T^{*} M \oplus H T^{*} M \tag{2.1}
\end{equation*}
$$

of the tangent bundle to $T^{*} M$ into vertical distributions $V T^{*} M=\operatorname{Ker} \pi_{*}$ and the horizontal distribution $H T^{*} M$.

If $\left(\pi^{-1}(U), \Phi\right)=\left(\pi^{-1}(U), q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$ is a local chart on $T^{*} M$, induced from the local chart $(U, \varphi)=\left(U, x^{1}, \ldots, x^{n}\right)$, the local vector fields $\frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}$ on $\pi^{-1}(U)$ define a local frame for $V T^{*} M$ over $\pi^{-1}(U)$ and the local vector fields $\frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}$ define a local frame for $H T^{*} M$ over $\pi^{-1}(U)$, where

$$
\frac{\delta}{\delta q^{i}}=\frac{\partial}{\partial q^{i}}+\Gamma_{i h}^{0} \frac{\partial}{\partial p_{h}}, \quad \Gamma_{i h}^{0}=p_{k} \Gamma_{i h}^{k}
$$

and $\Gamma_{i h}^{k}(\pi(p))$ are the Christoffel symbols of g.
The set of vector fields $\left(\frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}, \frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}\right)$ defines a local frame on $T^{*} M$, adapted to the direct sum decomposition (1).

We consider

$$
\begin{equation*}
t=\frac{1}{2}\|p\|^{2}=\frac{1}{2} g_{\pi(p)}^{-1}(p, p)=\frac{1}{2} g^{i k}(x) p_{i} p_{k}, \quad p \in \pi^{-1}(U) \tag{2.2}
\end{equation*}
$$

the energy density defined by g in the cotangent vector p. We have $t \in[0, \infty)$ for all $p \in T^{*} M$.

From now on we shall work in a fixed local chart (U, φ) on M and in the induced local chart $\left(\pi^{-1}(U), \Phi\right)$ on $T^{*} M$.

Now we shall present the following auxiliary result.

Lemma 1. If $n>1$ and u, v are smooth functions on $T^{*} M$ such that

$$
u g_{i j}+v p_{i} p_{j}=0, p \in \pi^{-1}(U)
$$

on the domain of any induced local chart on $T^{*} M$, then $u=0, v=0$.

The proof is obtained easily by transvecting the given relation with the components $g^{i j}$ of the tensor field g^{-1} and $g^{0 j}$.

Remark. From the relations of the type

$$
\begin{gathered}
u g^{i j}+v g^{0 i} g^{0 j}=0, p \in \pi^{-1}(U) \\
u \delta_{j}^{i}+v g^{0 i} p_{j}=0, p \in \pi^{-1}(U)
\end{gathered}
$$

it is obtained, in a similar way, $u=v=0$.

3 A class of natural complex structures of diagonal type on $T_{0}^{*} M$

The nonzero cotangent bundle $T_{0}^{*} M$ of Riemannian manifold (M, g) is defined by the formula: $T^{*} M$ minus zero section. Consider the real valued smooth functions $\lambda, a_{1}, a_{2}, b_{1}, b_{2}$ defined on $(0, \infty)$. We define a class of natural almost complex structures J of diagonal type on $T_{0}^{*} M$, expressed in the adapted local frame by

$$
\begin{equation*}
J \frac{\delta}{\delta q^{i}}=J_{i j}^{(1)}(p) \frac{\partial}{\partial p_{j}}, \quad J \frac{\partial}{\partial p_{i}}=-J_{(2)}^{i j}(p) \frac{\delta}{\delta q^{j}} \tag{3.3}
\end{equation*}
$$

where,

$$
\begin{equation*}
J_{i j}^{(1)}(p)=a_{1}(t) g_{i j}+b_{1}(t) p_{i} p_{j}, \quad J_{(2)}^{i j}(p)=a_{2}(t) g^{i j}+b_{2}(t) g^{0 i} g^{0 j}, \quad A \in \mathbf{R}^{*} \tag{3.4}
\end{equation*}
$$

In this paper we study the singular case where

$$
\begin{equation*}
a_{1}(t)=A t \lambda(t) \tag{3.5}
\end{equation*}
$$

The components $J_{i j}^{(1)}, J_{(2)}^{i j}$ define symmetric M-tensor fields of types $(0,2),(2,0)$ on $T^{*} M$, respectively.

Proposition 2. The operator J defines an almost complex structure on $T^{*} M$ if and only if

$$
\begin{equation*}
a_{1} a_{2}=1, \quad\left(a_{1}+2 t b_{1}\right)\left(a_{2}+2 t b_{2}\right)=1 \tag{3.6}
\end{equation*}
$$

Proof. The relations are obtained easily from the property $J^{2}=-I$ of J and Lemma 1.

From the relations (5), (6) we can obtain the explicit expression of the parameter a_{2}, b_{2}

$$
\begin{equation*}
a_{2}=\frac{1}{A t \lambda}, \quad b_{2}=\frac{-b_{1}}{A t^{2} \lambda\left(A \lambda+2 b_{1}\right)} \tag{3.7}
\end{equation*}
$$

The obtained class of almost complex structures defined by the tensor field J on $T_{0}^{*} M$ is called class of natural almost complex structures of diagonal type, obtained from the Riemannian metric g, by using the parameters λ, b_{1}. We use the word diagonal for these almost complex structures, since the $2 n \times 2 n$-matrix associated to J, with respect to the adapted local frame $\left(\frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}, \frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}\right)$ has two $n \times n$-blocks on the second diagonal

$$
J=\left(\begin{array}{cc}
0 & -J_{(2)}^{i j} \\
J_{i j}^{(1)} & 0
\end{array}\right)
$$

Remark. From the conditions (6) it follows that $a_{1}=A t \lambda$ and $a_{2}=\frac{1}{A t \lambda}$ cannot vanish and have the same sign. We assume that

$$
\begin{equation*}
\lambda(t)>0 \quad \forall t>0, A>0 . \tag{3.8}
\end{equation*}
$$

Similarly, from the conditions (6) it follows that $a_{1}+2 t b_{1}$ and $a_{2}+2 t b_{2}$ cannot vanish and have the same sign. We assume that $a_{1}+2 t b_{1}>0, a_{2}+2 t b_{2}>0 \forall t>0$, i.e.

$$
\begin{equation*}
A \lambda+2 b_{1}>0 \quad \forall t>0 \tag{3.9}
\end{equation*}
$$

Now we shall study the integrability of the class of natural almost complex structures defined by J on $T_{0}^{*} M$. To do this we need the following well known formulas for the brackets of the vector fields $\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{i}}, i=1, \ldots, n$

$$
\begin{equation*}
\left[\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right]=0, \quad\left[\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right]=\Gamma_{j k}^{i} \frac{\partial}{\partial p_{k}}, \quad\left[\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right]=R_{k i j}^{0} \frac{\partial}{\partial p_{k}} \tag{3.10}
\end{equation*}
$$

where $R_{k i j}^{h}(\pi(p))$ are the local coordinate components of the curvature tensor field of $\dot{\nabla}$ on M and $R_{k i j}^{0}(p)=p_{h} R_{k i j}^{h}$. Of course, the components $R_{k i j}^{h}, R_{k i j}^{0}$ define M-tensor fields of types $(1,3),(0,3)$ on $T_{0}^{*} M$, respectively.

Recall that the Nijenhuis tensor field N defined by J is given by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y], \quad \forall \quad X, Y \in \Gamma\left(T_{0}^{*} M\right)
$$

Then, we have $\frac{\delta}{\delta q^{k}} t=0, \frac{\partial}{\partial p_{k}} t=g^{0 k}$. The expressions for the components of N can be obtained by a quite long, straightforward computation, as follows

Theorem 3. The Nijenhuis tensor field of the almost complex structure J on $T_{0}^{*} M$ is given by

$$
\left\{\begin{array}{l}
N\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right)=\left\{A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)\left(\delta_{i}^{h} g_{j k}-\delta_{j}^{h} g_{i k}\right)-R_{k i j}^{h}\right\} p_{h} \frac{\partial}{\partial p_{k}}, \\
N\left(\frac{\delta}{\delta q^{2}}, \frac{\partial}{\partial p_{j}}\right)=J_{(2)}^{k l} J_{(2)}^{j r}\left\{A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)\left(\delta_{i}^{h} g_{r l}-\delta_{r}^{h} g_{i l}\right)-R_{l i r}^{h}\right\} p_{h} \frac{\delta}{\delta q^{k}}, \\
N\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right)=J_{(2)}^{i r} J_{(2)}^{j l}\left\{A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)\left(\delta_{l}^{h} g_{r k}-\delta_{r}^{h} g_{l k}\right)-R_{k l r}^{h}\right\} p_{h} \frac{\partial}{\partial p_{k}} .
\end{array}\right.
$$

Theorem 4. Assume that exist
$\lim _{t \rightarrow 0} A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right) \in \mathbf{R}, \quad \lim _{t \rightarrow 0} \frac{\partial}{\partial p_{l}}\left[A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)\right]=0, \quad \forall l \in\{1,2, \ldots, n\}$.
The almost complex structure J on $T_{0}^{*} M$ is integrable if and only if (M, g) has constant sectional curvature c and the function b_{1} is given by

$$
\begin{equation*}
b_{1}=\frac{c-A^{2} t \lambda\left(\lambda+t \lambda^{\prime}\right)}{A t\left(\lambda+2 t \lambda^{\prime}\right)} \tag{3.11}
\end{equation*}
$$

The parameter λ must fulfill the conditons

$$
\begin{equation*}
\lambda>0, \frac{2 c-A^{2} t \lambda^{2}}{\lambda+2 t \lambda^{\prime}}>0 \forall t>0, A>0 \tag{3.12}
\end{equation*}
$$

Proof. From the condition $N=0$, one obtains

$$
\left\{A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)\left(\delta_{i}^{h} g_{j k}-\delta_{j}^{h} g_{i k}\right)-R_{k i j}^{h}\right\} p_{h}=0
$$

Differentiating with respect to p_{l} and taking $t \rightarrow 0$, it follows that the curvature tensor field of $\dot{\nabla}$ has the expression

$$
R_{k i j}^{l}=\left(\lim _{t \rightarrow 0} A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)\right)\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right)
$$

Thus the sectional curvature $c=\lim _{t \rightarrow 0} A t\left(\lambda+2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)$ of (M, g) depends only on q^{i}. Using by the Schur theorem (in the case where M is connected and $\operatorname{dim} M \geq 3)$ it follows that (M, g) has the constant sectional curvature $c=\lim _{t \rightarrow 0} A t(\lambda+$ $\left.2 t \lambda^{\prime}\right)\left(b_{1}+A \lambda\right)$. Then we obtain the expression (3.11) of b_{1}.

Conversely, if (M, g) has constant curvature c and b_{1} is given by (3.11), it follows in a straightforward way that $N=0$.

Using by the relations (3.8), (3.9), (3.11) we obtain the conditions (3.12).
The class of natural complex structures J of diagonal type on $T_{0}^{*} M$ depends on one essential parameter λ. The components of J are given by

$$
\left\{\begin{array}{l}
J_{i j}^{(1)}=A t \lambda g_{i j}+\frac{c-A^{2} t \lambda\left(\lambda+t \lambda^{\prime}\right)}{A t\left(\lambda+2 t \lambda^{\prime}\right)} p_{i} p_{j} \tag{3.13}\\
J_{(2)}^{i j}=\frac{1}{A t \lambda} g^{i j}-\frac{c-A^{2} t \lambda\left(\lambda+t \lambda^{\prime}\right)}{A t^{2} \lambda\left(2 c-A^{2} t \lambda^{2}\right)} g^{0 i} g^{0 j}
\end{array}\right.
$$

4 A class of natural Hermitian structures on $T_{0}^{*} M$

Consider the following symmetric M-tensor fields on $T_{0}^{*} M$, defined by the components

$$
\begin{equation*}
G_{i j}^{(1)}=c_{1} g_{i j}+d_{1} p_{i} p_{j}, \quad G_{(2)}^{i j}=c_{2} g^{i j}+d_{2} g^{0 i} g^{0 j} \tag{4.14}
\end{equation*}
$$

where $c_{1}, c_{2}, d_{1}, d_{2}$ are smooth functions depending on the energy density $t \in(0, \infty)$.
Obviously, $G^{(1)}$ is of type $(0,2)$ and $G_{(2)}$ is of type $(2,0)$. We shall assume that the matrices defined by $G^{(1)}$ and $G_{(2)}$ are positive definite. This happens if and only if

$$
\begin{equation*}
c_{1}>0, c_{2}>0, c_{1}+2 t d_{1}>0, c_{2}+2 t d_{2}>0 \quad \forall t>0 . \tag{4.15}
\end{equation*}
$$

Then the following class of Riemannian metrics may be considered on $T_{0}^{*} M$

$$
\begin{equation*}
G=G_{i j}^{(1)} d q^{i} d q^{j}+G_{(2)}^{i j} D p_{i} D p_{j} \tag{4.16}
\end{equation*}
$$

where $D p_{i}=d p_{i}-\Gamma_{i j}^{0} d q^{j}$ is the absolute (covariant) differential of p_{i} with respect to the Levi Civita connection $\dot{\nabla}$ of g. Equivalently, we have

$$
G\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right)=G_{i j}^{(1)}, \quad G\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right)=G_{(2)}^{i j}, \quad G\left(\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right)=G\left(\frac{\delta}{\delta q^{j}}, \frac{\partial}{\partial p_{i}}\right)=0 .
$$

Remark that $H T_{0}^{*} M, V T_{0}^{*} M$ are orthogonal to each other with respect to G, but the Riemannian metrics induced from G on $H T_{0}^{*} M, V T_{0}^{*} M$ are not the same, so the considered metric G on $T_{0}^{*} M$ is not a metric of Sasaki type. The $2 n \times 2 n$-matrix associated to G, with respect to the adapted local frame $\left(\frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}, \frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}\right)$ has two $n \times n$-blocks on the first diagonal

$$
G=\left(\begin{array}{cc}
G_{i j}^{(1)} & 0 \\
0 & G_{(2)}^{i j}
\end{array}\right)
$$

The class of Riemannian metrics G is called a class of natural lifts of diagonal type of g. Remark also that the system of 1 -forms $\left(D p_{1}, \ldots, D p_{n}, d q^{1}, \ldots, d q^{n}\right)$ defines a local frame on $T^{*} T_{0}^{*} M$, dual to the local frame $\left(\frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}, \frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}\right)$ on $T T_{0}^{*} M$, over $\pi^{-1}(U)$ adapted to the direct sum decomposition (1).

We shall consider another two M-tensor fields $H_{(1)}, H^{(2)}$ on $T_{0}^{*} M$, defined by the components

$$
\begin{aligned}
H_{(1)}^{j k} & =\frac{1}{c_{1}} g^{j k}-\frac{d_{1}}{c_{1}\left(c_{1}+2 t d_{1}\right)} g^{0 j} g^{0 k} \\
H_{j k}^{(2)} & =\frac{1}{c_{2}} g_{j k}-\frac{d_{2}}{c_{2}\left(c_{2}+2 t d_{2}\right)} p_{j} p_{k}
\end{aligned}
$$

The components $H_{(1)}^{j k}$ define an M-tensor field of type (2,0) and the components $H_{j k}^{(2)}$ define an M-tensor field of type $(0,2)$. Moreover, the matrices associated to $H_{(1)}, H^{(2)}$ are the inverses of the matrices associated to $G^{(1)}$ and $G_{(2)}$, respectively. Hence we have

$$
G_{i j}^{(1)} H_{(1)}^{j k}=\delta_{i}^{k}, \quad G_{(2)}^{i j} H_{j k}^{(2)}=\delta_{k}^{i} .
$$

Now, we shall be interested in the conditions under which the class of the metrics G is Hermitian with respect to the class of the complex structures J, considered in the previous section, i.e.

$$
G(J X, J Y)=G(X, Y)
$$

for all vector fields X, Y on $T_{0}^{*} M$.
Considering the coefficients of $g_{i j}, g^{i j}$ in the conditions

$$
\left\{\begin{array}{l}
G\left(J \frac{\delta}{\delta q^{i}}, J \frac{\delta}{\delta q^{j}}\right)=G\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right), \tag{4.17}\\
G\left(J \frac{\partial}{\partial p_{i}}, J \frac{\partial}{\partial p_{j}}\right)=G\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right),
\end{array}\right.
$$

we can express the parameters c_{1}, c_{2} with the help of the parameters a_{1}, a_{2} and a proportionality factor which must be $\lambda=\lambda(t)$ (see [9]). Then

$$
\begin{equation*}
c_{1}=\lambda a_{1}=A t \lambda^{2}, \quad c_{2}=\lambda a_{2}=\frac{1}{A t} \tag{4.18}
\end{equation*}
$$

where the coefficients a_{1}, a_{2} are given by (5) and (7).

Next, considering the coefficients of $p_{i} p_{j}, g^{0 i} g^{0 j}$ in the relations (17), we can express the parameters $c_{1}+2 t d_{1}, c_{2}+2 t d_{2}$ with help of the parameters $a_{1}+2 t b_{1}, a_{2}+$ $2 t b_{2}$ and a proportionality factor $\lambda+2 t \mu$

$$
\left\{\begin{align*}
c_{1}+2 t d_{1} & =(\lambda+2 t \mu)\left(a_{1}+2 t b_{1}\right) \tag{4.19}\\
c_{2}+2 t d_{2} & =(\lambda+2 t \mu)\left(a_{2}+2 t b_{2}\right)
\end{align*}\right.
$$

Remark that $\lambda(t)+2 t \mu(t)>0 \forall t>0$. It is much more convenient to consider the proportionality factor in such a form in the expression of the parameters $c_{1}+$ $2 t d_{1}, c_{2}+2 t d_{2}$. Using by the relations (5), (7), (11),(18) we can obtain easily from (19) the explicit expressions of the coefficients d_{1}, d_{2}

$$
\left\{\begin{array}{l}
d_{1}=\frac{\lambda\left[c-A^{2} t \lambda\left(\lambda+t \lambda^{\prime}\right)\right]+\mu t\left(2 c-A^{2} t \lambda^{2}\right)}{A t\left(\lambda+2 t \lambda^{\prime}\right)}, \tag{4.20}\\
d_{2}=\frac{-c+A^{2} t \lambda\left(\lambda+t \lambda^{\prime}\right)+\mu A^{2} t^{2}\left(\lambda+2 t \lambda^{\prime}\right)}{A t^{2}\left(2 c-A^{2} t \lambda^{2}\right)} .
\end{array}\right.
$$

Hence we may state:
Theorem 5. Let J be the class of natural, complex structure of diagonal type on $T_{0}^{*} M$, given by (3) and (13). Let G be the class of the natural Riemannian metrics of diagonal type on $T_{0}^{*} M$, given by (14), (18), (20).

Then we obtain a class of Hermitian structures (G, J) on $T_{0}^{*} M$, depending on two essential parameters λ and μ, which must fulfill the conditions

$$
\begin{equation*}
\lambda>0, \quad \frac{2 c-A^{2} t \lambda^{2}}{\lambda+2 t \lambda^{\prime}}>0, \quad \lambda+2 t \mu>0 \quad \forall t>0, \quad A>0 . \tag{4.21}
\end{equation*}
$$

5 A class of Kähler structures on $T_{0}^{*} M$

Consider now the two-form ϕ defined by the class of Hermitian structures (G, J) on $T_{0}^{*} M$

$$
\phi(X, Y)=G(X, J Y)
$$

for all vector fields X, Y on $T_{0}^{*} M$.
Using by the expression of ϕ and computing the values $\phi\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right), \phi\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right)$, $\phi\left(\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right)$, we obtain.

Proposition 6. The expression of the 2 -form ϕ in a local adapted frame $\left(\frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}, \frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}\right)$ on $T_{0}^{*} M$, is given by

$$
\phi\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right)=0, \phi\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right)=0, \phi\left(\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right)=\lambda \delta_{j}^{i}+\mu g^{0 i} p_{j}
$$

or, equivalently

$$
\begin{equation*}
\phi=\left(\lambda \delta_{j}^{i}+\mu g^{0 i} p_{j}\right) D p_{i} \wedge d q^{j} \tag{5.22}
\end{equation*}
$$

Theorem 7. The class of Hermitian structures (G, J) on $T_{0}^{*} M$ is Kähler if and only if

$$
\mu=\lambda^{\prime}
$$

Proof. The expressions of $d \lambda, d \mu, d g^{0 i}$ and $d D p_{i}$ are obtained in a straightforward way, by using the property $\dot{\nabla}_{k} g_{i j}=0$ (hence $\dot{\nabla}_{k} g^{i j}=0$)

$$
\begin{gathered}
d \lambda=\lambda^{\prime} g^{0 i} D p_{i}, d \mu=\mu^{\prime} g^{0 i} D p_{i}, d g^{0 i}=g^{i k} D p_{k}-g^{0 h} \Gamma_{h k}^{i} d q^{k} \\
d D p_{i}=-\frac{1}{2} R_{i k l}^{0} d q^{k} \wedge d q^{l}+\Gamma_{i k}^{l} d q^{k} \wedge D p_{l}
\end{gathered}
$$

Then we have

$$
\begin{gathered}
d \phi=\left(d \lambda \delta_{j}^{i}+d \mu g^{0 i} p_{j}+\mu d g^{0 i} p_{j}+\mu g^{0 i} d p_{j}\right) \wedge D p_{i} \wedge d q^{j}+ \\
+\left(\lambda \delta_{j}^{i}+\mu g^{0 i} p_{j}\right) d D p_{i} \wedge d q^{j}
\end{gathered}
$$

By replacing the expressions of $d \lambda, d \mu, d g^{0 i}$ and $d \dot{\nabla} y^{h}$, then using, again, the property $\dot{\nabla}_{k} g_{i j}=0$, doing some algebraic computations with the exterior products, then using the well known symmetry properties of $g_{i j}, \Gamma_{i j}^{h}$, and of the Riemann-Christoffel tensor field, as well as the Bianchi identities, it follows that

$$
d \phi=\frac{1}{2}\left(\lambda^{\prime}-\mu\right) g^{0 h} D p_{h} \wedge D p_{i} \wedge d q^{i}
$$

Therefore we have $d \phi=0$ if and only if $\mu=\lambda^{\prime}$.

Remark. The class of natural Kähler structures of diagonal type defined by (G, J) on $T_{0}^{*} M$ depends on one essential parameter λ.

The paramater λ must fulfill the conditions

$$
\begin{equation*}
\lambda>0, \quad 2 c-A^{2} t \lambda^{2}>0, \quad \lambda+2 t \lambda^{\prime}>0 \quad \forall t>0, \quad A>0 \tag{5.23}
\end{equation*}
$$

It follows that $c>0$.
The components of the class of Kähler metrics G on $T_{0}^{*} M$ are given by

$$
\left\{\begin{array}{l}
G_{i j}^{(1)}=A t \lambda^{2} g_{i j}+\frac{c-A^{2} t \lambda^{2}}{A t} p_{i} p_{j}, \tag{5.24}\\
G_{(2)}^{i j}=\frac{1}{A t} g^{i j}-\frac{c-A^{2} t\left[\lambda^{2}+2 t \lambda^{\prime}\left(\lambda+t \lambda^{\prime}\right)\right]}{A t^{2}\left(2 c-A^{2} t \lambda^{2}\right)} g^{0 i} g^{0 j}
\end{array}\right.
$$

We obtain, too

$$
\left\{\begin{array}{l}
H_{(1)}^{j k}=\frac{1}{A t \lambda^{2}} g^{j k}-\frac{c-A^{2} t \lambda^{2}}{A t^{2} \lambda^{2}\left(2 c-A^{2} t \lambda^{2}\right)} g^{0 j} g^{0 k} \tag{5.25}\\
H_{j k}^{(2)}=A t g_{j k}+\frac{\left.c-A^{2} t\left[\lambda^{2}+2 t \lambda^{\prime}\left(\lambda+t \lambda^{\prime}\right)\right]\right)}{A t\left(\lambda+2 t \lambda^{\prime}\right)^{2}} p_{j} p_{k}
\end{array}\right.
$$

6 A class of locally symmetric Kähler Einstein structures on $T_{0}^{*} M$

The Levi Civita connection ∇ of the Riemannian manifold $\left(T_{0}^{*} M, G\right)$ is determined by the conditions

$$
\nabla G=0, \quad T=0
$$

where T is its torsion tensor field. The explicit expression of this connection is obtained from the formula

$$
\begin{gathered}
2 G\left(\nabla_{X} Y, Z\right)=X(G(Y, Z))+Y(G(X, Z))-Z(G(X, Y))+ \\
+G([X, Y], Z)-G([X, Z], Y)-G([Y, Z], X) ; \quad \forall X, Y, Z \in \Gamma\left(T_{0}^{*} M\right)
\end{gathered}
$$

The final result can be stated as follows.

Theorem 8. The Levi Civita connection ∇ of G has the following expression in the local adapted frame $\left(\frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}, \frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}\right)$:

$$
\left\{\begin{array}{ll}
\nabla_{\frac{\partial}{\partial p_{i}}} \frac{\partial}{\partial p_{j}}=Q_{h}^{i j} \frac{\partial}{\partial p_{h}}, & \nabla_{\frac{\delta}{\delta q^{i}} \frac{\partial}{\partial p_{j}}=-\Gamma_{i h}^{j} \frac{\partial}{\partial p_{h}}+P_{i}^{h j} \frac{\delta}{\delta q^{h}},}^{\nabla_{\frac{\partial}{\partial p_{i}}} \frac{\delta}{\delta q^{j}}=P_{j}^{h i} \frac{\delta}{\delta q^{h}},} \tag{6.26}
\end{array} \nabla_{\frac{\delta}{\delta q^{i}} \frac{\delta}{\delta q^{j}}=\Gamma_{i j}^{h} \frac{\delta}{\delta q^{h}}+S_{h i j} \frac{\partial}{\partial p_{h}},}\right.
$$

where $Q_{h}^{i j}, P_{j}^{h i}, S_{h i j}$ are M-tensor fields on $T_{0}^{*} M$, defined by

$$
\left\{\begin{array}{l}
Q_{h}^{i j}=\frac{1}{2} H_{h k}^{(2)}\left(\frac{\partial}{\partial p_{i}} G_{(2)}^{j k}+\frac{\partial}{\partial p_{j}} G_{(2)}^{i k}-\frac{\partial}{\partial p_{k}} G_{(2)}^{i j}\right) \tag{6.27}\\
P_{j}^{h i}=\frac{1}{2} H_{(1)}^{h k}\left(\frac{\partial}{\partial p_{i}} G_{j k}^{(1)}-G_{(2)}^{i l} R_{l j k}^{0}\right), \\
S_{h i j}=-\frac{1}{2} H_{h k}^{(2)} \frac{\partial}{\partial p_{k}} G_{i j}^{(1)}+\frac{1}{2} R_{h i j}^{0} .
\end{array}\right.
$$

Assuming that the base manifold (M, g) has positive constant sectional curvature c and replacing the expressions of the involved M-tensor fields, one obtains

$$
\left\{\begin{align*}
Q_{h}^{i j}= & \frac{1}{2 t} g^{i j} p_{h}-\frac{1}{2 t}\left(\delta_{h}^{i} g^{0 j}+\delta_{h}^{j} g^{0 i}\right)+ \tag{6.28}\\
& \frac{c \lambda+8 c t \lambda^{\prime}-2 A^{2} t^{2} \lambda \lambda^{\prime}\left(\lambda-t \lambda^{\prime}\right)+2 t^{2} \lambda^{\prime \prime}\left(2 c-A^{2} t \lambda^{2}\right)}{2 t^{2}\left(2 c-A^{2} t \lambda^{2}\right)\left(\lambda+2 t \lambda^{\prime}\right)} g^{0 i} g^{0 j} p_{h} \\
P_{j}^{h i}= & -\frac{1}{2 t} g^{h i} p_{j}+\frac{1}{2 t} \delta_{j}^{i} g^{0 h}+\frac{\lambda+2 t \lambda^{\prime}}{2 t \lambda} \delta_{j}^{h} g^{0 i}-\frac{c\left(\lambda+2 t \lambda^{\prime}\right)}{2 t^{2} \lambda\left(2 c-A^{2} t \lambda^{2}\right)} g^{0 h} g^{0 i} p_{j} \\
S_{h i j}= & -\frac{\lambda\left(2 c-A^{2} t \lambda^{2}\right)}{2\left(\lambda+2 t \lambda^{\prime}\right)} g_{i j} p_{h}-\frac{\left(2 c-A^{2} t \lambda^{2}\right)}{2} g_{h i} p_{j}+\frac{A^{2} t \lambda^{2}}{2} g_{h j} p_{i}+ \\
& \frac{3 c \lambda+2 c t \lambda^{\prime}-2 A^{2} t \lambda^{2}\left(\lambda+t \lambda^{\prime}\right)}{2 t\left(\lambda+2 t \lambda^{\prime}\right)} p_{h} p_{i} p_{j} .
\end{align*}\right.
$$

The curvature tensor field K of the connection ∇ is obtained from the well known formula

$$
K(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \quad \forall X, Y, Z \in \Gamma\left(T_{0}^{*} M\right) .
$$

The components of curvature tensor field K with respect to the adapted local frame $\left(\frac{\delta}{\delta q^{1}}, \ldots, \frac{\delta}{\delta q^{n}}, \frac{\partial}{\partial p_{1}}, \ldots, \frac{\partial}{\partial p_{n}}\right)$ are obtained easily:

$$
\begin{cases}K\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\delta}{\delta q^{k}}=Q Q Q_{i j k}^{h} \frac{\delta}{\delta q^{h}}, & K\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\partial}{\partial p_{k}}=Q Q P_{i j h}^{k} \frac{\partial}{\partial p_{h}}, \tag{6.29}\\ K\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right) \frac{\delta}{\delta q^{k}}=P P Q_{k}^{i j h} \frac{\delta}{\delta q^{h}}, & K\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right) \frac{\partial}{\partial p_{k}}=P P P_{h}^{i j k} \frac{\partial}{\partial p_{h}}, \\ K\left(\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\delta}{\delta q^{k}}=P Q Q_{j k h}^{i} \frac{\partial}{\partial p_{h}}, & K\left(\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\partial}{\partial p_{k}}=P Q P_{j}^{i k h} \frac{\delta}{\delta q^{h}},\end{cases}
$$

where

$$
\begin{align*}
Q Q Q_{i j k}^{h}= & \lambda^{2}\left[\frac{A^{2} t}{2}\left(\delta_{i}^{h} g_{j k}-\delta_{j}^{h} g_{i k}\right)+\frac{A^{2}}{4}\left(g_{i k} p_{j}-g_{j k} p_{i}\right) g^{0 h}-\right. \\
& \left.\frac{A^{2}}{4}\left(\delta_{i}^{h} p_{j}-\delta_{j}^{h} p_{i}\right) p_{k}\right], \\
Q Q P_{i j h}^{k}= & -Q Q Q_{i j h}^{k}, \\
P P Q_{k}^{i j h}= & -\frac{1}{2 t}\left(\delta_{k}^{i} g^{j h}-\delta_{k}^{j} g^{i h}\right)-\frac{1}{4 t^{2}}\left(g^{i h} g^{0 j}-g^{j h} g^{0 i}\right) p_{k}+ \\
& \frac{1}{4 t^{2}}\left(\delta_{k}^{i} g^{0 j}-\delta_{k}^{j} g^{0 i}\right) g^{0 h}, \\
P P P_{h}^{i j k}= & -P P Q_{h}^{i j k}, \\
P Q Q_{j k h}^{i}= & \frac{A^{2} t \lambda^{2}}{2} \delta_{j}^{i} g_{h k}+\frac{\lambda\left(2 c-A^{2} t \lambda^{2}\right)}{4 t\left(\lambda+2 t \lambda^{\prime}\right)} \delta_{k}^{i} p_{h} p_{j}+\frac{\lambda\left[c-A^{2} \lambda t\left(\lambda+t \lambda^{\prime}\right)\right]}{2 t\left(\lambda+2 t \lambda^{\prime}\right)} \delta_{j}^{i} p_{h} p_{k}+ \tag{6.30}\\
& \frac{\left(2 c-A^{2} t \lambda^{2}\right)}{4 t} \delta_{h}^{i} p_{j} p_{k}+\frac{A^{2} \lambda^{2}}{4} g^{0 i} g_{j k} p_{h}+\frac{A^{2} t \lambda \lambda^{\prime}}{2} g^{0 i} g_{h k} p_{j}+ \\
& \frac{A^{2} \lambda\left(\lambda+2 t \lambda^{\prime}\right)}{4} g^{0 i} g_{h j} p_{k}-\frac{\lambda\left[c+2 A^{2} t^{2} \lambda^{\prime}\left(\lambda+t \lambda^{\prime}\right)\right]}{2 t^{2}\left(\lambda+2 t \lambda^{\prime}\right)} g^{0 i} p_{h} p_{j} p_{k}, \\
P Q P_{j}^{i k h}= & -\frac{1}{2 t} \delta_{j}^{i} g^{h k}-\frac{1}{4 t^{2}} g^{i k} g^{0 h} p_{j}-\frac{\lambda^{\prime}}{2 t \lambda} g^{h k} g^{0 i} p_{j}-\frac{\lambda+2 t \lambda^{\prime}}{4 t^{2} \lambda} g^{h i} g^{0 k} p_{j}- \\
& \frac{A^{2} \lambda\left(\lambda+2 t \lambda^{\prime}\right)}{4 t\left(2 c-A^{2} t \lambda^{2}\right)} \delta_{j}^{k} g^{0 h} g^{0 i}+\frac{c-A^{2} t \lambda\left(\lambda+t \lambda^{\prime}\right)}{2 t^{2}\left(2 c-A^{2} t \lambda^{2}\right)} \delta_{j}^{i} g^{0 h} g^{0 k}- \\
& \frac{A^{2}\left(\lambda+2 t \lambda^{\prime}\right)^{2}}{4 t\left(2 c-A^{2} t \lambda^{2}\right)} \delta_{j}^{h} g^{0 i} g^{0 k}+\frac{c\left(\lambda+2 t \lambda^{\prime}\right)}{2 t^{3} \lambda\left(2 c-A^{2} t \lambda^{2}\right)} g^{0 h} g^{0 i} g^{0 k} p_{j} .
\end{align*}
$$

are M-tensor fields on $T_{0}^{*} M$.
Remark. From the local coordinates expression of the curvature tensor field K, we obtain that the class of Kähler structures (G, J) on $T_{0}^{*} M$ cannot have constant holomorphic sectional curvature.

The Ricci tensor field Ric of ∇ is defined by the formula:

$$
\operatorname{Ric}(Y, Z)=\operatorname{trace}(X \longrightarrow K(X, Y) Z), \quad \forall X, Y, Z \in \Gamma\left(T_{0}^{*} M\right)
$$

It follows

$$
\left\{\begin{array}{l}
\operatorname{Ric}\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right)=\frac{A n}{2} G_{i j}^{(1)}, \\
\operatorname{Ric}\left(\frac{\partial}{\partial p_{i}}, \frac{\partial}{\partial p_{j}}\right)=\frac{A n}{2} G_{(2)}^{i j}, \\
\operatorname{Ric}\left(\frac{\partial}{\partial p_{i}}, \frac{\delta}{\delta q^{j}}\right)=\operatorname{Ric}\left(\frac{\delta}{\delta q^{j}}, \frac{\partial}{\partial p_{i}}\right)=0
\end{array}\right.
$$

Thus

$$
\begin{equation*}
R i c=\frac{A n}{2} G \tag{6.31}
\end{equation*}
$$

By straightforward computation, using the relations (28), (30) and the package Ricci, the following formulas are obtained:

$$
\left\{\begin{array}{l}
\frac{\delta}{\delta q^{l}} Q Q Q_{i j k}^{h}=-\Gamma_{l s}^{h} Q Q Q_{i j k}^{s}+\Gamma_{l i}^{s} Q Q Q_{s j k}^{h}+\Gamma_{l j}^{s} Q Q Q_{i s k}^{h}+\Gamma_{l k}^{s} Q Q Q_{i j s}^{h} \tag{6.32}\\
\frac{\delta}{\delta q^{l}} P P Q_{k}^{i j h}=\Gamma_{l k}^{s} P P Q_{s}^{i j h}-\Gamma_{l s}^{i} P P Q_{k}^{s j h}-\Gamma_{l s}^{j} P P Q_{k}^{i s h}-\Gamma_{l s}^{h} P P Q_{k}^{i j s} \\
\frac{\delta}{\delta q^{l}} P Q Q_{j k h}^{i}=-\Gamma_{l s}^{i} P Q Q_{j k h}^{s}+\Gamma_{l j}^{s} P Q Q_{s k h}^{i}+\Gamma_{l k}^{s} P Q Q_{j s h}^{i}+\Gamma_{l h}^{s} P Q Q_{j k s}^{i} \\
\frac{\delta}{\delta q^{l}} P Q P_{j}^{i k h}=\Gamma_{l j}^{s} P Q P_{s}^{i k h}-\Gamma_{l s}^{i} P Q P_{j}^{s k h}-\Gamma_{l s}^{k} P Q P_{j}^{i s h}-\Gamma_{l s}^{h} P Q P_{j}^{i k s} \\
\frac{\partial}{\partial p_{l}} Q Q Q_{i j k}^{h}=-P_{s}^{h l} Q Q Q_{i j k}^{s}+P_{i}^{s l} Q Q Q_{s j k}^{h}+P_{j}^{s l} Q Q Q_{i s k}^{h}+P_{k}^{s l} Q Q Q_{i j s}^{h} \\
\frac{\partial}{\partial p_{l}} P P Q_{k}^{i j h}=P_{k}^{s l} P P Q_{s}^{i j h}-P_{s}^{i l} P P Q_{k}^{s j h}-P_{s}^{j l} P P Q_{k}^{i s h}-P_{s}^{h l} P P Q_{k}^{i j s} \\
\frac{\partial}{\partial p_{l}} P Q Q_{j k h}^{i}=-P_{s}^{i l} P Q Q_{j k h}^{s}+P_{j}^{s l} P Q Q_{s k h}^{i}+P_{k}^{s l} P Q Q_{j s h}^{i}+P_{h}^{s l} P Q Q_{j k s}^{i} \\
\frac{\partial}{\partial p_{l}} P Q P_{j}^{i k h}=P_{j}^{s l} P Q P_{s}^{i k h}-P_{s}^{i l} P Q P_{j}^{s k h}-P_{s}^{k l} P Q P_{j}^{i s h}-P_{s}^{h l} P Q P_{j}^{i k s}
\end{array}\right.
$$

Due to the relations (26),(29), we have

$$
\begin{aligned}
& \left(\nabla_{\frac{\delta}{\delta q^{l}}} K\right)\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\delta}{\delta q^{k}}=\left(\frac{\delta}{\delta q^{l}} Q Q Q_{i j k}^{h}+\Gamma_{l s}^{h} Q Q Q_{i j k}^{s}-\Gamma_{l i}^{s} Q Q Q_{s j k}^{h}-\Gamma_{l j}^{s} Q Q Q_{i s k}^{h}-\right. \\
- & \left.\Gamma_{l k}^{s} Q Q Q_{i j s}^{h}\right) \frac{\delta}{\delta q^{h}}+\left(S_{h l s} Q Q Q_{i j k}^{s}+S_{s l k} Q Q Q_{i j h}^{s}+S_{s l j} P Q Q_{i k h}^{s}-S_{s l i} P Q Q_{j k h}^{s}\right) \frac{\partial}{\partial p_{h}}
\end{aligned}
$$

The coefficient of $\frac{\delta}{\delta q^{h}}$ is zero due to the relations (32). By straightforward computation, using the relations (28), (30) and the package Ricci, we obtain that the coefficient of $\frac{\partial}{\partial p_{h}}$ is zero. Thus

$$
\left(\nabla_{\frac{\delta}{\delta q^{L}}} K\right)\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\delta}{\delta q^{k}}=0
$$

Similarly,

$$
\begin{gathered}
\left(\nabla_{\frac{\partial}{\partial p_{l}}} K\right)\left(\frac{\delta}{\delta q^{2}}, \frac{\delta}{\delta q^{j}}\right) \frac{\delta}{\delta q^{k}}=\left(\frac{\partial}{\partial p_{l}} Q Q Q_{i j k}^{h}+P_{s}^{h l} Q Q Q_{i j k}^{s}-P_{i}^{s l} Q Q Q_{s j k}^{h}-\right. \\
\left.-P_{j}^{s l} Q Q Q_{i s k}^{h}-P_{k}^{s l} Q Q Q_{i j s}^{h}\right) \frac{\delta}{\delta q^{h}} .
\end{gathered}
$$

The coefficient of $\frac{\delta}{\delta q^{h}}$ is zero due to the relations (32). Thus

$$
\left(\nabla_{\frac{\partial}{\partial p_{l}}} K\right)\left(\frac{\delta}{\delta q^{i}}, \frac{\delta}{\delta q^{j}}\right) \frac{\delta}{\delta q^{k}}=0
$$

Similarly, we have computed the covariant derivatives of curvature tensor field K in the local adapted frame $\left(\frac{\delta}{\delta q^{i}}, \frac{\partial}{\partial p_{i}}\right)$ with respect to the connection ∇ and we obtained in all the cases that the result is zero. Therefore

$$
\nabla K=0
$$

Hence we may state our main result.
Theorem 9. Assume that the Riemannian manifold (M, g) has positive constant sectional curvature c. Let J be the class of natural, complex structure of diagonal type on $T_{0}^{*} M$, given by (3) and (13). Let G be the class of the natural Riemannian metrics of diagonal type on $T_{0}^{*} M$, given by (14) and (24).

Then (G, J) is a class of locally symmetric Kähler Einstein structures on $T_{0}^{*} M$, depending on one essential parameter λ, which must fulfill the conditions (23):

$$
\lambda>0, \quad 2 c-A^{2} t \lambda^{2}>0, \quad \lambda+2 t \lambda^{\prime}>0 \quad \forall t>0, \quad A>0
$$

Example. The function $\lambda=\frac{\sqrt{2 c}}{A \sqrt{t}+B}, A, B \in \mathbf{R}_{+}$, fulfill the conditions (23).

References

[1] J.M. Lee, Ricci. A Mathematica package for doing tensor calculations in differential geometry. User's Manual, 1992, 2000.
[2] K.P. Mok, E.M. Patterson, Y.C. Wong, Structure of symmetric tensors of type (0,2) and tensors of type $(1,1)$ on the tangent bundle, Trans. Am. Math. Soc. 234 (1977), 253-278.
[3] V. Oproiu, A generalization of natural almost Hermitian structures on the tangent bundles, Math. J. Toyama Univ., 22 (1999), 1-14.
[4] V. Oproiu, General natural almost Hermitian and anti-Hermitian structures on the tangent bundles, Bull. Soc. Sci. Math. Roum. 43 (91), (2000), 325-340.
[5] V. Oproiu, Some new geometric structures on the tangent bundle, Public. Math. Debrecen. 55 (1999), 261-281.
[6] V. Oproiu, A Kähler Einstein structure on the tangent bundle of a space form, Int. J. Math. Math. Sci. 25 (2001), 183-195.
[7] V. Oproiu, N. Papaghiuc, A Kaehler structure on the nonzero tangent bundle of a space form, Differential Geom. Appl. 11 (1999), 1-12.
[8] V. Oproiu, D.D. Poroşniuc, A Kähler Einstein structure on the cotangent bundle of a Riemannian manifold, An. Ştiinţ. Univ. Al. I. Cuza, Iaşi, 49 (2003), f2, 399-414.
[9] V. Oproiu, D.D. Poroşniuc, A class of Kähler Einstein structure on the cotangent bundle of a Riemannian manifold, Publicationes Mathematicae, Debrecen, to appear.
[10] D.D. Poroşniuc, A Kähler Einstein structure on the nonzero cotangent bundle of a space form, Italian Journal of Pure and Applied Mathematics, Udine, to appear.
[11] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, M. Dekker Inc., New York, 1973.

Dumitru Daniel Poroşniuc
Department of Mathematics, National College "M. Eminescu"
Str. Octav Onicescu 52, RO-710096 Botoşani, Romania.
e-mail address: dporosniuc@yahoo.com, danielporosniuc@lme.ro

[^0]: Balkan Journal of Geometry and Its Applications, Vol.9, No.2, 2004, pp. 68-81.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2004.

