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Abstract

In this paper we shall study the cohomology of the various spaces appear-
ing in the refinement of a differentiable principal bundle defined by a closed
subgroup.
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Introduction

Let p: E — B be a differentiable principal bundle and let N, = (G = Fy D F1 D
. D F, = {e}) (q is an integer > 2) be a sequence of closed subgroups of G.Let

E; = E/F;, i=0,1,...q; F} = F;/F},0 < j < k < ¢; G} = Fj/Nj;, (here Ny is the

normal closure of F; in F}).Finally, let p; : E, — E; be the canonical map.

D.I. PAPUC ([5]) proved that p; : By, — E; is a differentiable fibre bundle with
fibre F,g and structure group Gi.

A refinement of a principal bundle ¢ = (F,p, B,G) is the well-known structure
determined by a closed subgroup F}; of G constitued by three bundles (&; &,j, &jq)-

The paper consists of three sections. The first section contains some preliminaries
about the tissues associated to a principal bundle. Also, some examples of tissues and
refinements are given.

The second section one contains the construction of the Cech-de Rham complex
of an open cover of a manifold (see, [3]).

In the third section we shall study the Cech-de Rham cohomology of a refinement
of a principal fibre bundle, whenever the base space of tissue has a finite good cover.
Some main results concerning the cohomology of the spaces appearing in this struc-
ture are established.

Throughout in this note all spaces are finite-dimensional real differentiable mani-
folds, without boundary of C'*° classes and all maps are C'*°.
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1 Refinements of a differentiable principal
bundle

Let (£, N11) be a pair consisting of a differentiable principal Steenrod bundle & =
(E,p.B,G;A) and Ny = (G =F D Foo D .. D Fli_oo 2 Fu = {]}) a sequence of
closed subgroups of the structure group G.

We consider the Steenrod bundles &, = (Ey, pjr, E;, F,g Gi; Aj) for 0 <j <k <
¢ determined by ¢ and Ny, where E; = E/F;, F] = Fj/F.,Gi = F;/Nj;.Nj; being
the largest normal subgroup of F} included in Fj, and pj; is the canonical map, (see
[5],p-372).

The Steenrod tissue [, Nii] associated to the pair (£, N,) is the set of all fibre
bundles ;3 for 0 < j < k < g. We have that {,, = £ and moreover every fibre bundle
&jq,0 < j < ¢ is a principal one.

The triple (§ = &4;&0j,jq), for 0 < j < g is called, via [5], the refinement of &
defined by F}.

Example 1. a) The tissue associated to bundle of tangent linear frames. Let M be
a manifold of dimension n. A k-tangent linear frame u at a point z € M, where
1 < k < n is a linear independent system uy = (X1, Xs, ..., Xj) of the tangent space
T.(M). Let Ly (M) be the set of all k-tangent linear frames uy at all points of M,
and let p be the mapping of Ly (M) onto M which maps a k-tangent linear frame uy
at z into z. The general linear group GL(n;R) acts on Ly (M) on the right as follows.
If a = (a}) € GL(n; R) and uy, = (X1, Xo, ..., X;) is a k-tangent linear frame at =
then u.a is, by definition, the k-tangent linear frame (Y7,Y3,...,Y%) at x defined by
=k
Y, = jZ al X;. Tt is clear that GL(n; R) acts freely on Ly (M) and p(ug) = p(vy.) iff
j=1
v=u.a for some a € GL(n; R). It is known (see [4]) that (L (M),p, M,GL(n; R)) is
a principal fibre bundle and it is denoted by Ly (M). We call L (M) the bundle of
k-tangent linear frames over M.

In particular, when k=n, then L, (M) = L(M) is called the bundle of tangent
linear frames over M.

The tangent bundle T'(M) over M is the bundle (T'(M),w, M, R",GL(n; R)) asso-
ciated with the bundle of tangent linear frames L(M) over M with the standard fibre
R™.

We consider the pair (¢,G), where £ = (L,(M),p.M,GL(n; R)) is the principal
fibre bundle of tangent linear frames over M and G is the following sequence

G=(GL(n;R) =G, DGy-1 D ...D G DGy ={e}),
where Gy = {a = (a;) € Gn|a; = 6;,j =1,n—k,i=1,n}.

It is known that the quotient manifold G,,/G,— is diffeomorphic with the Stiefel
manifold V;, j, of all systems formed by k linear independent vectors of R".

We construct the tissue associated to pair (£, G). We have [£,G] = {&x]|0 < j <
k < n}, where & = (Ly(M) /G, Bk Ln(M) )G, G i) Gk, Gj), since the
largest normal subgroup of GG,, included in G,, is Gy.

For all 1 < j < n — 1 there exist a diffeomorphism ¢; : L,(M)/G,_; — L;(M)
such that pjop;r = pjrop;, where pji : Ly (M) — L;(M) is the canonical projection.
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Using the above diffeomorphism, the fibre bundle éjk can be replaced by the fibre
bundle i, = (Lp(M), pjr, Lij(M),Gpn—j/Grnt,Gn—j)-

Hence, the tissue associated to the pair (§,G) is [£,G] = {&x|0 < j <k <n}. We
have &, = € and &;»(0 < j < n) is a principal fibre bundle with the structure group
Gn_j.

If 0 <j <k < n, then ;; is the bundle associated to &;, with the fibre type
Gy—j/Gn_k and G,_; as structure group.

The refinement of ¢ defined by G,,_j, is the following (&on, = & &0 n—k,&n—kn),
where

gﬂ,nfk = (Lnfk(M):pO,nfk; M: Vn,nfk; Gn)

is the bundle associated to &, with the Stiefel manifold V;, ,,_ as fibre type and G,
as structure group;

fnfk,n = (Ln(M):pnfk,n: Lnfk(M): Gk)

is the principal fibre bundle with G}, as the structure group.

Applying the general properties of the tissus associated to principal differentiable
fibre bundle, we have the main results:

Let L,,(M) be the principal bundle of tangent linear frames over a n-dimensional
manifold M. The structure group GL(n; R) of L,(M) can be reduced to the group
Gn—i, 1 <k <n iff the fibre bundle & ,— has a cross section.

b) Let & = (Ln(Vy),p, Vi, GL(n; R)) be the principal bundle of tangent linear
frames to a n-manifold V,, and Ny = (GL(n;R) D D(n,R) D E) a sequence of
GL(n; R), where D(n; R) = {(ad?)|a € R} is the diagonal subgroup and E = {(47)}.

Since, D(n; R) is a normal subgroup of GL(n; R), it follows that the refinement of ¢
defined by D(n; R), denoted by (&5, = &; &5, &), is formed from the following three
principal bundles: ¢, &, = ((Vy.),po1, Vs, GP(n — 1; R)) is the principal bundle of
tangent directions to V,, and &, = (L,,(Vy,), p12,t(Vi), D(n; R)), where GP(n — 1; R)
is the (n-1)-dimensional real projective group.

2 Cech-de Rham complex of an open cover

In the sequel, we denote by 0* the algebra over R generated by dz1,dxs, ..., dz, with
the relations
(d'rj)2 = 0;dxidz; = —dxjdx; fori # j,

where z, 2>, ..., T, are the coordinates on R".

For any open subset U of R"™, the C® differential q-forms on U are ele-
ments of Q¥(U) = {C™ functions onU} @R Q*, ie., if w € QYU) then w =
> fivio...igdwi, ...dx; , where f; ;. are C*° functions.

There is a differential operator d : Q4(U) — Q41 (U) defined as follows :

i) if f € QO(U), then df = %dwi;

i) if w =3 fir. . das, .de,, then dw =3 dfi, . ds, ...d;,.
The complex Q*(U) = @ Q4(U) together with the differential operator d is called
q=0

the de Rham complex on U._ The kernel of d is called the closed forms and the image
of d , the exact forms.
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The g-th de Rham cohomology of U is the vector space
H} L (U) = {closed g — forms}/{exact ¢ — forms}.

We also write H?(U) for g-th de Rham cohomology of U.
Let U be an open cover{U, V'} of a manifold M. There is a sequence of inclusions

of open sets
o
M—U]J[Vv % vnv,
H

where U [[V is the disjoint union of U and V and 8y, 0; are the inclusions of U NV
in V and in U, respectively.
Applying the contravariant functor 2*, we get a sequence of restrictions of forms

%
(M) — @ (U) & Q(V) 5 Q(UNV)— 0,
—

where by restriction of a form to a submanifold we mean its image under the pullback
map induced by the inclusions.

By taking the difference of the last two maps, we obtain the Mayer- Vietoris (short)
exact sequence

(1) 0 — (M) — Q*(U) 3 (V) -5 Q*(UNV) — 0,

where 0(w,7) =T — w.
The Mayer-Vietoris (1) gives rise to a long exact sequence in cohomology
2)  HY (M) -5 HY(U)® H(V) -5 HI(UNV) S HY (M) — ...

where d* is the coboundary operator given by

g ct={ s

where (p, pv) is a partition of unity subordinate to cover U and [w] denotes the
cohomology class of the form w.

We observe that the long exact sequence in cohomology allows one to compute in
many cases the cohomology of M from the cohomology of the open subsets U and V.

Instead of a cover with two open sets as in the usual Mayer-Vietoris sequence,
consider the open cover Y ={U,|a € J} of M, where the index set J is a countable
ordered set. Denote the pairwise intersections U, N Ug by Uys (when a < f3), triple
intersections U, N Us N U, by Uap~(when a < § < ), etc.

There is a sequence of inclusions of open sets

O
Ao — «—
— 2]
M H Uao 01 H Uaoal — H UOéoal Qas
< P2 —
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where 0; is the inclusion which ,jignores” the i-th open set, for example, 9
Uaga1a2 — UQIOCQ'
This sequence of inclusions of open sets induces a sequence of restrictions of forms

do Do,
Q" (M) 5 TIQ* (Uy,) z) NQ* (Uaga, ) % O Uaparan) — -
=2

where dg, for instance, is induced from the inclusion 9y : [[Uasy — [ Usy and
therefore is the restriction dg; IIQ*(Ugy) — HQ* (Uagy)-

We define the difference operator §:11Q* (Unya,) — HQ*(Ungaya,) to be the al-
ternating difference §g — &1 + ds.

The following sequence

(4) 0 — Q (M) -5 TIQ* (Usy) -5 TIQ* (Ungar) —= T (Unparas) — -
is exact and it is called the generalized Mayer- Vietoris sequence.
It U={U,|a € J} is an open cover of M, consider the double complex

Cru, ) = @ K7 = @ crw, ),

P,q>0 p,q>0

where CP(U, Q) = TIQ (Ungya,...a, ), i-€., KP4 consists of the ,, p- cochains of the
cover U with values in the g- forms”.

For example: K% = C°(U, Q) = TIQ4(U,,), K" = C' (U, Q) = TN (Upsya, )-

The double complex is equipped with the following two differential operators
d and d, where § : CP(U,N7) — CPTHU,Q%) is the difference operator and
d:CP(U,N) — CP(U, Q") is the exterior derivative.

We have the following two sequences

(5) O — QUM) s K7 Oy fprla
and
(6) Kpo 4y gt 4y ppa 4y ppatl

The double graded complex C*(U,Q*) = @ CP(U,N9) is called the Cech-de

P,4>0
Rham complex of the cover U of M and an element of the Cech-de Rham complex is
called a Cech-de Rham cochain.
Given the doubly graded complex K** with commuting operators d and §, one

can associate a singly graded complex K*, where K* = @ KP9 and defining the
ptg=n
differential operator D by D =§ + (—1)P.d, on KP4.
In the sequel we will use the same symbol C*(U, Q2*) to denote the double complex
and its associated single complex.
The double graded complex C*(U, 2*) computes the de Rham cohomology of M,
ie.

(7) Hp{C™ (U, Q") }=H ], (M),
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We have
Hpp(M) = @ Hp{C"U,0")}.
ptg=n
Let U = {Ua|a € J} be a good cover of M (i.e., all finite intersections Uy, N Uq, N
... N Uy, are diffeomorphic to R") and we denote by H*(U,R) the Cech cohomology
of the cover U.

If U is a good cover of M, then the double complex C*(i, 2*) computes the Cech
cohomology of the cover U of M, i.e.

(8) H*(U,R)=Hp{C*(U,2")}.

Therefore, if ¢/ is a good cover of the manifold M, then there is an isomorphism
between the de Rham cohomology of M and the Cech cohomology of the good cover
U of M, i.e.

9) Hpp(M)=H*(U,R).

This result provides us with a way of computing the de Rham cohomology by
means of combinatorics.

3 Cech-de Rham cohomology of a refinement

Theorem 1. Let [{,N,] be a totally trivial tissue (i.e. the bundles &;, are product
bundles for each 0 < j < q) associated to pair (§,N,). Then the following assertions
hold

(4) Hpyp(Ej)=Hpp(B) © Hpp(FY) © .. ® Hpp(F] ™)

(i) Hpyp(F)=Hpp(FY) @ Hpyp(Fy) ® ... ® Hpyp(FI )

for all 0 < j <gq.

Proof. The tissue [, N,] being totally trivial it follows that the space E; = E/Fj is
homeomorphic with B x F} x ... x Fjjf1 and the homogeneous space F} is homeomor-
phic with F? x F} x ... x Fjj*1 (see,[5],Th.3.) For j=1, the spaces E; and B x F} are
homeomorphic and H},,(E1) = H},p(B x F?). But by Kiinneth’s formula, we have
Hpp(Bx FO)2H} 5 (B)® H) g (FY), and we obtain H},p(E1)2H},p(B) @ Hj, p(FY).

This means
H}p(Er) = @ H},p(B) @ Hf, , (FY).
ptg=n

Applying now the induction and the general properties of tensor product, by similar
arguments we obtain the isomorphisms (i) and (ii).

In the sequel we suppose that the base space B of the principal bundle ¢ =
(E,p, B, ) has a finite good cover.
Theorem 2. Let £ = (E,p, B,G) be a principal bundle such that B has a finite good
cover. If F; (j fized) is a closed subgroup of G such that the cohomology of G and
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F; are finite-dimensional, then for the refinement (&;&o0;,&4) of € defined by F; the
following assertions hold

(7) Hpp(E)=HpRr(B) @ Hpr(G)

(i) Hpr(E)=Hpp(Ej) ® Hpp(Fj).

Proof. (i) The space of cohomology of E (for every n) being a vector space follows
that it has a base, that this there are global cohomology classes {e;|i € I} on E.
If we restrict {e;} to each fiber of ¢ imply that {e;} generate the cohomology of
the fiber G, and we can extract a base of H}5(G), since the cohomology of G is
finite-dimensional. Therefore, there are global cohomology classes e, es,...,e, on E
which when restrict to each fiber freely generate the cohomology of fiber. Hence,the
hypothesis of Leray-Hirsch’s theorem are satisfied for £ and we have the isomorphisn
(i).

(ii) We suppose that U = {U;]i = 1,2,...,n} is a finite good cover of B. Then
U = {pgjl(Uz)|z =1,2,...,n} is a finite good cover of E;. Hence the base space E;
of the bundle ;, has a finite good cover. Using now Leray-Hirsch’s theorem and the
fact that the cohomology of Fj are finite-dimensional the same argument from proof
of (i) gives the isomorphism (ii).
Corollary 1. Let £ = (E,p, B,G) be a principal bundle such that the base space B
and the structure group G are compact spaces. Then for the refinement (&; &oj,&5q) of
& defined by a closed subgroup F; of G, the following assertions hold

Q Hpr(E)=Hpr(B) @ Hpp(G)

(i) Hpr(E)=HpR(Ej) @ Hpp(Fj).

Proof. The base space B of ¢ has a finite good cover since the manifold B is compact.
The hypothesis of Theorem 2 are verified since the cohomology of a compact manifold
is finite-dimensional. Applying now Theorem 2 we obtain the isomorphisms (i) and
(ii).

Theorem 3. Let £ = (E,p, B,G) be a principal bundle such that the base space B has
a finite good cover. Let F; (j- fized) be a closed subgroup of G such that the cohomology
of Fj and F]0 are finite-dimensional. Then for the refinement (&; &o;,&5q) of € defined
by F; the following assertions hold

(i) Hpr(E)=Hpp(E;) ® Hip(F))
(i) Hpr(Ej)=Hpp(B) @ Hpp(F})
(i44) Hpp(E)=Hpp(B) © Hpp(F}) @ Hpp(Fy).

Proof. (i) We have that the base space E; of £, has a finite good cover and the coho-
mology of the fibre Fj is finite-dimensional. Applying now Leray-Hirsch’s theorem,we
obtain the isomorphism (i).
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(ii) We have that the base space B of &; has a finite good cover and the cohomology
of the fibre F]Q is finite-dimensional. We can apply Leray-Hirsch’s theorem and we
obtain the isomorphism (ii).

(iii) This isomorphism results from (i) and (ii).

Theorem 4. Let ¢ = (E,p, B,G) be a principal bundle such that the base space B
has a finite good cover and the structure group G is a connected Lie group. If F is a
mazimal compact subgroup of G, then for the refinement (&; &o1,&12) of & defined by
F the following assertions hold

(7) Hpp(E)=Hpr(E/F) @ Hpp(F)

(i) Hpp(E/F)=Hr(B) € Hpp(G/F)
(iid) Hpr(G)=Hpp(F) ® Hpp(G/F)

(iv) Hpp(E)=Hpr(B) @ Hpp(G/F) © Hpgp(F).

Proof. Since F is a maximal compact subgroup of G imply, by Ivasawa’s theorem,
that G is homeomorphic with the direct product of F and a Euclidian space ( i.e.,
G is homeomorphic to F' x R™). Then H} ,(G) = H},z(F x (G/F)) and using the
Kiiunneth’s formula it follows the isomorphism (iii). Since F'is compact and G/F is a
Euclidean space it follows that the cohomology of F' and G/ F' are finite-dimensional.
Hence the hypothesis of Theorem 3 are verified and we obtain the isomorphisms (i) ,
(ii) and (iv).

Theorem 5. Let £ = (E,p, B,G) be a principal bundle such that the base space has
a finite good cover and the structure group is a simply connected Lie group. Let F
be a normal closed subgroup of G such that the factor group G/F is abelian. If the
cohomology of G is finite-dimensional, then for the refinement (&; o1, &12) of € defined
by F the following assertions hold:

Q Hpr(E)=Hpp(B) @ Hpp(G)

(i) Hpp(E/F)=Hpg(B) © Hpp(G/F).

Proof. (i) We apply the same argument used in the proof of Theorem 1. (i).

(ii) Since F'is a normal closed subgroup of G follows that &y, is a principal bundle
having G/F as structure group. But G/F being a simply connected Lie group imply
that there is an integer m such that G/F is diffeomorphic with the Euclidian space
R™. Hence, & = (E/F,po1,B,G/F) is a principal bundle for which the fibre is
diffeomorphic with a Euclidean space. Then there exists a cross section of £y, defined
on B. Applying Theorem 1 from [7], p.36, it follows that £y is a trivial bundle; hence,
E/F and B x (G/F) are diffeomorphic. We have that H},,(E/F) = H},p(Bx (G/F)).
Using now the Kiinneth’s formula we obtain (ii).

Example 2. Let (£, = &; &y, &)2) the refinement of

§= (Ln(Vn)=p7 Vi, GL(n R))
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defined by F' = GL(n, R), see Example 1 (b). If the base B of ¢ has a finite good
cover or is a compact space, then:

Hpp(Ln(Va))=Hpr(Va) © Hpp(GL(n, R))

Hpp(Ln(Va)=Hpp(H(Va)) @ Hpp(R™).
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